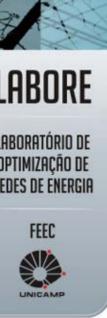



DYNAMIC PROGRAMMING FOR OPTIMIZATION OF CAPACITOR ALLOCATION IN POWER DISTRIBUTION NETWORKS

Authors: José Federico Vizcaino González

Christiano Lyra Filho


CTW 2008

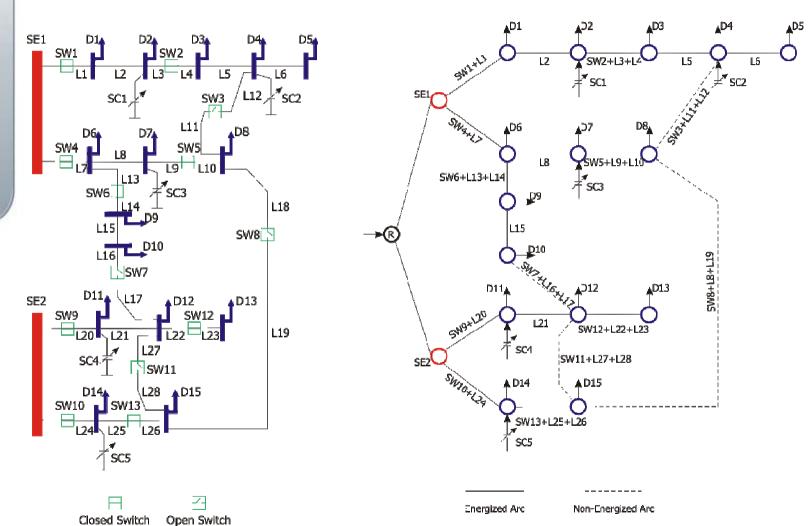
7th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

Albert Einstein & James Maxwell

Summary

- Introduction
- Problem Formulation
- Durán's DP Approach
- The New DP Approach
- How to solve it?
- A Flavor of Applications
- Discussion

As energy travels from generation plants to customers, electrical resistance in transmission and distribution lines causes dissipation of energy (*technical losses*).


Typically figures for these losses amount to around 7% of total energy production, 2% in transmission and 5% in distribution (according to ANEEL, technical losses in Brazilian distribution networks ranges from 2% to 18% with an average of 8%).

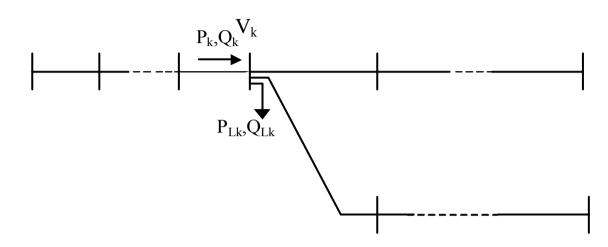
Loss reduction can be seen as a "hidden" source of energy.

Some tools for loss reduction:

- Network reconfigurations;
- Capacitor bank allocation;
- Improvements in cables and equipments.

Main entities of a distribution network and its graph representation

In most of cases it operates with a radial configuration



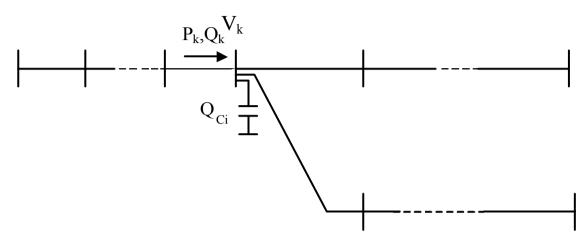
ABORE

ABORATÓRIO DE OPTIMIZAÇÃO DE EDES DE ENERGIA

A typical power distribution feeder with power flows in section k

Technical losses (l_k) in a section k:

$$l_k = r_k(i_{Pk}^2) + r_k(i_{Qk}^2) = r_k \left(\frac{P_k^2 + Q_k^2}{V_k^2}\right)$$


 i_{Pk} is the in-phase current component i_{Qk} is the quadrature current component r_k is the line resistance in section k P_k is the active power (produces work) Q_k is the reactive power

ABORATÓRIO DE OPTIMIZAÇÃO DE EDES DE ENERGIA

Decreasing losses with capacitor banks

$$l_{k} = r_{k}(i_{Pk}^{2}) + r_{k}(i_{Qk}^{2}) = r_{k} \left(\frac{P_{k}^{2} + (Q_{k} - Q_{ci})^{2}}{V_{k}^{2}} \right)$$

