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The Vertex Separator Problem (VSP)

> A vertex separator in an undirected graph is a subset of the vertices,
whose removal disconnects the graph in at least two nonempty
connected components.

_a[cante and Cid C. de Souza Exact Algorithms for the ‘Verte;c.Separa



‘ The Vertex Separator Problem (VSP)

> A vertex separator in an undirected graph is a subset of the vertices,

whose removal disconnects the graph in at least two nonempty
connected components.

The vertex separator problem:
INSTANCE: a connected undirected graph G =(V,E ), with|V|=n, a
positive integer k<n and a cost c; associated with each verter ¢V .

PROBLEM: find a partition of V into disjoint sets A,B and C, with A
and B nonempty, such that:
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‘ The Vertex Separator Problem (VSP)

> A vertex separator in an undirected graph is a subset of the vertices,

whose removal disconnects the graph in at least two nonempty
connected components.

The vertex separator problem:
INSTANCE: a connected undirected graph G =(V,E ), with|V|=n, a

positive integer k<n and a cost c; associated with each verter ¢V .
PROBLEM: find a partition of V into disjoint sets A,B and C, with A

and B nonempty, such that: (i) there is no edge (i,7)0F with tUA
and 70B;
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‘ The Vertex Separator Problem (VSP)

> A vertex separator in an undirected graph is a subset of the vertices,

whose removal disconnects the graph in at least two nonempty
connected components.

The vertex separator problem:
INSTANCE: a connected undirected graph G =(V,E ), with|V|=n, a

positive integer k<n and a cost c; associated with each verter ¢V .
PROBLEM: find a partition of V into disjoint sets A,B and C, with A

and B nonempty, such that: (i) there is no edge (i,7)0F with tUA
and jOB; (ii)maz{|A|,|B} <k
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‘ The Vertex Separator Problem (VSP)

> A vertex separator in an undirected graph is a subset of the vertices,

whose removal disconnects the graph in at least two nonempty
connected components.

The vertex separator problem:
INSTANCE: a connected undirected graph G =(V,E ), with|V|=n, a

positive integer k<n and a cost c; associated with each vertexr ¢V .

PROBLEM: find a partition of V into disjoint sets A,B and C, with A
and B nonempty, such that: (i) there is no edge (¢,7)0F with ¢0A
and 7O B; (ii)maz{|A|,|B} < k and (iii) the cost of the separator C

is given by >, c, is minimized.
yine
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‘ The Vertex Separator Problem (VSP)

> A vertex separator in an undirected graph is a subset of the vertices,

whose removal disconnects the graph in at least two nonempty
connected components.

The vertex separator problem:
INSTANCE: a connected undirected graph G =(V,E ), with|V|=n, a

positive integer k<n and a cost c; associated with each vertexr ¢V .

PROBLEM: find a partition of V into disjoint sets A,B and C, with A
and B nonempty, such that: (i) there is no edge (¢,7)0F with ¢0A
and 7O B; (ii)maz{|A|,|B} < k and (iii) the cost of the separator C

is given by >, c, is minimized.
yine

>  Complexity: NP-hard.

> Applications: network connectivity and Linear Algebra ([Balas and de
Souza, MP, 2005]).

_va[cante and Cid C. de Souza Exact Algorithms for the ‘Vertex.Separato_



Related works and IP Formulation

> [Balas and de Souza, MP, 2005/: integer programming formulation,
polyhedral investigation.

> [de Souza and Balas, MP, 2005]: branch-and-cut algorithm.
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Related works and IP Formulation

> [Balas and de Souza, MP, 2005/: integer programming formulation,
polyhedral investigation.

> [de Souza and Balas, MP, 2005]: branch-and-cut algorithm.
>  Formulation: for every 0V the binary variables u,, =1 if and only if
i 0A and wp =1 if and only if 1 O B; and uy (S) =D (uy - ¢0S5).

max Z Cg(uz‘A —+ uz’B)
eV

uia +u;p < 1, VieV 1

)
)

(
U;jA + UjB <1, Uja + UiB <1, i (‘l,j) e b (2
(

UA(V) Z ]., 3)
ug(V) <k, (4)
uas(V) —up(V) <0, (5)
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Valid Inequalities

> [Balas and de Souza, MP, 2005]:
> CD inequalities: (minimal) Connected Dominators
> LD inequalities: Lifting of (minimal) Dominators
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Valid Inequalities

> [Balas and de Souza, MP, 2005/: CD and LD inequalities.

