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Definition 1. Given an optimization problem and a feasible solution to it,
the inverse optimization problem is to find a minimal adjustment of the
parameters of the problem (costs, capacities,...) such that the given

solution becomes optimum.

Optimization problem —— Forward problem

Inverse optimization problem —— Backward problem
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T = s Inverse Optimization - Motivation

# | Geographical Sciences:

Predicting the transmission time of the seismic waves in order to
model earthquake movements
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T = s Inverse Optimization - Motivation

o | Geographical Sciences:

Predicting the transmission time of the seismic waves in order to
model earthquake movements

# | Medical Imaging:

In X-ray tomography to estimate the dimension of the body parts

» | Traffic Equilibrium:

Imposing tolls to change the travel costs so that system optimal flow
will be equal to the user equilibrium flow
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| Tension Problems on Networks

Given G = (N, A) a connected digraph

§ € R4 is a tension on graph G with potential 7 € RY such that

Qijzﬂj—ﬂi V(Z,])EA (1)
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| Tension Problems on Networks

Given G = (N, A) a connected digraph

§ € R4 is a tension on graph G with potential 7 € RY such that

Hijzﬂj—ﬂi V(Z,])GA (1)

Properties of tensions [Pla (1971), Rockafellar (1984)]:
» ForallcyclesC, >, co+0i — 2.4, co- 0i = 0.

# Any linear combination of tensions is a tension.
# Atension is orthogonal to any circulation.
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| Tension Problems on Networks

Minimum cost tension problem (MCT):
min Z Cijeij (2)
g j cA
subject to
tij Seij < T3 Va@'j €A

0 is a tension

where t;; € RU{—oo} and T;; € RU {400} are lower and upper bounds.
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| Tension Problems on Networks

Minimum cost tension problem (MCT):
min Z Cij Hz'j (2)
g j €A
subject to
tij Seij < T3 Vaij €A
0 is a tension
where t;; € RU{—oo} and T;; € RU {400} are lower and upper bounds.
Maximum tension problem (MaxT): G contains 2 special nodes, sand t,and an arc as: € A

with bounds (ts¢, Tst) = (—o0, 00).

max Ost (3)
subject to
tij Sew < Tij ‘v’aij €A

6 is a tension
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| Inverse Tensions - Motivation

# Inverse network flows have been thoroughly analyzed
—

Can we extend the results to tensions??
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| Inverse Tensions - Motivation

# Inverse network flows have been thoroughly analyzed
—

Can we extend the results to tensions??

# Can we find a generalization for linear programs with totally
unimodular matrices?

# Inverse tensions might have application in many practical problems.

Example: Project scheduling where the costs and time can be
negociated with the customer.
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| Inverse MCT - Rectilinear Norm

(Cost) inverse minimum cost tension problem (IMCT,.):

A feasible tension é to a MCT is given

—

Find ¢ : € is the optimum and E wj;|c — ¢| is minimum
a;j cA
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| Inverse MCT - Rectilinear Norm

(Cost) inverse minimum cost tension problem (IMCT,.):

A feasible tension 0 to a MCT is given

—
Find ¢ : 0 is the optimum and Z wj;|c — ¢| is minimum
a;j cA
(Cost) inverse minimum cost flow problem (IMCF,.):
[Ahuja-Orlin (2002)]

inverse min cost flow under unit weight L1 norm

min cost flow problem in a unit capacity network
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| Inverse MCT - Rectilinear Norm

Definition 2. A cut w is called residual with respect to a tension @ if

The cost of a cut w IS:

cost(w) = Z Cij — Z Cij (4)

a;j Ewt a;jcw™
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| Inverse MCT - Rectilinear Norm

Definition 2. A cut w is called residual with respect to a tension @ if

The cost of a cut w IS:

cost(w) = Z Cij — Z Cij (4)

a;j Ewt a;jcw™

Theorem 3. A tension é is optimal if and only if all the residual cuts in GG have
nonnegative costs [Rockafellar (1984)].
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| Inverse MCT - Rectilinear Norm