 Q_{ci} is the reactive power injected at bus k by capacitor C_i

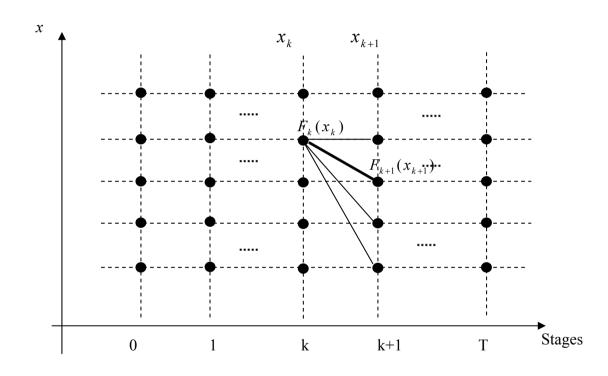
Capacitors can decrease the reactive power flowing back and forth in the network

Problem Formulation

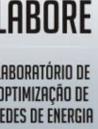
ABORATÓRIO DE OPTIMIZAÇÃO DE EDES DE ENERGIA

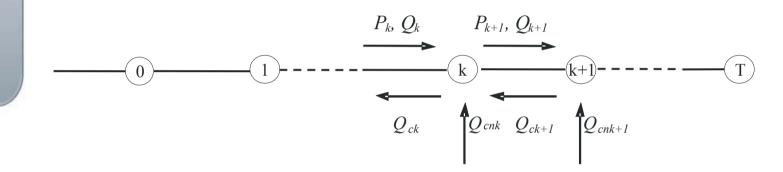
$$Min_{s \in S_{C}} \left\{ \sum_{i \in S_{C}} f(C_{i}) + \alpha_{et} \sum_{t \in T} \tau_{t} \sum_{k \in N} \sum_{j \in A_{k}} r_{kj} \frac{(P_{kj})^{2} + (Q_{kj})^{2}}{V_{k}^{2}} \right\}$$

s. t:

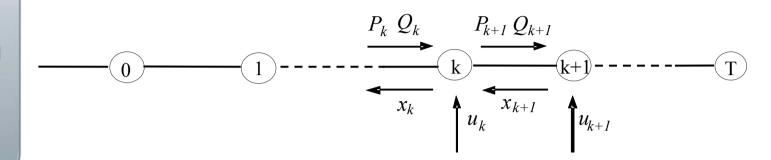

- Active power flow equations
- Reactive power flow equations
- Voltage constraints

ABORE


ABORATÓRIO DE OPTIMIZAÇÃO DE EDES DE ENERGIA


$$F_{k}(x_{k}) = \min_{u_{k}} \{ \varphi_{k}(x_{k}, u_{k}) + F_{k+1}(x_{k+1}) \}$$

Durán (1968) proposed a DP approach to address the capacitor allocation problem in power distribution networks without *lateral* branches


- **stages** all nodes in the power distribution network.
- **control** variable at a node k (u_k) the capacitive reactive power (Q_{Ci}) injected at node k.
- **state** (x_k) total capacitive power flowing upstream from node k.

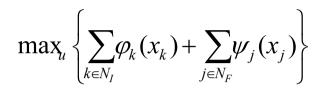
ABORATÓRIO DE Optimização de Edes de Energia

A simple feeder with states and control variables at stages k and k+1

At stage
$$k$$
: $x_k = x_{k+1} + u_k$

If $V_k \cong 1.0 \ p.u$ the total loss reduction in a section k is:

$$l_k^r = r_k (Q_k^2 - (Q_k - x_k)^2)$$


The economical value of the loss in section k in a given period of is:

$$c_k = \alpha_{et} l_k^r$$

The net benefit in section k is: $\varphi_k(x_k) = c_k - f(u_k)$

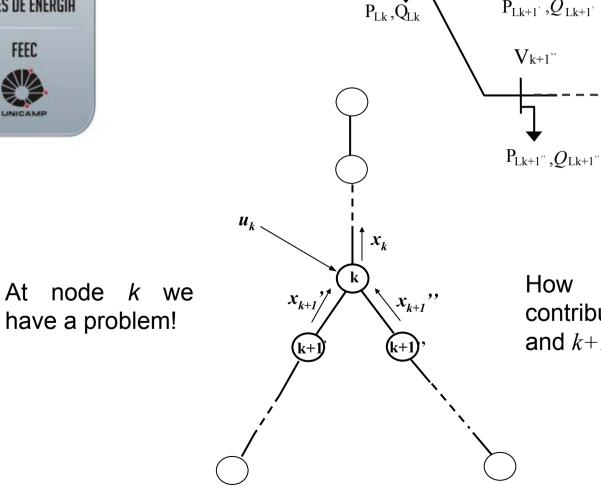
 $f(u_k)$ is the cost of capacitor bank at node k.

