
Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Bidirectional A
∗ on Time-Dependent Graphs

Giacomo Nannicini1,2, Daniel Delling3,
Leo Liberti1, Dominik Schultes3

1 LIX, École Polytechnique, France
2 Mediamobile, Paris, France
3 Algoritmik, Universität Karlsruhe, Germany

CTW 2008



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Summary of Talk

1 Problem Definition

2 Static A∗

3 Time-Dependent A∗

4 Computational Results

5 Future Research



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

1 Problem Definition

2 Static A∗

3 Time-Dependent A∗

4 Computational Results

5 Future Research



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Context Definition

Computing point-to-point shortest paths is of great interest to
many users:

GPS devices with path computing capabilities
Many web sites provide users with route planners



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Traffic is Time-Dependent

Users are interested in the shortest path in terms of travel

time, not of path length

Traffic increases during peak hours

Historical data can help in defining a cost function for each
arc for each time instant of a day



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Problem Definition

We are given a graph G = (V , A) with a cost function
c : A × T → R which associates a travel time to each arc for
each time instant, a source node s, a target node t and a
departure time τ0; we want to compute the shortest s → t

path leaving node s at τ0 (Point-to-Point Time-Dependent
Shortest Path Problem)

The time dependent cost function c is known for each arc and
each time instant

In FIFO networks, Dijkstra’s algorithm applied to
time-dependent graphs correctly solves the PPTDSPP



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Time Constraints

Road networks can be very large

Europe: roughly 18M nodes, 42M arcs

We want to compute the shortest path in a low time

A very good implementation of Dijkstra’s algorithm explores
on average 9M nodes and takes more than 6 seconds
(european road network): it’s too long!

There are several fast algorithms which compute exact
solutions for the PPSPP on a static graph (e.g. Highway
Hierarchies [Sanders and Schultes, 2006], Reach + ALT

[Goldberg et al., 2005]), but they cannot be applied to
time-dependent graphs



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

1 Problem Definition

2 Static A∗

3 Time-Dependent A∗

4 Computational Results

5 Future Research



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Goal Directed Search: A
∗

Same principle as Dijkstra’s algorithm: extract minimum from
a queue, explore adjacent nodes, update labels, repeat

Main difference: add to the key of the priority queue a
potential function π(v) which estimates d(v , t)

If π(v) ≤ d(v , t) ∀v then A∗ computes shortest paths

If π(v) is a good estimation of d(v , t), A∗ explores
considerably fewer nodes than Dijkstra’s algorithm



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Goal Directed Search: A
∗

Dijkstra’s algorithm A∗



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

A Good Lower Bound

The quality of π(v) is critic for performances: the closer to
d(v , t), the better

Suppose we are in the static case

Idea ([Goldberg and Harrelson, 2005]): use a few nodes as
landmarks to compute distances within the graph

Then triangle inequality comes to our help

ALT algorithm: A∗, Landmarks, Triangle inequality



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

A Good Lower Bound



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

A Good Lower Bound

Suppose we have a set L ⊂ V of landmarks, i.e. we know
d(v , ℓ), d(ℓ, v) ∀v ∈ V , ℓ ∈ L

Then we have d(v , ℓ) ≤ d(v , t) + d(t, ℓ) and
d(ℓ, t) ≤ d(ℓ, v) + d(v , t) ∀v ∈ V , ℓ ∈ L



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

A Good Lower Bound

Suppose we have a set L ⊂ V of landmarks, i.e. we know
d(v , ℓ), d(ℓ, v) ∀v ∈ V , ℓ ∈ L

Then we have d(v , ℓ) ≤ d(v , t) + d(t, ℓ) and
d(ℓ, t) ≤ d(ℓ, v) + d(v , t) ∀v ∈ V , ℓ ∈ L

Lower bounding function:

π(v) = max
ℓ∈L

max{d(v , ℓ) − d(t, ℓ), d(ℓ, t) − d(ℓ, v)}

is a lower bound to d(v , t)∀v , t ∈ V



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Static ALT Algorithm

Using some care in defining a valid potential function,
bidirectional search can be applied on a static graph

The sum of forward and backward potential function should be
constant ∀v ∈ V ; we can use pf (v) = (πf (v) − πb(v))/2 and
pb(v) = −pf (v) ([Delling and Wagner, 2007])

If landmarks are well chosen, we get a speed-up factor of 50
with respect to bidirectional Dijkstra (which is already 2 times
faster than the unidirectional version)

But what about time-dependent graphs?



