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Location Problems (Examples)

Set X of facilities

Minimize Objective Problem
>, d(v, X) p-Median
max, d(v, X) p-Center

Y oxex f(x)+ >, d(v,X) Facility Location

Prior: one central planner

Now: two competitive providers



Competitive Location

Competing providers locate facilities on a graph
@ Graph G= (V,E)
@ Edge lenghts d: E — R}
@ Node weights w: V — Ry
@ Users are located at nodes
@ Facilities may be placed along edges

User u prefers X over Y:

X=<,Y = d(u,X) <d(u,Y)
w(X <Y) :weight of users preferring X



Example of Competitive Providers

@ blue users prefer
facility X
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Example of Competitive Providers

@ blue users prefer

I 1 1 facility X
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I @ red users prefer
1 facility ¥

1 | ORY% w(Y < X)=7
i Ihl



Game Rules

Providers place sequentially ...



Game Rules

Providers place sequentially ...
@ Leader places p facilities (~ leader problem)



Game Rules

Providers place sequentially ...
@ Leader places p facilities (~ leader problem)
@ Follower places r facilities (~ follower problem)



Game Rules

Providers place sequentially ...
@ Leader places p facilities (~ leader problem)
@ Follower places r facilities (~ follower problem)
... each maximizes own benefit (sum of user demand)



Follower Problem

Let us start with the follower problem. ..
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Example Follower Problem

Given X, what is the best choice for the follower?

o w(Y' <X)=7
@ w(Y"<X)=8




Example Follower Problem

Given X, what is the best choice for the follower?

o w(Y' <X)=7
o w(Y"<X)=8
@ Max w(- < X)
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Definition (Hakimi '83)

Given p-element leader placement X, define
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which denotes the maximum gain of follower.
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Definition (Hakimi '83)

Given p-element leader placement X, define

|Yr=r

which denotes the maximum gain of follower.

Definition (Hakimi '83)

We call an r-element follower placement Y, with

w(Y, < Xp) = wi(Xp)

an (r, X,)-Medianoid.
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And the Leader Problem?

@ Leader can predict the follower’s reaction:
o X, — wi(Xp)

@ ... the leader gets the rest

@ ~ find X, which minimizes w;(-)



Example of Leader Problem

Open one of three facilities ...
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Example of Leader Problem

Open one of three facilities ...
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Open one of three facilities ...
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Example of Leader Problem

Open one of three facilities ...

@ wi(R) =max{ws(G < R),ws(B<R)} =8
@ wi(G)=max{wy(B=<G),wy(R<G)} =8
@ wi(B) =max{wy(G<B),w;s(R<B)}=7
@ = Blue is the optimal leader position



Definition Leader Problem

Definition (Hakimi '83)

Given r, p, we define
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Definition Leader Problem

Definition (Hakimi '83)

Given r, p, we define

W p(G) = )r(?é% W, (Xp),
|Xp\_:P

Definition (Hakimi ’83)

Given r, p, we call a p-element leader placement X, with
W, (Xp) = W p(G)

an (r, p)-Centroid.
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Complexity on General Graphs

@ Leader and follower problem are difficult (Hakimi '83)
@ ... but leader problem is much more difficult

@ Hakimi ("90) conjectured: it is “exceedingly difficult”
@ ~ Isitin NP?

@ (Probably) it is not: (r, p)-Centroid is ¥5-complete
(Noltemeier, Spoerhase, Wirth ’07)
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Why is Centroid so hard?

Computing the follower problem

w(Xp) = max w(Y, < Xp)

pead
@ Compare X, with all oppositions Y, @

@ One-stage enumeration



Why is Centroid so hard?

Computing Centroid

Wy p = min w,(X,) = minmax w(Y; < X,)
Xp Xp Yr
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Computing Centroid
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Why is Centroid so hard?

Computing Centroid

Wrp = rr}(in W (Xp) = m|n max w(Y: < Xp)
o)

D
@ Compare all X with all Y @ .

@ Two-stage optimization
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Complexity on Trees

Follower Problem ((r, X,)-Medianoid)
@ Megiddo, Zemel, Hakimi '83: (r, X,)-Medianoid is
computable in O(rn?) on trees
@ -~ Bottom-up dynamic programming

Leader Problem ((r, p)-Centroid)
@ Is (r, p)-Centroid easy on trees?

@ ... a long standing open question
(Hakimi ’90, Eiselt,Laporte ‘96, Benati '00)

@ Answer: (r, p)-Centroid is hard even on a path!
(Spoerhase, Wirth '08)
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Follower Problem ((r, X,)-Medianoid)
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Approximability

Follower Problem ((r, X,)-Medianoid)

@ Tight bound (1 — 1) of approximability
(Noltemeier, Spoerhase, Wirth ’07)

Leader Problem ((r, p)-Centroid)

@ Not approximable within n'=¢ on planar graphs
(Noltemeier, Spoerhase, Wirth ’07)

@ ~- Approximability on paths and trees?
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Dynamic Programming

@ Typical Approach: pseudopolynomial algorithm and
scaling

@ Dynamic Programming requires optimal
substructure property
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Optimal Substructure Paradoxon

(XP7I Y”)
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X

(X, i) Q Q(szﬂ’rz)

X

Wf(XP) = Wy (XP1) + sz(sz)

However the problem is not splittable!



