
A Local Approximation Algorithm
for Maximum Weight Matching

Tim Nieberg
Research Institute for Discrete Mathematics

University of Bonn



Overview

introduction

LOCAL model for distributed communication networks

locality of graph structures

weighted matchings

matchings, connected `-augmentations, and their gain
`-augmentation graph
Algorithm: ImproveMatching M

(1− ε)-approximation

wireless communication networks

preprocessing: colored cluster-graphs
decreasing the runtime

conlusions



Matchings

Definition

A matching in a graph G = (V ,E ) is
a subset M ⊆ E such that no two
edges in M share a common node.

We look at the weighted version,
where each edge is given a (non-
negative) weight.

... and seek a matching of
largest weight.



Local Communication Model



Distributed Network Model

Consider a network G = (V ,E ), where each node v ∈ V is
eqipped with

CPU, memory, and

communication capabilities (e.g. wireless transceiver).

Let E denote the possible communication links.

Each node is independent, and can locally participate in a
distributed algorithm.

We now want to characterize distributed algorithms such that we
can make statements about protocols running in the network.

Note: we communicate in and we optimize for G !



The LOCAL Model

Networking operates in global communication rounds.
In each round, a node can

communicate with its direct neighbors (Phase 1), and

perform some local computations (Phase 2).

The order, in which the message packets are sent is not specified
(assume simultaneously).
Simple consequences of the LOCAL model:

consider two nodes u, v ∈ V with d(u, v) = k: it takes at
least k rounds for a message from v to arrive at node u!

it takes O(r) rounds for a node to learn about its
r -neighborhood.



Complexity Measures

There are three complexity measures for local, distributed
algorithms in the LOCAL model:

time complexity

number of rounds until all nodes have terminated the algorithm

message complexity

number of messages sent during execution of the algorithm
usually given with respect to a single node in the network

maximum message size

largest message packet sent in a round
gives the amount of information exchanged
Ω(log n)



Locality of Graph Structures

The LOCAL model is also interesting in terms of theory:

exploit locality of the graph structures

focus on a fraction of the instance

typical question:

What type of local information is necessary and/or sufficient to
create/decide on a global solution?

note: many greedy-approaches are based on local decisions

trivial: allow O(n)-neighborhoods

Maximum Weight Matching:

global perspective

see [Edmonds 1965]

local perspective

local information only not sufficient!
(closer look at matching-polytope)



Augmentations of Matchings

Definition

Given a matching M ⊂ E , we call another matching S ⊆ E \M an
augmentation for M.

For such an augmentation S ,

denote by M(S) ⊂ E all edges in M that have a node in
common with an edge from S

⇒ (M \M(S)) ∪ S again is a matching

M augmented by S

the size is given by the number of edges in S

S connected ⇐⇒ M(S) ∪ S is single component in G

connected augmentation is either single path or cycle in G

gainM(S) is the difference in weight between
M and (M \M(S)) ∪ S

gainM(S) = w(S)− w(M(S))



Augmentations

Denote by

wmax := max{we | e ∈ E}
gain`

max := max{gainM(S) | S augmentation of size at most `}



l -Augmentation Graph

Let ` ∈ N be some constant.

Definition

The `-augmentation graph G ′ = (V ′,E ′) (of a graph G w.r.t. a
matching M) is defined as the intersection graph of connected
augmentation of size at most ` in G :

the nodes V ′ are all connected augmentations of size ≤ `,

two nodes are connected if the respective augmentations share
a common node.

For each augmentation in G ′, we call the node with the lowest
identifier in the augmentation its representative:

this maps G ′ to G

communication along an edge in G ′ takes O(`) = O(1)
rounds in G

We can easily and locally construct G ′ in O(1)!
It is: |V ′| = O(n2`).



Algorithm to Improve a Matching

We now restrict our attention to the `-augmentation graph G ′.
Given a matching M (possibly empty), we improve M by

looking at all favorable augmentations

that is, with high gain

selecting those that can be used in a parallel approach

that is, they do not overlap

augment M in parallel

We then repeat this improvement algorithm to receive the final
algorithm.



