A Local Approximation Algorithm for Maximum Weight Matching

Tim Nieberg

Research Institute for Discrete Mathematics University of Bonn

Overview

- introduction
- $\bullet~\mathcal{LOCAL}$ model for distributed communication networks
 - locality of graph structures
- weighted matchings
 - $\bullet\,$ matchings, connected $\ell\text{-augmentations,}$ and their gain
 - ℓ -augmentation graph
 - Algorithm: ImproveMatching M
- $(1-\varepsilon)$ -approximation
- wireless communication networks
 - preprocessing: colored cluster-graphs
 - decreasing the runtime
- conlusions

Definition

A matching in a graph G = (V, E) is a subset $M \subseteq E$ such that no two edges in M share a common node.

We look at the weighted version, where each edge is given a (non-negative) weight.

• ... and seek a matching of largest weight.

Local Communication Model

Consider a network G = (V, E), where each node $v \in V$ is eqipped with

- CPU, memory, and
- communication capabilities (e.g. wireless transceiver).
- Let E denote the possible communication links.
 - Each node is independent, and can locally participate in a distributed algorithm.

We now want to characterize distributed algorithms such that we can make statements about protocols running in the network.

• Note: we communicate in and we optimize for G !

Networking operates in *global communication rounds*. In each round, a node can

- communicate with its direct neighbors (Phase 1), and
- perform some local computations (Phase 2).

The order, in which the message packets are sent is not specified (assume simultaneously).

Simple consequences of the \mathcal{LOCAL} model:

- consider two nodes u, v ∈ V with d(u, v) = k: it takes at least k rounds for a message from v to arrive at node u!
- it takes O(r) rounds for a node to learn about its *r*-neighborhood.

There are three complexity measures for local, distributed algorithms in the \mathcal{LOCAL} model:

- time complexity
 - number of rounds until all nodes have terminated the algorithm
- message complexity
 - number of messages sent during execution of the algorithm
 - usually given with respect to a single node in the network
- maximum message size
 - largest message packet sent in a round
 - gives the amount of information exchanged
 - Ω(log n)

Locality of Graph Structures

The \mathcal{LOCAL} model is also interesting in terms of theory:

- exploit *locality* of the graph structures
- focus on a fraction of the instance
- typical question:
 - What type of *local* information is necessary and/or sufficient to create/decide on a *global* solution?
- note: many greedy-approaches are based on local decisions
- trivial: allow O(n)-neighborhoods

Maximum Weight Matching:

- global perspective
 - see [Edmonds 1965]
- local perspective
 - local information only not sufficient!
 - (closer look at matching-polytope)

Definition

Given a matching $M \subset E$, we call another matching $S \subseteq E \setminus M$ an *augmentation* for M.

For such an augmentation S,

- denote by M(S) ⊂ E all edges in M that have a node in common with an edge from S
- \Rightarrow $(M \setminus M(S)) \cup S$ again is a matching
 - M augmented by S
- the *size* is given by the number of edges in S
- S connected \iff $M(S) \cup S$ is single component in G
 - $\bullet\,$ connected augmentation is either single path or cycle in G
- gain_M(S) is the difference in weight between M and $(M \setminus M(S)) \cup S$

•
$$gain_M(S) = w(S) - w(M(S))$$

Augmentations

Denote by

w_{max} := max{w_e | e ∈ E}
gain^ℓ_{max} := max{gain_M(S) | S augmentation of size at most ℓ}

I-Augmentation Graph

Let $\ell \in \mathbb{N}$ be some constant.

Definition

The ℓ -augmentation graph G' = (V', E') (of a graph G w.r.t. a matching M) is defined as the intersection graph of connected augmentation of size at most ℓ in G:

- the nodes V' are all connected augmentations of size $\leq \ell$,
- two nodes are connected if the respective augmentations share a common node.

For each augmentation in G', we call the node with the lowest identifier in the augmentation its *representative*:

- this maps G' to G
- communication along an edge in G' takes $O(\ell) = O(1)$ rounds in G

We can easily and locally construct G' in O(1)!It is: $|V'| = O(n^{2\ell})$. We now restrict our attention to the ℓ -augmentation graph G'. Given a matching M (possibly empty), we improve M by

- looking at all favorable augmentations
 - that is, with high gain
- selecting those that can be used in a parallel approach
 - that is, they do not overlap
- augment *M* in parallel

We then repeat this improvement algorithm to receive the final algorithm.

Algorithm: Improve Matching M

Construct ℓ -augmentation graph G' = (V', E') $\mathcal{A} := \emptyset$ $V^{(1)} := V'$ for t := 1 to $\lceil \log_2 \ell^2 n \rceil$ do $W := \{ v \in V^{(t)} \mid$ $\Gamma(v) \cap \{u \in V^{(t)} \mid gain(u) > 2gain(v)\} = \emptyset\}$ Calculate MIS I in G'(W) $\mathcal{A} := \mathcal{A} \cup \mathcal{I}$ $V^{(t+1)} := V^{(t)} \setminus \Gamma(I)$ end for M' := M augmented by \mathcal{A}

Lemma

The set A is an independent set in G'.