> A wvertex dominator S is a subset of vertices of the graph such that all
the remaining vertices are adjacent to at least one of them.
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Valid Inequalities

> [Balas and de Souza, MP, 2005/: CD and LD inequalities.

> A wvertex dominator S is a subset of vertices of the graph such that all
the remaining vertices are adjacent to at least one of them.
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Valid Inequalities

> [Balas and de Souza, MP, 2005/: CD and LD inequalities.

> A wvertex dominator S is a subset of vertices of the graph such that all
the remaining vertices are adjacent to at least one of them.

> "Every separator and every connected dominator have at least one
vertex in common’ .

> CD inequalities: 1f S O Vis a minimal connected dominator, the CD
inequality for S is given by w(S) = uy (S) +ug () <[5 - 1.
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Branch-and-cut (B&C) for VSP

> [de Souza and Balas, MP, 2005/: branch-and-cut algorithm developed
based on CD and LD inequalities.

> Mawn experimental conclusions:
> CD inequalities:
> Very helpful to tighten the formulation;
> More suitable to high-density (= 35%) graphs;
> Drawbacks:
> Separation is expensive (Ne-hard);
> Frenquently CD cuts are dense = hard to LP solvers.
> LD inequalities:
> Only suitable to low-density (<35%) graphs;
> Drawback: separation is expensive (ne-hard);
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Relax-and-cut (R&C) algorithms

> Main idea: to incorporate strong cutting planes in a Lagrangian
framework.

> When to use it: in hard combinatorial optimization problems for which
exponentially-sized families of strong wvalid inequalities are known.

> Aim: strengthen (Lagrangian relaxation) dual bounds.

_va[cante and Cid C. de Souza Exact Algorithms for the ‘Vertex.Separato



Relax-and-cut (R&C) algorithms

> Main idea: to incorporate strong cutting planes in a Lagrangian
framework.

> When to use it: in hard combinatorial optimization problems for which
exponentially-sized families of strong wvalid inequalities are known.

> Aim: strengthen (Lagrangian relaxation) dual bounds.
> The Lagrangian relaxation scheme:

IP z:max{cx‘Aaij, Dde,xDIB%’j}
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Relax-and-cut (R&C) algorithms

> Main idea: to incorporate strong cutting planes in a Lagrangian
framework.

> When to use it: in hard combinatorial optimization problems for which
exponentially-sized families of strong wvalid inequalities are known.

> Aim: strengthen (Lagrangian relaxation) dual bounds.
> The Lagrangian relaxation scheme:

IP z:max{cx‘Aaij, Da:Sd,xEl]B%f}

Dualized constraints
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Relax-and-cut (R&C) algorithms

> Main idea: to incorporate strong cutting planes in a Lagrangian
framework.

> When to use it: in hard combinatorial optimization problems for which
exponentially-sized families of strong wvalid inequalities are known.

> Aim: strengthen (Lagrangian relaxation) dual bounds.
> The Lagrangian relaxation scheme:

IP z:max{cx‘Aaij, Dde,xEl]B%f}
» Lagrangian subproblem (with parameter A U R ):
IP(A) z(/l) = max{ca? +A (a’—Dx)‘Aa: < b, xD]B%f}
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Relax-and-cut (R&C) algorithms

> Main idea: to incorporate strong cutting planes in a Lagrangian
framework.

> When to use it: in hard combinatorial optimization problems for which
exponentially-sized families of strong wvalid inequalities are known.

> Aim: strengthen (Lagrangian relaxation) dual bounds.
> The Lagrangian relaxation scheme:

IP z:max{cx‘Abe, Dde,xEl]B%f}
» Lagrangian subproblem (with parameter A 1R’ ):
IP(A) z(/l) = max{c:v +A (a’—Da:)‘Ax < b, xD]B%f}

+ a'z < B! (nondualized cuts)
strong inequalities ax < 3
a’z < B (dualized cuts)

_zwa[cante and Cid C. de Souza Exact Algorithms for the ‘Vertex.Separator



Relax-and-cut (R&C) algorithms

> Main idea: to incorporate strong cutting planes in a Lagrangian
framework.

> When to use it: in hard combinatorial optimization problems for which
exponentially-sized families of strong wvalid inequalities are known.

