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The Model

- a directed graph G = (V ,A)
- a non-negative cost w(a) for each arc a ∈ A
- a color l(a) for each arc a ∈ A out of a set L of colors
- a non-negative integer reload cost matrix R = {rl l ′}l ,l ′∈L

where rl l ′ represents the cost of moving from an arc of color l
to another of color l

′

For any path P= (a1, ..., ak), with arcs colored by (l1, ..., lk):

w(P) is the arc cost of P
r(P)=

∑k−1
j=1 rlj lj+1

is the reload cost of P
c(P)= w(P) + r(P) is the transportation cost of P

Note - A similar model can be defined for undirected graphs.
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Applications

Telecommunication: data conversion at interchange points

Overlay: change of technology

Transportation: unloading and reloading goods at junctions

Energy distribution: different kypes of carriers

Previous work

This natural concept has received very little attention.

I H.-C. Wirth, J. Steffan, Discrete Appl. Math. 113 (2001).

I S. Raghavan, I. Gamvros, L. Gouveia, Proc. International
Network Optimization Conference (INOC 2007), Spa, 2007.

I Giulia Galbiati, to appear in Discrete Appl. Math.(2008).
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The path problems

I Problem P1: find a minimum transportation cost path
between two given nodes s and t of G .

I Problem P2: find a set of paths from a given node s to the
other nodes of G minimizing the sum of their transportation
costs.

I Problem P3: find a minimum transportation cost path-tree
from s to the other nodes of G .

I Problem P4: find a path-tree from s to the other nodes of G
minimizing the maximum among the transportation costs of
its paths.
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Problem P1

Problem P1 is polynomially solvable.

Apply to all nodes v of G except s and t the splitting procedure:

1

2

n

1

2

m

H

v

G

n incoming arcs 
m outgoing arcs

Original arcs of G maintain their costs in H. Arcs of the complete
bipartite graphs receive appropriate costs: an arc from node x to
node y receives as cost the reload cost rl l ′ , where l and l ′ are the
colors of the arc entering x and of the arc leaving y in G .

A minimum cost s − t path in H corresponds to a minimum
transportation cost s − t path in G (eventually visiting a node
more than once).
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Remarks.

When G is an undirected graph, the splitting procedure has to be
modified as follows. Each node v must be substituted by a clique
of order equal to the degree of v in G , so that each edge incident
in G to v is attached to one and only one node of the clique; each
edge of the clique, say from node x to node y , receives an arc cost
equal to the reload cost of moving from the color of the edge of G
incident to x to that of the edge of G incident to y .

Notice that the results for problem P1 can also be obtained using
the line-graph of G , instead of resorting to the splitting procedure.



Problem P2

Problem P2 is polynomially solvable.

Apply to G the same splitting procedure of Problem P1 and let H
be the resulting graph.

Compute a minimum cost path-tree T in H with origin s using,
say, Dijkstra’s algorithm.

The paths in T from s to all vertices of H allow to identify a set S
of paths from s to all vertices of G , such that the sum of their
transportation costs is minimum:

for each node v of G select, in the left shore of the bipartite graph
replacing v in H, the node closest to s in H; the path in T from s
to this node identifies a path in G from s to v . The resulting set S
of paths is a set of minimum transportation cost paths from s that
solves P2.

Note - These paths do not usually form a tree of G .
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Problem P3

Problem P3 is NP-hard.

Reduction from Min Set Cover:

Instance: Collection C of subsets of a set Q having q elements,
positive integer k.

Question: Does C contain a cover for Q of size k or less?

s

1 2

b

3 q

g

b b

b
g g

y y
y y yy

r
r

r

rgy=0

rry=M

rbr=0

rbg=1

There exists a cover for Q of size ≤ k iff the graph has a path-tree
from s of reload (transportation) cost ≤ k + q.
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Problem P4

Problem P4 is NP-hard.

Reduction from 3-SAT-3

Instance: set X = {x1, ..., xn} of boolean variables, collection
C = {C1, ...,Cm} of clauses, with |Ch| ≤ 3, and with at most 3
clauses in C that contain either xj or xj .

Question: does there exist a satisfying truth assignment for C?

