# Online Parallel Job Scheduling Special Cases

Jacob Jan Paulus

and

Johann L. Hurink

j.j.paulus@utwente.nl

Department of Applied Mathematics University of Twente

- Jobs have a processing time  $(p_j)$  and a number of machines simultaneously required for processing  $(m_j)$ ,
- As soon as a job arrives, it has to be scheduled irrevocably without knowing the characteristics of the future jobs,
- Preemption is not allowed,
- The objective is to minimize the makespan.



- Jobs have a processing time  $(p_j)$  and a number of machines simultaneously required for processing  $(m_j)$ ,
- As soon as a job arrives, it has to be scheduled irrevocably without knowing the characteristics of the future jobs,
- Preemption is not allowed,
- The objective is to minimize the makespan.



- Jobs have a processing time  $(p_j)$  and a number of machines simultaneously required for processing  $(m_j)$ ,
- As soon as a job arrives, it has to be scheduled irrevocably without knowing the characteristics of the future jobs,
- Preemption is not allowed,
- The objective is to minimize the makespan.



- Jobs have a processing time  $(p_j)$  and a number of machines simultaneously required for processing  $(m_j)$ ,
- As soon as a job arrives, it has to be scheduled irrevocably without knowing the characteristics of the future jobs,
- Preemption is not allowed,
- The objective is to minimize the makespan.



- Jobs have a processing time  $(p_j)$  and a number of machines simultaneously required for processing  $(m_j)$ ,
- As soon as a job arrives, it has to be scheduled irrevocably without knowing the characteristics of the future jobs,
- Preemption is not allowed,
- The objective is to minimize the makespan.



- Jobs have a processing time  $(p_j)$  and a number of machines simultaneously required for processing  $(m_j)$ ,
- As soon as a job arrives, it has to be scheduled irrevocably without knowing the characteristics of the future jobs,
- Preemption is not allowed,
- The objective is to minimize the makespan.



- Jobs have a processing time  $(p_j)$  and a number of machines simultaneously required for processing  $(m_j)$ ,
- As soon as a job arrives, it has to be scheduled irrevocably without knowing the characteristics of the future jobs,
- Preemption is not allowed,
- The objective is to minimize the makespan.



- Jobs have a processing time  $(p_j)$  and a number of machines simultaneously required for processing  $(m_j)$ ,
- As soon as a job arrives, it has to be scheduled irrevocably without knowing the characteristics of the future jobs,
- Preemption is not allowed,
- The objective is to minimize the makespan.



## Online Algorithms: The Analysis is a Game

An online algorithm A is said to be  $\rho$ -competitive if

$$\sup_{\sigma} \frac{C_A(\sigma)}{C^*(\sigma)} \le \rho \; \; ,$$

where  $C^*$  is the value of the optimal offline solution.

Interpret the analysis as a game between the online algorithm and an adversary.

- Online algorithm schedules the jobs to minimizes the competitive ratio.
- Adversary determines the next job characteristics to maximize the competitive ratio.

## Online Algorithms: The Analysis is a Game

An online algorithm A is said to be  $\rho$ -competitive if

$$\sup_{\sigma} \frac{C_A(\sigma)}{C^*(\sigma)} \le \rho \; \; ,$$

where  $C^*$  is the value of the optimal offline solution.

Interpret the analysis as a game between the online algorithm and an adversary.

- Online algorithm schedules the jobs to minimizes the competitive ratio.
- Adversary determines the next job characteristics to maximize the competitive ratio.

To show

- a lower bound on  $\rho$ : Construct an adversary and show that no online algorithm can be better than  $\rho$ -competitive.
- a upper bound on  $\rho$ : Construct an online algorithm and show that matter what the adversary does, it is  $\rho$  competitive.

## Known Results

| $P \text{online} - \text{list}, m_j C_{\max} $ |                   |                   |           |
|------------------------------------------------|-------------------|-------------------|-----------|
| Model                                          | Lower Bound       | Upper Bound       |           |
| -                                              | 2.43              | 6.6623            |           |
| m = 2                                          | 2                 | 2                 | Greedy    |
| m = 3                                          | 2                 | 2.8               | This talk |
| $3 \le m \le 6$                                | 2                 | m                 | Greedy    |
| Semi-online $P online - list, m_j C_{max}$     |                   |                   |           |
| Model                                          | Lower Bound       | Upper B           | ound      |
| -non-increasing $m_j$                          | 1.88              | 2.4815            | This talk |
| m=2  or  3                                     | $2 - \frac{1}{m}$ | $2 - \frac{1}{m}$ | Greedy    |
| $m=4 { m or} 5$                                | -                 | 2                 | Greedy    |
| -non-increasing $p_j$                          | $\frac{5}{3}$     | 2                 |           |
| m = 2                                          | $\frac{9}{7}$     | $\frac{4}{3}$     |           |
| -non-decreasing $p_j$                          | -                 | -                 |           |
| m = 2                                          | $\frac{3}{2}$     | $\frac{3}{2}$     |           |

## Overview

- Lower bounds on optimal solutions
- Greedy
- Case: m = 3
- Case: non-increasing  $m_j$

## Lower bounds on optimal solutions

Given a list of jobs  $\sigma$ 

• Load argument:

$$C^*(\sigma) \ge \frac{1}{m} \sum_{j \in \sigma} m_j p_j$$

• Length argument:

 $C^*(\sigma) \ge \max_{j \in \sigma} \{p_j\}$ 

## The Greedy Algorithm

• Greedy is *m*-competitive.