> Aim: strengthen (Lagrangian relaxation) dual bounds.
> The Lagrangian relaxation scheme:

IP z:max{cx‘Abe, Dde,xEl]B%f}
> Lagrangian subproblem (with parametersA, g 11 R ):
IP (A, ) z(A,,u) = max{@w +klAx < b,z [ IB%Z}
& = (c - AD -,uaz)

where <

k= Ad + up’
> Lagrangian Dual Problem:

LDP(A, u) = mz’n{z(/],,Ll)M,,U > O}
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Relax-and-cut (R&C) algorithms

> REC algorithms generally apply Subgradient Method (SM).
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Relax-and-cut (R&C) algorithms

> REC algorithms generally apply Subgradient Method (SM).

» Once the Lagrangian subproblem z (A, ) is computed, an integral
solution x s available.

The separation problem for 2" has to be solved and the famaly of
strong tnequalities identified, ax < B, is updated:
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Relax-and-cut (R&C) algorithms

> REC algorithms generally apply Subgradient Method (SM).

> Once the éagmngz’an subproblem z (A, u) is computed, an integral
solution x 15 available.

The separation problem for z has to be solved and the famaly of
strong tnequalities identified, ax < B, is updated:

> If a violated inequality mmx < 11,18 found that is not yet among the
dualized cuts, the following updates take place:

(aszﬁZ) - (O’ZxS,BZ)U{iTxSITO}
(0’1:1: < ,81) - (0’1:1: < ,81) \ {7mx < m}
U

A wolated inequality s dualized as soon as it is encountered, at
the end of the current SM iteration. This strateqy is known as

non-delayed REC.
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Relax-and-cut (R&C) algorithms

> When SM is executed (LDP is solved) several times and the cuts

found are dualized only at the end of each SM execution, the strategy
1s named buffered non-delayed REC.

> If the separation is performed only when the LDP is solved (i.e., once
at each SM execution) the strategy is called delayed REIC.

> [Lucena, AOR, 2005] discusses alternatives to embed cuttting planes
in a Lagrangian framework.
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‘ Relax-and-cut (R&C) for VSP

> Dualized Constraints:

max Z ci(um + uz’B)
eV

uia +uip < 1, vieV
wia+ ujp <1, ujs +up <1, V (i,7) € E
ua(V) > 1,
up(V) <k,
ua(V) —up(V) <0,

ua, ug € 90, 1}|V|
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‘ Relax-and-cut (R&C) for VSP

> Dualized Constraints:

eV

‘wiatws<l, VieV |

i\\uerungl, ujs+uip < 1, V (i,7) € E J

CwwzyL
ug(V) < k,
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‘ Relax-and-cut (R&C) for VSP

> Lagrangian subproblem:

max Z(cmum + EiBuiB)
eV
Solved in 0(\V\Zog\V\) time by
> 1
ua(V) 2 1, sorting the variables according to
wr (V) <k > their Lagrangian costs and after
— performing a few stmple calculations.
UA(V) — UB(V) <0,
ua, up € {0,1}" J
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Relax-and-cut (R&C) for VSP

> Our relaz-and-cut algorithms use CD and/or LD inequalities as
cutting planes.
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‘ Relax-and-cut (R&C) for VSP

> Our relaz-and-cut algorithms use CD and/or LD inequalities as
cutting planes.

Separation of CD inequalities:

Letu = (uy, ug) the optimal solution of the current Lagrangian subproblem.
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‘ Relax-and-cut (R&C) for VSP

> Our relaz-and-cut algorithms use CD and/or LD inequalities as
cutting planes.

Separation of CD inequalities:

Letu = (uy, ug) the optimal solution of the current Lagrangian subproblem.

» DefineG, = (W, F) as the subgraph induced by the subset: UW UV of
vertices with w;y + up 21 .
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‘ Relax-and-cut (R&C) for VSP

> Our relaz-and-cut algorithms use CD and/or LD inequalities as
cutting planes.

Separation of CD inequalities:

Letu = (uy, ug) the optimal solution of the current Lagrangian subproblem.
» DefineG, = (W, F) as the subgraph induced by the subset: UW UV of
vertices with w;y + up 21 .

> If W s a dominator and G, 1s connected then there exists a CD
inequality violated by u .
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‘ Relax-and-cut (R&C) for VSP

> Our relaz-and-cut algorithms use CD and/or LD inequalities as
cutting planes.

