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Competitive Location

Competing providers locate facilities on a graph

Graph G = (V , E)

Edge lenghts d : E → R+
0

Node weights w : V → R+
0

Users are located at nodes
Facilities may be placed along edges

User u prefers X over Y :

X ≺u Y : ⇐⇒ d(u, X ) < d(u, Y )

w(X ≺ Y ) : weight of users preferring X



Example of Competitive Providers

Y

X
blue users prefer
facility X

w(X ≺ Y ) = 8

red users prefer
facility Y

w(Y ≺ X ) = 7
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Game Rules

Providers place sequentially . . .

1 Leader places p facilities ( leader problem)
2 Follower places r facilities ( follower problem)

. . . each maximizes own benefit (sum of user demand)
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Follower Problem

Let us start with the follower problem. . .



Example Follower Problem

Given X , what is the best choice for the follower?

X

w(Y ′ ≺ X ) = 7
w(Y ′′ ≺ X ) = 8
Max w(· ≺ X )
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Definition Follower Problem

Definition (Hakimi ’83)
Given p-element leader placement Xp, define

wr (Xp) := max
Yr⊆G
|Yr |=r

w(Yr ≺ Xp),

which denotes the maximum gain of follower.

Definition (Hakimi ’83)
We call an r -element follower placement Yr with

w(Yr ≺ Xp) = wr (Xp)

an (r , Xp)-Medianoid.
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And the Leader Problem?

Leader can predict the follower’s reaction:

Xp 7→ wr (Xp)

. . . the leader gets the rest
 find Xp which minimizes wr (·)
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Example of Leader Problem

Open one of three facilities . . .

w1(R) = max{w1(G ≺ R), w1(B ≺ R)} = 8
w1(G) = max{w1(B ≺ G), w1(R ≺ G)} = 8
w1(B) = max{w1(G ≺ B), w1(R ≺ B)} = 7
⇒ Blue is the optimal leader position
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Complexity on General Graphs

Leader and follower problem are difficult (Hakimi ’83)

... but leader problem is much more difficult
Hakimi (’90) conjectured: it is “exceedingly difficult”
 Is it in NP?
(Probably) it is not: (r , p)-Centroid is Σp

2-complete
(Noltemeier, Spoerhase, Wirth ’07)
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Why is Centroid so hard?

Computing the follower problem

wr (Xp) = max
Yr

w(Yr ≺ Xp)

Compare Xp with all oppositions Yr

One-stage enumeration

Xp

Y (1)
r

Y (2)
r

Y (k)
r
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Complexity on Trees

Follower Problem ((r , Xp)-Medianoid)
Megiddo, Zemel, Hakimi ’83: (r , Xp)-Medianoid is
computable in O(rn2) on trees

 Bottom-up dynamic programming

Leader Problem ((r , p)-Centroid)
Is (r , p)-Centroid easy on trees?
... a long standing open question
(Hakimi ’90, Eiselt,Laporte ’96, Benati ’00)
Answer: (r , p)-Centroid is hard even on a path!
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e ) of approximability
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Not approximable within n1−ε on planar graphs
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Dynamic Programming

Typical Approach: pseudopolynomial algorithm and
scaling
Dynamic Programming requires optimal
substructure property



Optimal Substructure Paradoxon

x

(Xp, Yr )

However the problem is not splittable!



Optimal Substructure Paradoxon

x

xx

(Xp1 , Yr1)

(Xp, Yr )

(Xp2 , Yr2)

wr (Xp) = wr1(Xp1) + wr2(Xp2)

However the problem is not splittable!



Optimal Substructure Paradoxon

x

xx

(Xp1 , Yr1)

(Xp, Yr )

(Xp2 , Yr2)

wr (Xp) = wr1(Xp1) + wr2(Xp2)

However the problem is not splittable!