(from Giulia Galbiati, to appear in Discrete Appl. Math.(2008))
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i. I is satisfiable =⇒ opt(G ) ≤ K + 1
ii. I is not satisfiable =⇒ opt(G ) ≥ 2K + 1.



The tour problems

Traversing all arcs (edges) of a directed (undirected) graph G with
a tour of minimum cost so that each arc (edge) is used at least
once is the famous Chinese Postman Problem CPP, which is
solvable in polynomial time. We look for a similar tour of minimum
transportation cost.

I Problem T1: Find a Eulerian tour of minimum transportation
cost in Eulerian graph G .

I Problem T2: Find a Hamiltonian tour of minimum
transportation cost in Hamiltonian graph G .

Both problems are NP-hard even if all arc costs are zero.
The same results hold for undirected graphs.



The tour problems

Traversing all arcs (edges) of a directed (undirected) graph G with
a tour of minimum cost so that each arc (edge) is used at least
once is the famous Chinese Postman Problem CPP, which is
solvable in polynomial time. We look for a similar tour of minimum
transportation cost.

I Problem T1: Find a Eulerian tour of minimum transportation
cost in Eulerian graph G .

I Problem T2: Find a Hamiltonian tour of minimum
transportation cost in Hamiltonian graph G .

Both problems are NP-hard even if all arc costs are zero.
The same results hold for undirected graphs.



The tour problems

Traversing all arcs (edges) of a directed (undirected) graph G with
a tour of minimum cost so that each arc (edge) is used at least
once is the famous Chinese Postman Problem CPP, which is
solvable in polynomial time. We look for a similar tour of minimum
transportation cost.

I Problem T1: Find a Eulerian tour of minimum transportation
cost in Eulerian graph G .

I Problem T2: Find a Hamiltonian tour of minimum
transportation cost in Hamiltonian graph G .

Both problems are NP-hard even if all arc costs are zero.
The same results hold for undirected graphs.



Problem T1

Reduction from the Traveling Salesman problem:
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       rij=wij        for i,j     {1,2,3,4} �

Problem T2

Reduction from the Vertex Cover problem (an adaptation of
that in Garey and Johnson ’79)



The flow problems

Let digraph G have arc capacities, unitary costs, and unitary reload
costs. We are given also: origin s, destination t and demand d .

I Problem F1: find a flow of minimum transportation cost from
s to t satisfying demand d .

Let digraph G as above. We are given now a set of q
origin-destination pairs (si , ti ), and corresponding demand di .

I Problem F2: find a multicommodity flow of minimum
transportation cost, satisfying all demands, with unsplittable
commodity flows.

I Problem F3: find a multicommodity flow of minimum
transportation cost, satisfying all demands, with unsplittable
commodity flows, but unlimited arc capacities.

I Problem F4: find a multicommodity flow of minimum
transportation cost, satisfying all demands, with splittable
commodity flows.
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Problem F1

Problem F1 is polynomially solvable.

The splitting procedure, applied to all nodes except origin s and
destination t, reduces F1 to a minimum cost s − t-flow problem in
network H.

Problem F2

Problem F2 is NP-hard.

Reduction from the shortest arc-disjoint q paths problem proved
NP-hard in:

U. Brandes, W. Schlickenrieder, G. Neyer, D. Wagner and K.
Weihe A software package of algorithms and heuristics for disjoint
paths in Planar Networks, DAM Vol. 92(1999) 91-110.

It is enough to set all reload cost equal to 1, costs equal to 0,
capacities equal to 1 and demands equal to 1.
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Problem F3

Problem F3 is polynomially solvable.

An optimum solution is obtained by just superimposing the
minimum transportation cost paths for each origin-destination pair.

Problem F4

Problem F4 is polynomially solvable.

It can be reduced to that of finding a splittable multicommodity
flow of minimum cost.

Apply the splitting procedure to all nodes. Add to each complete
bipartite graph corresponding to an origin (destination) of G a new
left shore node Si (right shore node Ti ) connected with arcs from
Si to all nodes of the right shore (from all nodes of the left shore
to Ti ). All these additional arcs have zero cost and unbounded
capacity.
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Depending on whether the node in the original graph G is an origin
si or a destination ti , the corresponding node Si or Ti is considered
as the origin or destination in the new network.



Thank you for your attention