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

1 Problem Definition

2 Static A∗

3 Time-Dependent A∗

4 Computational Results

5 Future Research



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Static vs Time-Dependent

Given a departure time, we do not know the exact arrival time
(we need the optimal solution for that)



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Static vs Time-Dependent

Given a departure time, we do not know the exact arrival time
(we need the optimal solution for that)

Problem:

Bidirectional search cannot be applied “as it is”, since we do not
know which time instant we should use to compute
time-dependent costs during the backward search



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Static vs Time-Dependent

Given a departure time, we do not know the exact arrival time
(we need the optimal solution for that)

Problem:

Bidirectional search cannot be applied “as it is”, since we do not
know which time instant we should use to compute
time-dependent costs during the backward search



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Time-Dependent ALT

If we compute distances to and from landmarks using the
lowest possible cost on each arc, then the lower bound π(v) is
still valid

When arc costs are much higher than the value we used to
compute landmark distances, performance decreases

Using unidirectional ALT yields a speed-up of a factor 2.5 with
respect to unidirectional Dijkstra – still in the order of seconds



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Time-Dependent ALT

If we compute distances to and from landmarks using the
lowest possible cost on each arc, then the lower bound π(v) is
still valid

When arc costs are much higher than the value we used to
compute landmark distances, performance decreases

Using unidirectional ALT yields a speed-up of a factor 2.5 with
respect to unidirectional Dijkstra – still in the order of seconds

Question:

Can we apply bidirectional search on time-dependent graphs?



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Bidirectional Search

Idea: do a forward search using time-dependent costs, and a
backward search using lower bounds on costs (i.e. the lowest
possible cost on each arc)

Then, as soon as we the two search scopes meet, compute the
time-dependent cost of an s → t path

That path is a feasible solution, so its cost is an upper bound
to the optimal cost



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Bidirectional Search

Continue both searches, alternating between forward search
(with time-dependent costs) and backward search (with lower
bounds on costs)

The backward search cannot explore nodes already explored
by the forward search



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Bidirectional Search

Continue both searches, alternating between forward search
(with time-dependent costs) and backward search (with lower
bounds on costs)

The backward search cannot explore nodes already explored
by the forward search

Question:

What happens when the minimum of the backward search queue
becomes greater than the upper bound on the optimal cost?



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Bidirectional Search

The key of a node in the priority queue is a lower bound on the
cost of an s → t shortest path that passes through that node

Let µ be our best upper bound and β be the smallest key in
the backward search priority queue



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Bidirectional Search

The key of a node in the priority queue is a lower bound on the
cost of an s → t shortest path that passes through that node

Let µ be our best upper bound and β be the smallest key in
the backward search priority queue

Theorem:

When β ≥ µ, the shortest path from s to t contains only nodes
that have already been explored by the forward or backward search



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Bidirectional Search

ts



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Bidirectional Search

ts



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Bidirectional Search

ts



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Bidirectional Search

ts



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Bidirectional Search

ts



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Improvements

If we artificially increase the lower bound β by a factor K , we
get a K -approximated solution

When Kβ ≥ µ, the shortest path restricted to contain only
nodes already explored by the forward or backward search has
a cost which is no more than K times the optimum cost
The speed-up varies with K

We can also tighten the bounds used by the backward search

For those nodes that have not been settled by the forward
search, we can find a better bound than πb(v)



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

1 Problem Definition

2 Static A∗

3 Time-Dependent A∗

4 Computational Results

5 Future Research



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Random Queries

Error Query

relative # settled time
method K rate avg max nodes [ms]

Dijkstra - 0.0% 0.000% 0.00% 8 908 300 6 325.8
uni-ALT - 0.0% 0.000% 0.00% 2 192 010 1 775.8