Algorithm to Improve a Matching

Algorithm: Improve Matching M

Construct `-augmentation graph G ′ = (V ′,E ′)
A := ∅
V (1) := V ′

for t := 1 to dlog2 `2ne do
W := {v ∈ V (t) |

Γ(v) ∩ {u ∈ V (t) | gain(u) > 2gain(v)} = ∅}
Calculate MIS I in G ′(W )
A := A ∪ I
V (t+1) := V (t) \ Γ(I )

end for
M ′ := M augmented by A



Algorithm to Improve a Matching

Lemma

The set A is an independent set in G ′.

follows from construction

Theorem

The set M ′ computed in the algorithm is a matching in G.

no two augmentations in A overlap

note: M ′ constructed in parallel

Theorem

Let TMIS denote the distributed time to construct a MIS. Then,
the algorithm has runtime O(` + log(`2n) · TMIS(n

O(`))).



Gain of M ′ over M

Lemma

After c = dlog2 `2ne iterations of the for-loop,

max{gain(v) | v ∈ V (c+1)} <
wmax

`n

holds.

max{gainM(v) | v ∈ V ′} ≤ gain`
max ≤ ` · wmax

claim follows by induction:

(1/2)log2(`
2n) = 1/(`2n) and wmax ≤ gainmax.



Overall Gain

Theorem

w(M ′) ≥ w(M) +
1

8`

(
`− 1

`
w(M∗)− w(M)

)
,

where M∗ is an optimal solution.

w(M ′)− w(M) = gain(A)

split M(M∗) into multiple, connected `-augmentations

use charging argumentation on G ′ to compare
`-augmentations M(M∗) with M(M ′)

Corollary

A single invocation of the algorithm Improve Matching with
M = ∅ yields a constant-factor approximation for the Maximum
Weight Matching problem.



(1− ε)-Approximation

Theorem

Let ` ∈ N. Calling algorithm Improve Matching ` times returns a
machting M of weight at least (1− O(1/`)) · w(M∗).

M0 = ∅ and Mi matching of i-th call

⇒ recursive improvement of w(Mi ) ≥ wi · w(M∗) with
w0 = 0 and

wi+1 = wi +
1

8`

(
`− 1

`
− wi

)
w(M∗)

solving the recurrence relation yields

w(Mi ) ≥
`− 1

`

(
1−

(
1− 1

8`

)i
)

w(M∗)

⇒ i = O(`) results in claim.



Wireless Communication Topologies



Geometric Intersection Graphs

A geometric intersection graph is given by a collection V of nodes,
and for each v ∈ V ,

f (v) center position of node v

Av area covered by v ’s transmitter

Containment Model

(u, v) ∈ E ⇐⇒ f (u) ∈ Av

Intersection Model

(u, v) ∈ E ⇐⇒ Au ∩ Av 6= ∅



Bounded Growth Graphs

Definition

Let G = (V ,E ) be a graph. If there exists a functionf (.) such that
every r -neighborhood in G contains at most f (r) independent
vertices, then G is f -growth-bounded. In this case, we call f the
growth function.

if the growth function is a polynomial of bounded degree, we
say that G has polynomially bounded growth

note that the growth function only depends on the radius of
the neighborhood, and not on the number of vertices in the
graph

definition does not depend on any geomtric data (e.g.
representation)

bounded growth is closed under taking vertex-induced
subgraphs



Matching: The Wireless Case

The above algorithm depends on time to construct MIS on G ′.

on a wireless graph of bounded growth, we can do some
preprocessing:

construct MIS I and create clusters (O(log ∆ log∗ n))
color these clusters according to Γ4`+8(v), v ∈ I (O(log n))
⇒ O(f (4` + 8)) = O(1) colors, and two clusters of same color
are non-overlapping w.r.t. `-augmentation they contain

during algorithm Improve Matching: use coloring to construct
MIS A in parallel ⇒ O(1) rounds

Overall runtime: O(log n log∗ n) rounds.



Conclusions

(1− ε)-approximation of Maximum Weight Matching by local,
distributed approach:

O(1
ε log n · TMIS(n

O(1/ε))) communication rounds

randomized MIS-construction in O(log n) [Luby86]
⇒ O(log2 n) randomized algorithm

wireless communication networks (bounded growth)

preprocessing ⇒ O(log n log∗ n) deterministic algorithm

Construction based on local structure

connected `-augmentation

` gives trade-off between locality and quality of solution
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