 $\it Proof:$  In a schedule constructed by Greedy never m machines are left idle. By the load argument we get

$$C_{\text{Greedy}}(\sigma) \leq \sum_{j \in \sigma} m_j p_j$$
  
 $\leq m C^*(\sigma)$ 

So,

$$\frac{C_{\text{Greedy}}(\sigma)}{C^*(\sigma)} \le m$$

## The Greedy Algorithm

• Greedy is *m*-competitive.

*Proof:* Consider the illustrated instance.

$$\frac{C_{\text{Greedy}}(\sigma)}{C^*(\sigma)} = \frac{\sum_{i=1}^m (1+(i-1)\epsilon) + (m-1)\epsilon}{1+(2m-2)\epsilon}$$
$$= \frac{\frac{1}{2}\epsilon m(m-1) + m - \epsilon}{1+(2m-2)\epsilon} \to m \text{ if } \epsilon \to 0$$



Lower bound:

• For  $m \ge 3$  the competitive ratio is at least 2.



Lower bound:

• For  $m \ge 3$  the competitive ratio is at least 2.



Lower bound:

• For  $m \ge 3$  the competitive ratio is at least 2.



Lower bound:





Lower bound:





Lower bound:





Upper bound:

• Greedy is 3-competitive

#### Algorithm 3*M*:



### • $m_j = 2$ job arrives:

•  $m_j = 3$  job arrives:

#### Algorithm 3M:



• 
$$m_j = 3$$
 job arrives:





#### Algorithm 3M:

•  $m_j = 3$  job arrives: Delay the job.



#### Algorithm 3M:

•  $m_j = 3$  job arrives: Delay the job.



Algorithm 3M:

•  $m_j = 3$  job arrives: Delay the job.



Algorithm 3M:

•  $m_j = 3$  job arrives: Delay the job.



Define

$$d := \left(\frac{1}{2}L_{i+1} - \frac{1}{4}H_{i+1}\right)^+$$





Improving the load bound:

$$\int_{I_i} load(t) dt > \frac{5}{3}I_i - F_{i+1}$$

Improving the length bound:

$$C^*(\sigma) \ge \sum F_i + \max_{j \mid m_j \le 2} p_j$$



Improving the load bound:

$$\int_{I_i} load(t) dt > \frac{5}{3}I_i - F_{i+1}$$

Improving the length bound:

$$C^*(\sigma) \ge \sum F_i + \max_{j \mid m_j \le 2} p_j$$

**Theorem 1** Algorithm 3M is 2.8-competitive.

Idea: Either the load bound or the length bound works well.

Greedy is 2.75-competitive.

#### Algorithm Modified Greedy (MG):

- Schedule the jobs with  $m_j > \frac{m}{3}$  one after the other.
- Schedule the other jobs greedily.



Greedy is 2.75-competitive.

#### Algorithm Modified Greedy (MG):

- Schedule the jobs with  $m_j > \frac{m}{3}$  one after the other.
- Schedule the other jobs greedily.





**Theorem 2** Algorithm MG is 2.5-competitive.

$$C_{MG}(\sigma) = s + p_n \le \frac{3}{2m} \sum_{i=1}^{n-1} m_i p_i + p_n$$
  
=  $\frac{3}{2m} \sum_{i=1}^n m_i p_i + \left(1 - \frac{3m_n}{2m}\right) p_n$   
 $\le \frac{3}{2} C^*(\sigma) + \left(1 - \frac{3m_n}{2m}\right) C^*(\sigma) \le \frac{5}{2} C^*(\sigma)$ 







$$C^* = |A_1| + \frac{1}{2}|A_2|$$
  

$$\geq r + \frac{1}{2}(t - r) = \frac{1}{2}(r + t) \qquad \geq_{(r \ge \frac{1}{2}t)} \quad \frac{3}{4}t$$



$$C^* = |A_1| + \frac{1}{2}|A_2|$$
  

$$\geq r + \frac{1}{2}(t - r) = \frac{1}{2}(r + t) \qquad \geq_{(r \geq \frac{1}{2}t)} \quad \frac{3}{4}t$$

$$C^* = |A_1| + \frac{1}{2}|A_2| + \frac{1}{3}(|A_3| - |A_1|)$$
  

$$\geq r + \frac{1}{2}(t - r) + \frac{1}{3}(t - 2r) = \frac{5}{6}t - \frac{1}{6}r \qquad \geq_{(r \le \frac{1}{2}t)} \quad \frac{3}{4}t$$

New bound on  $C^*$ :

$$C^* \ge \frac{3}{4}t$$

**Theorem 3** Algorithm MG is  $\frac{67}{27}$ -competitive ( $\approx 2.4815$ ).

*Idea:* Case distinction on  $t/C_{MG}$ .

## Questions?

Case: 
$$m = 3$$
:  
 $2 \le ? \le 2.8$ 

Case: non-increasing  $m_j$  $1.88 \leq 2.4815$