Optimal Substructure Paradoxon

Determine (2, 2)-Centroid . . .
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Ω

3

Leader always locates at Ω node split
Locate the second facility at the right subpath
Local (1, 1)-centroid is at 10 (split equally)
Local (2, 1)-centroid is at 14 (heaviest node)
But 13 is the best choice!
If we change the weight of the leftmost node. . .
. . . the optimum switches to 12
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k -Sum Optimization

k -Sum Optimization Problem (Punnen ’96)
Given:

Set E = {e1, . . . , em} of weighted ground elements
Family F = {F1, F2, . . . , Fn} with Fi ⊆ E

Task: Compute Fi minimizing ck(·)

ck(Fi) := sum of the k heaviest elements in Fi

c(Fi) := sum of all elements minisum problem
Examples: k -sum shortest path, k -sum MST

F1 F2 Fn

. . .
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k -Sum Optimization

Theorem (Punnen ’96)
A k -sum optimization problem is easy if the
corresponding minisum problem is tractable

Introduce “Water Level” z

w (z)(ei) := w(ei)
.− z := max{w(ei)− z, 0}

Consider minisum problem under w (z)(·)
For some z, minisum under w (z) and k -sum
under w become equivalent

F2 Fn

. . .

F1

z
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Formulation as k -sum problem

Observation: Follower distributes its facilities among
leader intervals

Within a leader interval the follower places either. . .

0 Servers

1 Servers
 incremental gain δ′

2 Servers
 incremental gain δ′′ ≤ δ′
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Formulation as k -sum problem

Hence the follower chooses the r largest incremental
gains

δ′

δ′′
δ′

δ′′
δ′

δ′′

We consider Xp as sorted vector of 2p incremental
gains δ1 ≥ δ2 ≥ . . . ≥ δ2p

Observe that wr (Xp) =
∑r

i=1 δi

According to Punnen: need to solve the minisum
problem under reduced cost
w (z)(Xp) :=

∑2p
i=1(δi

.− z)
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Solving the minisum problem

This new problem is splittable.

R(z)(π + 1, W ) = max

 x
∃(W0, W̃ ) : W0 + W̃ = W
and
w (z)

(
R(z)(π, W0), x

)
≤ W̃



follower weight ≤ W0

x

≤ W̃

R(z)(π, W0)π servers π + 1st server

R(z) rightmost leader position of placing π servers
such that w (z) restricted to the interval [0, R(z)] does
not exceed W
w (z)(a, b) reduced gain in interval [a, b]



Approximating the (r , p)-Centroid

Computing (r , p)-centroid
An (r , p)-centroid of a path P can be computed in
pseudo-polynomial running time O(p · w(P)2 · n2).

and by scaling we obtain. . .

Approximating (r , p)-centroid
There is a FPTAS for (r , p)-centroid on a path.



(r , p)-centroid (leader problem) (r , Xp)-medianoid

absolute discrete (follower problem)

arb. r
arb. p

NP-hard on path
[Spoerhase, Wirth 08]

O(pn4) on path
[Spoerhase, Wirth 08]

O(n) on path
[Megiddo et al. 83]

FPTAS on path NP-hard on spider
[Spoerhase, Wirth 08]

O(rn2) on tree
[Megiddo et al. 83]

Σp
2-complete on

graph
[Noltemeier, Spoerhase, Wirth 07]

NP-hard on graph
[Megiddo et al. 83]

r = 1
arb. p

O(n3 log W log D) on
tree [Spoerhase, Wirth 08]

O(n2 (log n)2 log W )
on tree

[Spoerhase, Wirth 08]

O(n (log n)2/ log log n)
on tree

[Spoerhase, Wirth 07]

NP-hard on
pathwidth bounded
graph

[Spoerhase, Wirth 08]

O(n2 log n + nm) on
graph [by enumeration]

r = 1
p = 1

O(n4m2 log mn log W )
on graph

[Hansen, Labbe 88]

O(n3) on graph
[Campos, Moreno 03]



(r , p)-centroid (r , Xp)-medianoid

hardness approximability approximability

Graph Σp
2-complete [NSW 07] Lower bound n1−ε

[NSW 07]

(1 − 1
e ) [NSW 07]

Tree NP-hard
[Spoerhase, Wirth 08]

r 1 [Megiddo et al.]

Path NP-hard
[Spoerhase, Wirth 08]

FPTAS



Open Questions

There is a simple r -approximation on trees
Are better approximations factors possible?
Sublinear factors on general graphs?
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