Separation of CD inequalities:

Letu = (uy, ug) the optimal solution of the current Lagrangian subproblem.

» Defineq = (W, F) as the subgraph induced by the subset UW UV of
vertices with w;y + up 21 .

> If W s a dominator and G, 1s connected then there exists a CD
inequality violated by u .

» The converse 1s not true, but holds when v,y + w;z < 1,07 UV is imposed.

» Qur separation routine is a heuristic.

Note: if u;q +uz <1,0¢ 0V are present, the Lagrangian subproblem
can also be computed in polynomial time via Dynamic Programming.
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‘ Relax-and-cut (R&C) for VSP

Separation of CD inequalities:

CD-Separation(G)

1. Construct Gz = (W, F');

2. Determine ng¢, the number of connected components of Gy;

3. if ncc =1 then /¥ Gy is connected */

4. if V C (W U Adj(W)) then /* W is a dominator of V */

5 Turn W into a minimal CD;

6. return the CD inequality u(W) < |W| — 1;

7. else return FAIL; /* no new cut is returned for dualization */

> Complezity: O (V] +|E]).
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‘ Relax-and-cut (R&C) for VSP

Separation of CD inequalities:

CD-Separation(G)

1. Construct Gz = (W, F');

2. Determine ng¢, the number of connected components of Gy;

3. if ncc =1 then /¥ Gy is connected */

4. if V C (W U Adj(W)) then /* W is a dominator of V */

5 Turn W into a minimal CD;

6. return the CD inequality u(W) < |W| — 1;

7. else return FAIL; /* no new cut is returned for dualization */

> Complezity: O (V] +|E|)
‘for unitary costs and a given lower bound zrp, if W induces a
connected subgraph that cover 2 |V| - max{z;5 — k,0} vertices,

<< then the conditional (CD) cut u (W) < |W|=11is wvalid for all

_solutions whose cost exceeds z; .
This fact is used in our routine to generate cuts with smaller supports.
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‘ Relax-and-cut (R&C) for VSP

Primal heuristic:

> Construction phase: a greedy procedure that assigns vertices to
shores A and B according to the Lagrangian costs of the associated
variables and vertex degrees relative to A and B.

> Improvement phase: enlarges the separator C with the vertices of A
and B that are in the adjacency of a vertex in C as long as A and
B remain nonempty. Repeat the construction phase starting from
this partial solution.

> Complexity: O (‘V‘ log|V| + ‘ED, including the improvement phase.
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Usage of the R&C algorithm

> As a primal heuristic

> As a preprocessing phase for the BEC algorithm in [de Souza and
Balas, MP, 2005/: LR/LP hybrid approach denoted RECEBEC.
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Usage of the R&C algorithm

> As a primal heuristic

> As a preprocessing phase for the BEC algorithm in [de Souza and
Balas, MP, 2005/: LR/LP hybrid approach denoted RECEBEC.

R&C&B&C

- — LR|based phase - - - LP based phase

cut pool(s)

L - —_ _ _ —_- —_- —_- —_— —

| P!
|
| ! (gap > %) l
[ Li | |
| (gap>1) | | |{gap < a%) (gap > 1)
: R&C best 1b : | > L Pp—— L-B&C
[ |
| [

I-"_"_"'I

"'*; Results >

(gap < 1)

RECEBEIC Framework: Flow Diagram
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Computational Results

»  Computer environment: Pentium IV, 1GB of RAM, Linux, C+4, XPRESS
Optimizer 17.01.02 (LP solver).

> Data sets:

> subset of instances in www.ic.unicamp.br/cid/Problem-instances/VSP.html.

> only instances not solved by XPRESS Optimizer with default settings < 1 min.
> Final tests with R&C&B&C framework:

> 47 instances in total, all of which with unitary costs.
> 38 graphs with density > 20% (mid-high density instances);
> 9 graphs with density < 20% (low density instances);
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Computational Results

»  Computer environment: Pentium IV, 1GB of RAM, Linux, C+4, XPRESS
Optimizer 17.01.02 (LP solver).

> Data sets:
> subset of instances in www.ic.unicamp.br/cid/Problem-instances/VSP.html.