s.t:
$$x_{k+1} = x_k - u_k$$
$$\underline{u}_i \le u_i \le \underline{u}_i$$
$$\underline{x}_i \le x_i \le x_i$$

 N_I : set of inner nodes. N_F : set of leaf nodes.

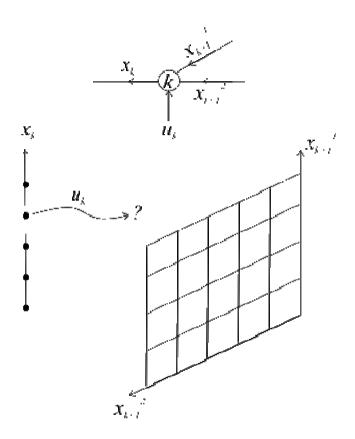
$$\psi_j = c_j - f_j(x_j)$$
$$x_j = u_j$$

ABORATÓRIO DE OPTIMIZAÇÃO DE EDES DE ENERGIA

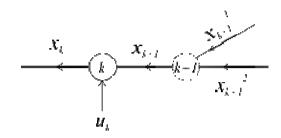

 $V_{k+1},\\$

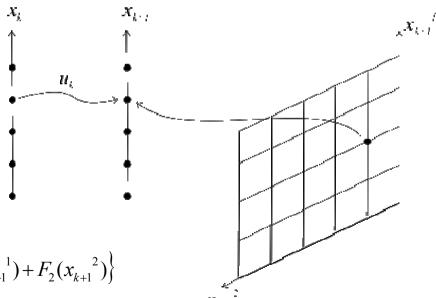
 $P_{Lk+1}^{'}, Q_{Lk+1}^{'}$

 $V_{k+1},\\$


 $P_k,Q_k^{\,\,V_k}$

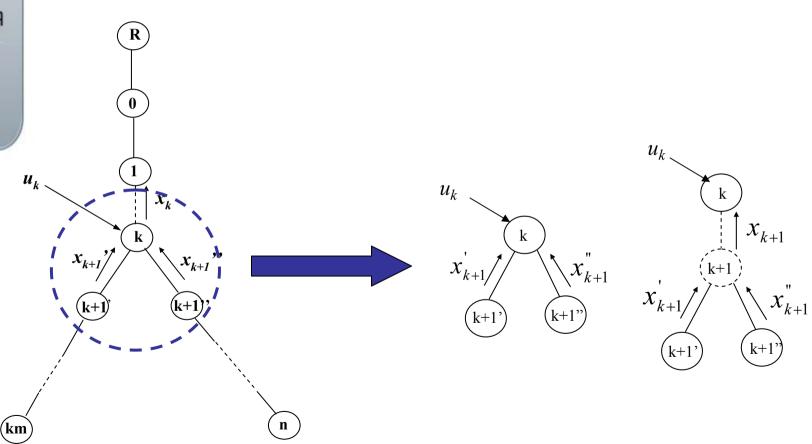
to How compute the contributions of stages k+1and k+1''?


Does it need a multidimensional DP algorithm?


LABORE

ABORATÓRIO DE OPTIMIZAÇÃO DE EDES DE ENERGIA

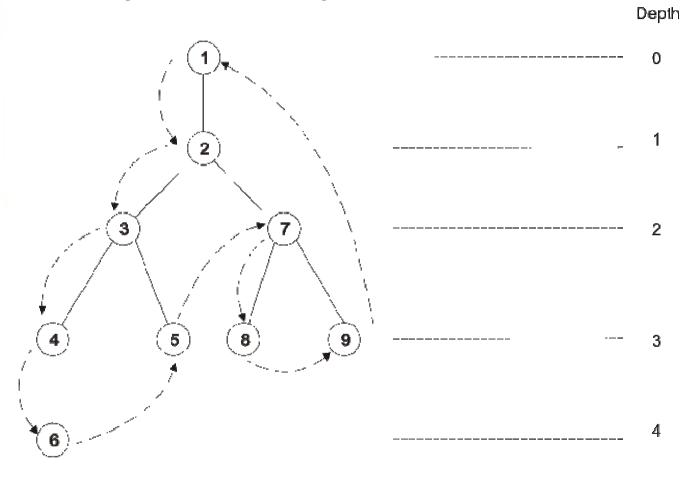
The capacitor allocation problem for networks with lateral branches is a "false" multidimensional DP problem.