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Random Queries

Error Query

relative # settled time
method K rate avg max nodes [ms]

Dijkstra - 0.0% 0.000% 0.00% 8 908 300 6 325.8
uni-ALT - 0.0% 0.000% 0.00% 2 192 010 1 775.8

ALT 1.00 0.0% 0.000% 0.00% 3 117 160 3 399.3
1.02 1.0% 0.003% 1.13% 2 560 370 2 723.3
1.05 4.0% 0.029% 4.93% 1 671 630 1 703.6



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Random Queries

Error Query

relative # settled time
method K rate avg max nodes [ms]

Dijkstra - 0.0% 0.000% 0.00% 8 908 300 6 325.8
uni-ALT - 0.0% 0.000% 0.00% 2 192 010 1 775.8

ALT 1.00 0.0% 0.000% 0.00% 3 117 160 3 399.3
1.02 1.0% 0.003% 1.13% 2 560 370 2 723.3
1.05 4.0% 0.029% 4.93% 1 671 630 1 703.6
1.10 18.7% 0.203% 8.10% 719 769 665.1
1.13 30.5% 0.366% 12.63% 447 681 385.5
1.15 36.4% 0.467% 13.00% 348 325 287.3



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Random Queries

Error Query

relative # settled time
method K rate avg max nodes [ms]

Dijkstra - 0.0% 0.000% 0.00% 8 908 300 6 325.8
uni-ALT - 0.0% 0.000% 0.00% 2 192 010 1 775.8

ALT 1.00 0.0% 0.000% 0.00% 3 117 160 3 399.3
1.02 1.0% 0.003% 1.13% 2 560 370 2 723.3
1.05 4.0% 0.029% 4.93% 1 671 630 1 703.6
1.10 18.7% 0.203% 8.10% 719 769 665.1
1.13 30.5% 0.366% 12.63% 447 681 385.5
1.15 36.4% 0.467% 13.00% 348 325 287.3
1.20 44.7% 0.652% 18.19% 241 241 185.3
1.30 48.2% 0.804% 23.63% 186 267 134.6
1.50 48.8% 0.844% 25.70% 172 157 121.9
2.00 48.9% 0.886% 48.86% 165 650 115.7



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Local Queries

Local Queries time−dependent ALT (Europe)

Dijkstra Rank

Q
ue

ry
 T

im
e 

[m
s]

28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
1

1
10

10
0

10
00

unidirectional ALT
bidirectional ALT (K=1.15)

Comparison of uni- and bidirectional ALT using the Dijkstra rank
methodology (box-and-whiskers plot).



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

1 Problem Definition

2 Static A∗

3 Time-Dependent A∗

4 Computational Results

5 Future Research



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

Future Research

Balancing forward and backward search

Efficient updates of the upper bound

Core-routing: extract a smaller subgraph (core) and carry out
the computations on it

Dynamic scenario: the coefficients of the piecewise linear
time-dependent cost function may vary



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

The End

Thank you!



Problem Definition Static A∗ Time-Dependent A∗ Computational Results Future Research

References

Delling, D. and Wagner, D. (2007).
Landmark-based routing in dynamic graphs.
In Demetrescu, C., editor, WEA 2007, volume 4525 of LNCS, pages 52–65, New
York. Springer.

Goldberg, A. and Harrelson, C. (2005).
Computing the shortest path: A∗ meets graph theory.
In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2005), pages 156–165, Philadelphia. SIAM.

Goldberg, A., Kaplan, H., and Werneck, R. (2005).
Reach for A∗: Efficient point-to-point shortest path algorithms.
In Demetrescu, C., Sedgewick, R., and Tamassia, R., editors, Proceedings of the
7th Workshop on Algorithm Engineering and Experimentation (ALENEX 05),
Philadelphia. SIAM.

Sanders, P. and Schultes, D. (2006).
Engineering highway hierarchies.
In ESA 2006, volume 4168 of Lecture Notes in Computer Science, pages
804–816. Springer.


	Problem Definition
	Static A
	Time-Dependent A
	Computational Results
	Future Research