Definition 4. We call the residual cuts w1 and wy to be arc-disjoint if

wi Nwl =0 and w; Nw; =10
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| Inverse MCT - Rectilinear Norm

Definition 4. We call the residual cuts w1 and wy to be arc-disjoint if

wi Nwl =0 and w; Nw; =10

Theorem 5. Let Q* = {w], w3, ..., wj } be the minimum cost collection of arc-disjoint
residual cuts in G and C'ost(£)*) be its cost. Then, —C'ost(£2*) is the optimal objective
function value for the inverse minimum cost tension problem under unit weight rectilinear

norm.
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| Inverse MCT - Rectilinear Norm

LP formulation of the inverse MCT under unit weight L; norm is

Minimize Z cij(mj — m;)

a;; EA
subject to
—1<7mj—m <1 for a;; € K
0<7m—m <1 for a;; € L
—1<7m;—m <0 for a;; €U
20
where
K = {aiy € A:ty <0;; <Tij}
L = {a;;€A: éz-j =i}
U = a4y EA:éij:Tij}
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[ = wesenmen Inverse MCT - Chebyshev Norm

(Cost) inverse minimum cost tension problem (IMCT,.):
A feasible tension 0 to a MCT is given
—

Find ¢ : 6 is the optimum and min max wj;|c — ¢| is minimum
a;; <
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[ = wpsesinmem Inverse MCT - Che byS hev Norm

(Cost) inverse minimum cost tension problem (IMCT,.):
A feasible tension 0 to a MCT is given
—

Find ¢ : 6 is the optimum and min max wj;|c — ¢| is minimum
a;; <

(Cost) inverse minimum cost flow problem (IMCF,.):
Ahuja-Orlin (2002)

inverse min cost flow under unit weight L, norm

minimum mean cost cycle problem
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[ = wesenmen Inverse MCT - Chebyshev Norm

A

w* IS minimum mean residual cut in G w.r.t. 9, i.e.,

p* = MCost(w™) = cost(w™)/|w™| is minimum
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[ = wesenmen Inverse MCT - Chebyshev Norm

A

w* IS minimum mean residual cut in G w.r.t. 9, i.e.,

p* = MCost(w™) = cost(w™)/|w™| is minimum

A

Theorem 6. Let ;1™ denote the mean cost of a minimum mean residual cut in G w.r.t. 6.
Then, the optimal objective function value for the inverse minimum cost tension problem

under unit weight L, norm is max (0, —u™*).
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[ = wesenmen Inverse MCT - Chebyshev Norm

Optimal ¢* can be defined as follows:

Cij — we o if éij < T,L'j and ¢;; — @i < 0
C:j = 4 Cij + w* i é,,;j > t;; and ¢;; — wi; >0

| Cij otherwise
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[ = wsioremy Inverse MC

- Chebyshev Norm

Optimal ¢* can be defined as follows:

y

Cij — w*oif éij < T,L'j and ¢;; — @i < 0

C,?j = < Cij + w* i éij >t and ¢ — i > 0

 Cij

otherwise

Minimum mean cost residual cut can be found in strongly polynomial time

by a Newton type algorithm

Hadjiat-Maurras (1997)].
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[ = wesenmen Inverse MCT - Chebyshev Norm

LP formulation to inverse MCT under L., norm, i.e., to min mean cost residual cut problem:

Minimize Z Cij (ﬂ'j — 7'('@') )

a;j €A

subject to
2 mij=1

—1i5 < mj —m <n; fora;; € K
ngj—mgnij fOFCLZ'jEL
—ni; S —m <0 fora;; € U
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[ = wesenmen Inverse MCT - Chebyshev Norm

Radzik (1993)]:

Minimum maximum arc cost problem is dual to max mean weight cut
problem
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[ = wpsesinmem Inverse MCT - Che byS hev Norm

[Radzik (1993)]:

Minimum maximum arc cost problem is dual to max mean weight cut
problem

Minimum maximum arc cost problem:

