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introduction

LOCAL model for distributed communication networks

e locality of graph structures

weighted matchings
e matchings, connected ¢-augmentations, and their gain
e (-augmentation graph
e Algorithm: ImproveMatching M

(1 — £)-approximation
wireless communication networks

e preprocessing: colored cluster-graphs
e decreasing the runtime

conlusions



Definition

A matching in a graph G = (V,E) is
a subset M C E such that no two
edges in M share a common node.

We look at the weighted version,
where each edge is given a (non-
negative) weight.
@ ... and seek a matching of
largest weight.




Local Communication Model
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Distributed Network Model

Consider a network G = (V/, E), where each node v € V' is
eqipped with

e CPU, memory, and

@ communication capabilities (e.g. wireless transceiver).
Let E denote the possible communication links.

@ Each node is independent, and can locally participate in a
distributed algorithm.

We now want to characterize distributed algorithms such that we
can make statements about protocols running in the network.

@ Note: we communicate in and we optimize for G !



The LOCAL Model

Networking operates in global communication rounds.
In each round, a node can

@ communicate with its direct neighbors (Phase 1), and

@ perform some local computations (Phase 2).

The order, in which the message packets are sent is not specified
(assume simultaneously).
Simple consequences of the LOCAL model:

e consider two nodes u,v € V with d(u,v) = k: it takes at
least k rounds for a message from v to arrive at node u!

e it takes O(r) rounds for a node to learn about its
r-neighborhood.



Complexity Measures

There are three complexity measures for local, distributed
algorithms in the LOCAL model:
@ time complexity
e number of rounds until all nodes have terminated the algorithm
@ message complexity
e number of messages sent during execution of the algorithm
e usually given with respect to a single node in the network
@ maximum message size

o largest message packet sent in a round
e gives the amount of information exchanged
o Q(log n)



Locality of Graph Structures

The LOCAL model is also interesting in terms of theory:

exploit locality of the graph structures
focus on a fraction of the instance

@ typical question:
e What type of local information is necessary and/or sufficient to
create/decide on a global solution?

@ note: many greedy-approaches are based on local decisions

trivial: allow O(n)-neighborhoods

Maximum Weight Matching:
@ global perspective
o see [Edmonds 1965]
@ local perspective

e local information only not sufficient!
o (closer look at matching-polytope)



Augmentations of Matchings

Definition

Given a matching M C E, we call another matching S C E\ M an
augmentation for M.

For such an augmentation S,
@ denote by M(S) C E all edges in M that have a node in
common with an edge from S

e = (M\ M(S))US again is a matching
e M augmented by S

@ the size is given by the number of edges in §

e S connected <= M(S)US is single component in G
e connected augmentation is either single path or cycle in G

@ gainy,(S) is the difference in weight between
M and (M\ M(S))US
o gainy(S) = w(S) — w(M(S))



Augmentations

Denote by
@ Wmax = max{w, | e € E}

e gain’_ := max{gainy(S) | S augmentation of size at most ¢}




I-Augmentation Graph

Let ¢ € N be some constant.

Definition

The (-augmentation graph G' = (V'  E’) (of a graph G w.r.t. a
matching M) is defined as the intersection graph of connected
augmentation of size at most £ in G:

o the nodes V/ are all connected augmentations of size < /,

@ two nodes are connected if the respective augmentations share
a common node.

v

For each augmentation in G’, we call the node with the lowest
identifier in the augmentation its representative:
o this maps G’ to G
@ communication along an edge in G’ takes O(¢) = O(1)
rounds in G

We can easily and locally construct G’ in O(1)!
Itis: |V'| = O(n?).
I



Algorithm to Improve a Matching

We now restrict our attention to the /-augmentation graph G'.
Given a matching M (possibly empty), we improve M by
@ looking at all favorable augmentations
e that is, with high gain
@ selecting those that can be used in a parallel approach
e that is, they do not overlap

@ augment M in parallel

We then repeat this improvement algorithm to receive the final
algorithm.