> only instances not solved by XPRESS Optimizer with default settings < 1 min.
> Final tests with R&C&B&C framework:

> 47 instances in total, all of which with unitary costs.
> 38 graphs with density > 20% (mid-high density instances);
> 9 graphs with density < 20% (low density instances);

> Assessment of the results (aspects considered):

> the quality of the primal bounds;
> the effectiveness of using our approach as a preprocessing tool that provides B&C
with a tighter formulation. Comparison of our best R&C&B&C algorithms:

> with the best know algorithms to VSP;
> with XPRESS solver;
> among themselves.
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Computational Results

»  Computer environment: Pentium IV, 1GB of RAM, Linux, C+4, XPRESS
Optimizer 17.01.02 (LP solver).

> Data sets:
> subset of instances in www.ic.unicamp.br/cid/Problem-instances/VSP.html.

> only instances not solved by XPRESS Optimizer with default settings < 1 min.
> final tests with R&C&B&C framework:

> 47 instances in total, all of which with unitary costs.
> 38 graphs with density > 20% (mid-high density instances);
> 9 graphs with density < 20% (low density instances);

> Assessment of the results (aspects considered):

> the quality of the primal bounds;

> the effectiveness of using our approach as a preprocessing tool that provides B&C
with a tighter formulation. Comparison of our best R&C&B&C algorithms:

> with the best know algorithms to VSP;
> with XPRESS solver;
> among themselves.

> Time limat: 30 man.
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‘ Computational Results: mid-high density graphs

Mid-high density instance Only CD Cuts B&C [de Souza and Balas] B&B (XP)
NDR&ECEBEC| BRECEBEC B&C(CD) |B&C({CD,LD)
label d{=> 20%) [nodes t(=) [nodes ts) |nodes t(s)[nodes t{s)| nodes t(=)
dim.queen§_§ 0.36 1807 75.02| 1707 90.22( 4315 T0.51| 3143 3827 23131 126.29
dirmn.miles 1000 0.40 17 12.97 13 11.62 11 18.37 35 26.22 287 53.96
dim.queen7_7 0.410) 391 14.11] 313 16.73] 431 10.77| 265 9.093| 27833 7853
dim.DSJC125.9 (.90 4275 59645| 4143  537.01|33833 1107.29[25475 1291.54] 51261 1800.00
mat.can 73 0.25 5343 46.15 5505 50.57| 5123 71.50| 5615 46.44( 33195 147 62|
mat.lund_a 0.26 3145 40139 2715 384.14| 2231 462.03( 2709  332.09( 27506 18300.00
mat.L125. besstk03 0.35 T09 55.65 - 4.53[ 1573 326.20[ 1625 196.01 1633 211.38
mat.L125.dwt_193 0.38 21 23.11 27 25.07 131 97.31| 721 13480 17767  1301.43
mat.L125.45 1831 0.44 20 28.11 21 26.16 25 35.45 29 31.74[ 1515 182.78
mat.besstlk4 .68 13 22.90 - 4.35( 133  124.60( 247 13227 16572 1800.00
mat.arcl3i 0.93 83 160.19 83 163.80) 101  3T0.67) 101 329.59 957 926.12
mat. L100.steam2 0.36 45 21.02 41 20.67) 149 40.83| 241 3708 11577 22098
mat.L120.fidap(25 0.39 - 2.50 - 2.59 13 12.00 49 1767 589 10773
mat. L120.cavity01 0.42 13 9.13 15 10.50 13 16.88 41 21.52 813 01.69
mat.L120.fidap021 0.43 a5 3.63 T 5.88 33 24.74 67 3663 1031 150.22
mat.L120.rb=480a 0.46 125 64.01[ 141 67.75] 367  218.67( 3007 249.27| 15619 1308.79
mat. L1200 wm2 0.47 33 28.04 35 36.68 33 47.82 33 45.71 351 B8.T1
mat. L100.rbs480a 0.52 50 11.90 [ 15.60 G3 21.33 91 21.34( 2951 189.73
mat.L80.wm2 0.58 9 3.28 11 4.31 13 4.90 15 565 379 G67.22
mat. L1000 wm3 0.59 11 V.63 13 10.48 17 13.26 15 13.34 379 63.70
mat. L120.e05r0000 0.59 3 7.05 3 T.63 9 11.49 43 2531 2703 343.05
mat.L100.wml 0.60 19 10.74 13 9.18 25 15.67 35 24.36 877 94.07
mat.L120.fidap(22 .60 rki 22.53 17 13.75 33 3817 81 2304 13319 1522.86
mat.L120.fidapD01 0.63 - 4.04 - 307 31 32.57| 189 £4.70( 33120 1800.00
mat. L100.e05r0000  0.64 15 5.39 17 8.17 19 11.19 39 1249 3559 2584.25
mat.L120.fidapm02  0.65 - 2.87 - 2.91 17 24.52 av 5566 4457 352.37
mat. L100.fidapD01 .68 35 7.10 35 7.54 49 15.96 73 23.21[ 34321 950.38
mat. L100.fid ap(22 .68 109 22.66| 105 22.36| 171 52.20 93 2731 57415 1594.48
mat.L80 fidap00l 0.72 - 1L.55 - 1.55 1 1.76 33 520 3523 101.25
mat.LE0 Adapl22 0.76 197 14.25| 159 11.90| 173 15.28 45 3.451) 19279 J08.05
mat. L100.fid apD02 0.82 3 3.22 3 3.52 7 4.75 29 10.19) 2111 240.58
mat.L120.fid ap002 0.82 a G.88 1 53.73 73 41.59 93 4850 10415 1284 .46
miplib.khb53250.p 027 119 3.94) 121 5.26 a1 3.21 111 4.84| 3641 G637
miplib.1152lav.p 0.40 213 46.27[ 1835 54.66) 283 T0.12| 853 101.98( 22885 67 .68
miplib.lp4l.p 0.46 275 34.27[ 271 33.10[ 551 30.10( 53965 151.72| 27523 409.73
miplib.air03.p 0.61 1135 11194 117 119.98 135 167.35| 135 180.01) 14215 1800.00
miplib.mizc(3.p 0.63 2993 11195 2717 121.67| 4819 138.07| 3947  155.22| 53417 1704.42
miplib.misc07.p (.80 173 1280.36) 177 1519.38] 125 1800.00 T8 1800.00( 2243 13'[“].'[“]'
3. L-B&Cs 20480 3320.10(18759 3442.02 - - - - - -
> B&Cs 20315 2039.T4(18621 1922.64|47706 3286.19 (553345 4007.35 - -
% B&CUs and XP 13912 1303.51|14361 1256.23|13574 1854.38 [20200 2318.83(427260 1T47T1.88
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‘ Computational Results: mid-high density graphs