Find a flow f on GG satisfying the demands on nodes while minimizing the
maximum arc cost i.e., minimizing max,, ;e ¢;j fi;-
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[ = wesenmen Inverse MCT - Chebyshev Norm

Dual of LP (§) is a uniform MMAC on G’ = (N, A") where

# The demands/supplies on the nodes are

Zcﬁ ZCZJ_ —Cost(w(i)) Vie N

JEN JEN
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[ = wpsesinmem Inverse MCT - Che byS hev Norm

Dual of LP (§) is a uniform MMAC on G’ = (N, A") where

# The demands/supplies on the nodes are

Zcﬁ ZCZJ_ —Cost(w(i)) Vie N

JEN JEN

® The arc set A’ contains

ti; < 05 <Tjj

D OO OO
O—0O O—0 OO
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| Inverse MaxT - Rectilinear Norm

Inverse maximum tension problem

min Z UJ@J(ITZJ — T@]‘ + |£Lj — tZJD (6)
aijGA
subject to
L?ij < éij < Tij \V/Clz'j c A

A

0.; is the maximum tension
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| Inverse MaxT - Rectilinear Norm

Inverse maximum tension problem
min Z UJ@J(‘TZJ — T’LJ‘ + |tw — tw’) (6)
Q;j €A
subject to
Ltij < éz‘j < Tij \V/Clz'j cA

A

0.; is the maximum tension

Inverse maximum flow problem:
Yang et al. (1997)]:

inverse maximum flow problem under L norm

maximum flow problem
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| Inverse MaxT - Rectilinear Norm

Optimality condition [Rockafellar (1984)]

Theorem 7. (Maximum Tension Minimum Path Theorem) The maximum in max

tension problem is equal to the minimum in min path problem.
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| Inverse MaxT - Rectilinear Norm

Optimality condition [Rockafellar (1984)]

Theorem 7. (Maximum Tension Minimum Path Theorem) The maximum in max

tension problem is equal to the minimum in min path problem.

Property:

If P denotes the minimum path between s and ¢ on graph G and P and P~ are the
corresponding sets of forward and backward arcs in P, then Hjj =Ty, forall a;; € Pt and
0;; = ti; forall a;; € P~ for the maximum tension 0*.
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| Inverse MaxT - Rectilinear Norm

Lemma 8. If the inverse problem has an optimal solution (¢*,7™*) and P* is the
minimum s — ¢ path in network G = (N, A, t*,T™*), then

® 1" <Tandt* >t
» T =T;;andt]; = t;; foreach arc a;; ¢ P*. Moreover, t}; = 1;; for arcs
a;; € P** and T} = Tj; forarcs a;; € P*~.
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| Inverse MaxT - Rectilinear Norm

Lemma 8. If the inverse problem has an optimal solution (¢*,7™*) and P* is the
minimum s — ¢ path in network G = (N, A, t*,T™*), then

® 1" <Tandt* >t
» T =T;;andt]; = t;; foreach arc a;; ¢ P*. Moreover, t}; = 1;; for arcs
a;; € P** and T} = Tj; forarcs a;; € P*~.

Lemma 9. Inverse maximum tension problem under L norm is finding a path P from s
totin G = (N, A) such that

Y wig(Tiy = 0) + ) w0y — tiy)

aijE€PT a;;€P~

IS minimum.
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| Inverse MaxT - Rectilinear Norm

Theorem 10. The solution to the inverse maximum tension problem under L norm with
a positive weight function w can be found by solving a maximum tension problem in graph

G with respective upper and lower bounds w;; (1;; — éw) and w;;(t;; — GAZ]) on arcs

Q; j - A\{ast}.
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| Conclusions and Future Work

Conclusion:

# Similar results can be proven for inverse tensions as inverse flows.

# Inverse tension problems have "in a way" a dual relationship to the
Inverse flow problems

Future Work:

# Analyzing the capacity inverse minimum cost tension problem
Flow case: [Guler-Hamacher (2008)]

# Generalization to flows in regular matroids

# Generalization to monotropic optimization
# Exploring the practical applications
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