• follows from construction

Theorem

The set M' computed in the algorithm is a matching in G.

- $\bullet\,$ no two augmentations in ${\cal A}$ overlap
- note: *M'* constructed in parallel

Theorem

Let T_{MIS} denote the distributed time to construct a MIS. Then, the algorithm has runtime $O(\ell + \log(\ell^2 n) \cdot T_{MIS}(n^{O(\ell)}))$.

Gain of M' over M

Lemma

After
$$c = \lceil \log_2 \ell^2 n \rceil$$
 iterations of the for-loop,

$$\max\{gain(v) \mid v \in V^{(c+1)}\} < \frac{w_{\max}}{\ell n}$$

holds.

- $\max\{\operatorname{gain}_{M}(v) \mid v \in V'\} \le \operatorname{gain}_{\max}^{\ell} \le \ell \cdot w_{\max}$
- claim follows by induction:

$$(1/2)^{\log_2(\ell^2 n)} = 1/(\ell^2 n)$$
 and $w_{\max} \leq \text{gain}_{\max}$

Overall Gain

Theorem

$$w(M') \geq w(M) + rac{1}{8\ell} \left(rac{\ell-1}{\ell} w(M^*) - w(M)
ight),$$

where M* is an optimal solution.

•
$$w(M') - w(M) = gain(\mathcal{A})$$

- split $M(M^*)$ into multiple, connected ℓ -augmentations
- use charging argumentation on G' to compare ℓ -augmentations $M(M^*)$ with M(M')

Corollary

A single invocation of the algorithm Improve Matching with $M = \emptyset$ yields a constant-factor approximation for the Maximum Weight Matching problem.

$(1-\varepsilon)$ -Approximation

Theorem

Let $\ell \in \mathbb{N}$. Calling algorithm Improve Matching ℓ times returns a machting M of weight at least $(1 - O(1/\ell)) \cdot w(M^*)$.

- $M_0 = \emptyset$ and M_i matching of *i*-th call
- \Rightarrow recursive improvement of $w(M_i) \ge w_i \cdot w(M^*)$ with $w_0 = 0$ and

$$w_{i+1} = w_i + \frac{1}{8\ell} \left(\frac{\ell-1}{\ell} - w_i \right) w(M^*)$$

solving the recurrence relation yields

$$w(M_i) \geq rac{\ell-1}{\ell} \left(1 - \left(1 - rac{1}{8\ell}\right)^i\right) w(M^*)$$

• $\Rightarrow i = O(\ell)$ results in claim.

Wireless Communication Topologies

Geometric Intersection Graphs

A geometric intersection graph is given by a collection V of nodes, and for each $v \in V$,

- f(v) center position of node v
- A_v area covered by v's transmitter

Containment Model

Intersection Model

 $(u,v) \in E \iff f(u) \in A_v \quad (u,v) \in E \iff A_u \cap A_v \neq \emptyset$

Bounded Growth Graphs

Definition

Let G = (V, E) be a graph. If there exists a function f(.) such that every *r*-neighborhood in *G* contains at most f(r) independent vertices, then *G* is *f*-growth-bounded. In this case, we call *f* the growth function.

- if the growth function is a polynomial of bounded degree, we say that G has polynomially bounded growth
- note that the growth function only depends on the radius of the neighborhood, and *not* on the number of vertices in the graph
- definition does *not* depend on any geomtric data (e.g. representation)
- bounded growth is closed under taking vertex-induced subgraphs

The above algorithm depends on time to construct MIS on G'.

- on a wireless graph of bounded growth, we can do some preprocessing:
 - construct MIS \mathcal{I} and create clusters $(O(\log \Delta \log^* n))$
 - color these clusters according to $\Gamma_{4\ell+8}(v), v \in \mathcal{I} \ (O(\log n))$
 - $\Rightarrow O(f(4\ell + 8)) = O(1)$ colors, and two clusters of same color are non-overlapping w.r.t. ℓ -augmentation they contain
- during algorithm *Improve Matching*: use coloring to construct MIS A in parallel $\Rightarrow O(1)$ rounds

Overall runtime: $O(\log n \log^* n)$ rounds.

 $(1 - \varepsilon)$ -approximation of Maximum Weight Matching by local, distributed approach:

- $O(\frac{1}{\varepsilon} \log n \cdot T_{MIS}(n^{O(1/\varepsilon)}))$ communication rounds
 - randomized MIS-construction in $O(\log n)$ [Luby86]

• $\Rightarrow O(\log^2 n)$ randomized algorithm

- wireless communication networks (bounded growth)
 - preprocessing $\Rightarrow O(\log n \log^* n)$ deterministic algorithm

Construction based on local structure

- connected ℓ -augmentation
- $\bullet~\ell$ gives trade-off between locality and quality of solution

• Thanks for your attention!

nieberg@or.uni-bonn.de