$$F(x_{k+1}) = \min_{x_{k+1}, x_{k+1}^{2}} \left\{ F_1(x_{k+1}^{1}) + F_2(x_{k+1}^{2}) \right\}$$
$$x_{k+1} = x_{k+1}^{1} + x_{k+1}^{2}$$

ABORE

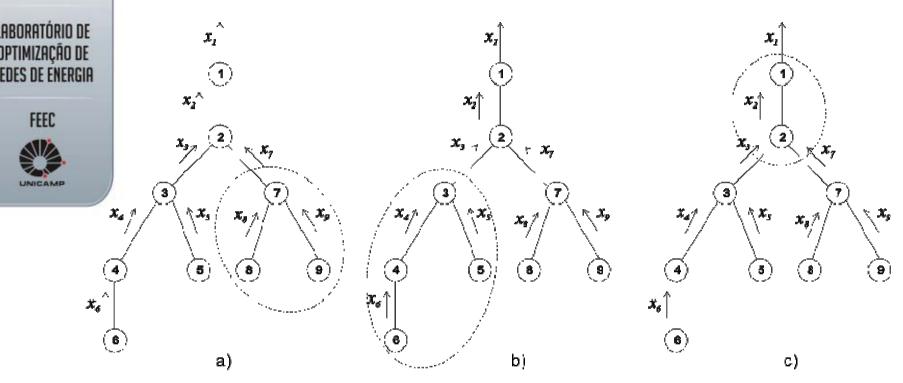
ABORATÓRIO DE OPTIMIZAÇÃO DE EDES DE ENERGIA

Projecting the problem into the virtual stage k+1 avoids the need of more dimensions in the DP approach


How to solve it?

ABORE

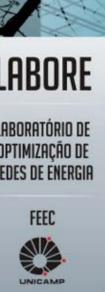
ABORATÓRIO DE OPTIMIZAÇÃO DE EDES DE ENERGIA


Borrowing ideas from NF algorithms.

The backward DP procedure traverses the network with paths inverse to preorder. In this example: 9-8-7-5-6-4-3-2-1

How to solve it?

DP applied to the example


- Compute $F_9(x_9)$, $F_8(x_8)$ e $F_7(x_7)$; a)
- b) Compute $F_5(x_5)$, $F_6(x_6)$, $F_4(x_4)$ and $F_3(x_3)$;
- Compute $F_2(x_2)$ e $F_1(x_1)$; C)

.abore

FEEC

d) Go forward (in preorder) finding the optimal solution.

A Flavor of Applications

The algorithms was coded in C++ (Borland C++ 5.5) and ran under Windows 2000™ in a Pentium 4 2.2 GHz system.

Instances A and B, with 1596 and 2448 nodes, respectively.

Energy cost: α_{et} =0,08 R\$/kwh

Capacitor cost: k_c =5,00 R\$/kVAr

One year, with intervals: τ_0 =1000, τ_1 =6760 e τ_2 =1000 hours

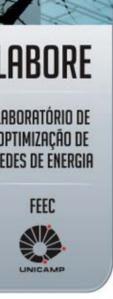
Capacitors banks used: 150, 300, 450, 600, 900 and 1200 kVAr

A Flavor of Applications

ABORE ABORATÓRIO DE OPTIMIZAÇÃO DE EDES DE ENERGIA FEEC

Results

Instance	Initial Cost (R\$)	Solution Cost (R\$)	Installed Capacity (kVAr)	Savings (%)
A	197.335	186.907	1800	5,28
В	451.092	386.008	5400	14,43


Computational times were 0,172s and 0,297s, for *A* for *B*.

Discussion

- DP can be used to solve the fixed capacitor allocation problem (under the usual assumption of $V_k = 1 \text{ pu}$).
- Borrowed key ideas from NF problems.
- It can address real scale systems.
- DP gives a global optimal solution.
- With an additional dimension the approach can be generalized to the switched capacitor allocation problem.
- What to do if $V_k \neq 1$ pu?

Acknowledgments

ABORATÓRIO DE Optimização de Edes de Energia

Grazie!

Grazie!