Algorithm to Improve a Matching

Algorithm: Improve Matching M

Construct f-augmentation graph G’ = (V' E')

A=0

v = v/

for t:=1 to [log, fznw do
W= {vev®|

F(v)N{ue V® | gain(u) > 2gain(v)} = &}
Calculate MIS [ in G'(W)

A=AU]
vt = v\ 1(1)
end for

M’ := M augmented by A




Algorithm to Improve a Matching

The set A is an independent set in G'.

@ follows from construction

The set M" computed in the algorithm is a matching in G.

@ no two augmentations in A overlap

@ note: M’ constructed in parallel

Let Tyys denote the distributed time to construct a MIS. Then,
the algorithm has runtime O(¢ + log(¢?n) - TMIS(nO(E))),




Gain of M' over M

After ¢ = [log, £2n] iterations of the for-loop,

max{gain(v) | v € V{ctD} < %

holds.

L

e max{gainy(v) | v e V'} < gainp,y < £ Wmax

@ claim follows by induction:

(1/2)'°82(") = 1/(¢%n) and wmax < gain

max-*



Overall Gain

(55 wr) = wiw)).

where M* is an optimal solution.

o w(M') — w(M) = gain(A)

@ split M(M*) into multiple, connected ¢-augmentations

@ use charging argumentation on G’ to compare
¢-augmentations M(M*) with M(M")

A single invocation of the algorithm Improve Matching with
M = @ yields a constant-factor approximation for the Maximum
Weight Matching problem.




(1 — &)-Approximation

Let ¢ € N. Calling algorithm Improve Matching ¢ times returns a
machting M of weight at least (1 — O(1/¢)) - w(M*).

@ My = @ and M; matching of j-th call
e = recursive improvement of w(M;) > w; - w(M*) with
wp = 0 and

1 /61 .
Wi+1_Wi+8€<£_Wi> W(M)

@ solving the recurrence relation yields

w(M;) > 5_71 (1 _ <1 - 81£>> w (M)

e = = O(/) results in claim.



Wireless Communication Topologies




Geometric Intersection Graphs

A geometric intersection graph is given by a collection V' of nodes,
and for each v € V,

e f(v) center position of node v

@ A, area covered by v's transmitter
Containment Model Intersection Model

(u,v) € E <= f(u)e A, (uv)€eE <= ANA #0O

3

N




Bounded Growth Graphs

Definition

Let G = (V, E) be a graph. If there exists a functionf(.) such that
every r-neighborhood in G contains at most f(r) independent
vertices, then G is f-growth-bounded. In this case, we call f the
growth function.

o if the growth function is a polynomial of bounded degree, we
say that G has polynomially bounded growth

@ note that the growth function only depends on the radius of
the neighborhood, and not on the number of vertices in the
graph

@ definition does not depend on any geomtric data (e.g.
representation)

@ bounded growth is closed under taking vertex-induced
subgraphs



Matching: The Wireless Case

The above algorithm depends on time to construct MIS on G'.
@ on a wireless graph of bounded growth, we can do some
preprocessing:
o construct MIS Z and create clusters (O(log A log™ n))
o color these clusters according to lis4s(v),v € Z (O(logn))
o = O(f(4£+48)) = O(1) colors, and two clusters of same color
are non-overlapping w.r.t. ~augmentation they contain
@ during algorithm Improve Matching: use coloring to construct
MIS A in parallel = O(1) rounds

Overall runtime: O(log nlog™ n) rounds.



Conclusions

(1 — e)-approximation of Maximum Weight Matching by local,
distributed approach:
o O(Llogn- T\s(n®(/9))) communication rounds

o randomized MIS-construction in O(log n) [Luby86]
o = O(log? n) randomized algorithm

@ wireless communication networks (bounded growth)
o preprocessing = O(log nlog™ n) deterministic algorithm
Construction based on local structure
@ connected f-augmentation

o / gives trade-off between locality and quality of solution



EOF

@ Thanks for your attention!
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