> Total time savings when compared to [de Souza and Balas, MP, 2005]
to solve the group of instances solved by all the BéC' based algorithms.

R&C&B&C: percentage of time savings over B&C
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‘ Computational Results: mid-high density graphs

> Savings relative to the total number of nodes generated by the BéB
search trees constructed by each algorithm.

R&C&B&C: percentage of node savings over B&C

@ Savings over B&C(CD) B Savings over B&C(CD,LD)
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Computational Results: mid-high density graphs

> Awverage percentage of BEC(CD) time needed by each RECEBEC

version to solve a VSP instance.

Average Time Performance over B&C(CD)
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Computational Results: low density graphs

> Percentage of BEB time and number of nodes needed by REICESBESC
BE&C versions to solve all the VSP low density instances.

R&C&B&C and B&C approaches against B&B
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Computational Results: primal bounds

> In about 70% of the cases an optimal solution was produced during the

LR phase (LP-H).
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‘ Computational Results: primal bounds

> To MIPLIB hard to solve instances [Borndorfer et al., STAM Journal
on Opt., 1998].

Primal Bound Improvements
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Conclusions and future work

> Preprocessing with REC accelerates the BE&C of [de Souza and Balas,
MP, 2005]: our framework improves the best know approach.

> In practice, the embedding of CD cuts in SM often decreases the dual

bounds to values that are smaller than the trivial bound arising from
linear relazation.

Note: this is expected from the theory however convergence
problems may occur!

» The Lagrangian heuristic produces very good primal bounds
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Conclusions and future work

> Preprocessing with REC accelerates the BE&C of [de Souza and Balas,
MP, 2005]: our framework improves the best know approach.

> In practice, the embedding of CD cuts in SM often decreases the dual
bounds to values that are smaller than the trivial bound arising from
linear relazation.

Note: this is expected from the theory however convergence
problems may occur!

» The Lagrangian heuristic produces very good primal bounds.
> Other cuts? Better tuning? Improve primal heuristic?
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Thanks for your attention!
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