Optimal Substructure Paradoxon

Determine (2,2)-Centroid . ..
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Determine (2,2)-Centroid . ..
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Leader always locates at Q2 node ~~ split
Locate the second facility at the right subpath
Local (1, 1)-centroid is at 10 (split equally)
Local (2, 1)-centroid is at 14 (heaviest node)
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Optimal Substructure Paradoxon

Determine (2,2)-Centroid . ..

143 Q 14 12 10 11 13
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—e— o O—O0—D—0

Leader always locates at Q2 node ~~ split
Locate the second facility at the right subpath
Local (1, 1)-centroid is at 10 (split equally)
Local (2, 1)-centroid is at 14 (heaviest node)
But 13 is the best choice!

If we change the weight of the leftmost node. ..
...the optimum switches to 12



Optimal Substructure Paradoxon

Generalization . ..

]
N N
/ / ©
o X2 X N
ar & o © N NN
* * * %
(a7 ~ ~ ~ ~ ~ ~ ~ \\{'
—o o o —o
c Q  wy voi 2 o v v Vai 1 vok—1 b

@ Every node v; can be part of a (2, 2)-centroid . ..
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Generalization . ..
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@ Every node v; can be part of a (2, 2)-centroid . ..
@ ...depending on the weight w
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k-Sum Optimization

k-Sum Optimization Problem (Punnen '96)
Given:
@ Set E ={ey,...,en} of weighted ground elements
@ Family F ={F,F,,....F,} with F; C E
Task: Compute F; minimizing ck(+)

@ c«(F;) := sum of the k heaviest elements in F;
@ c(F;) := sum of all elements ~~ minisum problem
@ Examples: k-sum shortest path, k-sum MST
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k-Sum Optimization

Theorem (Punnen ’'96)

A k-sum optimization problem is easy if the
corresponding minisum problem is tractable

@ Introduce “Water Level” z
e wi@(g) :=w(e) = z:=max{w(e) — z,0}
@ Consider minisum problem under w(?)(-)

@ For some z, minisum under w(?*) and k-sum
under w become equivalent

F Fo F,
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leader intervals
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Formulation as k-sum problem

Observation: Follower distributes its facilities among
leader intervals

LN

Within a leader interval the follower places either. . .

@ 0 Servers

O O —e0—0O—e
@ 1 Servers

~» incremental gain ¢’
e O O OO0 O e
@ 2 Servers
~ incremental gain §” < ¢’
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Formulation as k-sum problem

Hence the follower chooses the r largest incremental

AN

5/ /
5// 5// 5//

@ We consider X, as sorted vector of 2p incremental
gains 41 > dp > ... > dgp

@ Observe that w,(X,) = >/, &

@ According to Punnen: need to solve the minisum
problem under reduced cost

WO(X,) = 3277 (6= 2)



Solving the minisum problem

This new problem is splittable.

I Wo, W): Wo + W = W
and

R (7 +1, W) =max{ x )
w@ (RO(r, W), x) < W

7 servers  R@(w, Wp) x 7+ 1stserver
o—0—0 00 ®-—--- ®--—-

follower weight < W, < W

@ R® rightmost leader position of placing = servers
such that w!? restricted to the interval [0, R®)] does
not exceed W

e w(@(a, b) reduced gain in interval [a, b]



Approximating the (r, p)-Centroid

Computing (r, p)-centroid

An (r, p)-centroid of a path P can be computed in
pseudo-polynomial running time O(p - w(P)? - n?).

and by scaling we obtain. ..

Approximating (r, p)-centroid
There is a FPTAS for (r, p)-centroid on a path.



(r, p)-centroid (leader problem)

(r, Xp)-medianoid

absolute discrete (follower problem)
arb. r NP-hard on path O(pn*) on path O(n) on path
arb. p
FPTAS on path NP-hard on spider O(rn?) on tree
>P-complete on NP-hard on graph
graph
r=1 O(rPlog Wlog D) on  O(r? (log n)?log W)  O(n(log n)?/log log n)
arb. p tree on tree on tree
NP-hard on O(r?log n+ nm) on
pathwidth bounded graph
graph
r=1 O(n*m?log mnlog W) O(n®) on graph
p=1 on graph




(r, p)-centroid

hardness

approximability

(r, Xp)-medianoid

approximability

Graph ¥P-complete Lower bound n'—< 1-1
Tree NP-hard r 1
Path NP-hard FPTAS




Open Questions

@ There is a simple r-approximation on trees
@ Are better approximations factors possible?
@ Sublinear factors on general graphs?
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