UFO

Uncertainty Feature Optimization, an Implicit Paradigm for Problems with Noisy Data

Niklaus Eggenberg Matteo Salani and Prof. M. Bierlaire

Transport and Mobility Laboratory, EPFL, Switzerland

CTW2008

Schedule

- Motivations
- > The UFO framework
- Existing Methods seen as UFO
- > Example: Problem with **M**ultiple **K**napsack

Constraints (MKC)

- Preliminary Simulation Results for MKC
 - Future Work and Conclusions

Motivation

- Uncertainty should not be neglected
- Uncertainty is hard to characterize exactly
- Problems under uncertainty are hard to solve in

general

• Few guarantees on real solution

- 1. Neglect and solve deterministic problem
 - Not realistic (Herroelen 2005, Sahinidis 2004)

- 1. Neglect and solve deterministic problem
- 2. On-line Optimization
 - Data-driven
 - > Not feasible for some problems (e.g. airline

schedules)

- 1. Neglect and solve deterministic problem
- 2. On-line Optimization
- 3. Characterize the Uncertainty and solve robust or stochastic problems
 - > Need explicit Uncertainty characterization
 - Hard to characterize/model in general
 - Leads to difficult problems
 - Solutions tend to "simple" properties

Examples from Airline Scheduling

- O Increase plane's idle time (Al-Fawzana & Haouari 2005)
- O Decrease plane rotation length (Rosenberger et al. 2004)
- O Departure de-peaking (Jiang 2006, Frank et al. 2005)
- O More plane crossings (Bian et al. 2004, Klabjan et al. 2002)

0 ...

- 1. Neglect and solve deterministic problem
- 2. On-line Scheduling
- 3. Characterize the Uncertainty
- 4. Model Uncertainty Implicitly => <u>Uncertainty Features</u>

Uncertainty **F**eature **O**ptimization

- I. Increase robustness/stability (e.g. idle time)
- II. Increase recoverability (e.g. plane crossings)

UF: Definition

Given a problem with Decision Variables x

UF: a function $\mu(\mathbf{x})$ measuring the "quality" of a solution \mathbf{x}

OBJECTIVE: MAX $\mu(x)$

s.t. **x** feasible solution to initial problem

How to Derive an **UF** ?

Know WHAT changes, not HOW

- UF is problem dependent
- > use practitioner's experience/intuition

If recovery strategy is known

> seek UF improving recovery's performance \Rightarrow RECOVERABILITY

General Optimization Problem

$MIN \ f(x)$
s.t. $a(x) \le b$
 $x \in X$

UFO: Multi-Objective Problem

$\begin{array}{ll} OPT & [f(x), \mu(x)] \\ s.t. & a(x) \leq b \end{array}$

 $x \in X$



Maximal Optimality Gap

ρ

UFO with Budget Relaxation

$MAX \mu(x)$ s.t. $a(x) \le b$ $f(x) \le (1 + \rho)f^*$ $x \in X$

UFO Properties

- I. Complexity not changed if $\mu(x)$ similar to f(x)
- II. Implicit modeling of uncertainty
- III. Differentiate solutions on optimal facet
- IV. "Plug" tool for any existing method
- V. Can use UF based on explicit uncertainty set
- VI. Generalizes existing methods

Stochastic Problem as an UFO

Given an Uncertainty Set **U** with a probability measure on it

$\begin{array}{ll} \min & E_U\{f(\boldsymbol{x})\}\\ s.\,t. & a(x) \leq b\\ & x \in X \end{array}$

Stochastic problem as an UFO

$MAX \ \mu(x) = -E_U\{f(x)\}$ s.t. $a(x) \le b$ $f(x) \le (1 + \infty)f^*$ $x \in X$

Robust problem as an **UFO**

Original LP Problem

MAX $c^T x$

s.t. $Ax \le b$ $x \in X$

Robust problem as an UFO

Formulation of Bertsimas and Sim (2004)

MAX $c^T x$

s.t. $Ax + \beta(x, \Gamma) \le b$ $x \in X$

$$\tilde{a}_{ij} \in [a_{ij} - \hat{a}_{ij}; a_{ij} + \hat{a}_{ij}] \quad \forall \ j \in J_i$$

$$\beta_{i}(x, \Gamma_{i}) = \max_{\{S_{i} \cup \{t_{i}\} | S_{i} \in J_{i}, |S_{i}| = \lfloor \Gamma_{i} \rfloor, t_{i} \in J_{i} \setminus S_{i}\}}$$

$$\left\{\sum_{j\in S_{i}} \hat{a}_{ij} \mid x_{j} \mid +(\Gamma_{i} - \lfloor \Gamma_{i} \rfloor) \hat{a}_{it_{i}} \mid x_{t_{i}} \mid \right\}$$

Start with Feasibilty Problem $f^* = MIN \quad f(x)$

$= MIN \left[Ax + \beta(x, \mathbf{J})\right] - \mathbf{b}$ s.t. $x \in X$

Define **UF** and budget

$$\mu(\boldsymbol{x}) = \boldsymbol{c}^T \boldsymbol{x} \qquad \rho = \max_i \left\{ \frac{\rho_i f_i(\boldsymbol{x}^*)}{f^*} - 1 \right\}$$

Where

$$\rho_i = \begin{cases} \frac{\bar{\beta}_i(\boldsymbol{x}, \Gamma_i)}{f_i(\boldsymbol{x}^*)} & \text{and} \\ 0 & \text{if } f_i(\boldsymbol{x}^*) = 0 \end{cases}$$

 $\beta(x, \mathbf{J}) = \beta(x, \mathbf{\Gamma}) + \overline{\beta}(x, \mathbf{\Gamma})$

UFO formulation $MAX \ \mu(x) = \mathbf{c}^T \mathbf{x}$ s.t. $[A\mathbf{x} + \boldsymbol{\beta}(\mathbf{x}, \mathbf{J})] - \mathbf{b} \le (1 + \rho)f^*$ $\mathbf{x} \in X$

Replace Elements in Constraint $[A\mathbf{x} + \boldsymbol{\beta}(\mathbf{x}, \mathbf{J})] - \mathbf{b} \le (1 + \rho)f^*$ $[Ax + \beta(x, I)] - b \leq \overline{\beta}(x, \Gamma)$ Which is equivalent to $Ax + \boldsymbol{\beta}(x, \boldsymbol{J}) - \boldsymbol{\overline{\beta}}(x, \boldsymbol{\Gamma}) \leq \boldsymbol{b}$ $Ax + \boldsymbol{\beta}(x, \Gamma) \leq \boldsymbol{b}$

Retrieve Robust Formulation $MAX \ \mu(x) = c^T x$ $s.t. Ax + \beta(x, \Gamma) \leq b$

 $x \in X$

Q.E.D.

BONUS

Gives methodology to compute maximal

values of Γ to ensure a robust solution

exists.

<u>M</u>ultiple <u>K</u>napsack <u>C</u>onstraints

Ν max $\sum c_i x_i$ i=1Ν $\sum a_{ij} x_i \le b_i \quad \forall i = 1, \dots, M$ s.t. *i*=1 $x \in \mathbb{Z}^N_+$

MKC with Max Taken Object UFO

$$\min \left\{ \mu(\boldsymbol{x}) = \max_{i=1,\dots,N} \{x_i\} \right\}$$

s.t. $A\boldsymbol{x} \leq \boldsymbol{b}$
 $\boldsymbol{c}^T \boldsymbol{x} \geq (1-\rho)\boldsymbol{c}^*$
 $\boldsymbol{x} \in \mathbb{Z}_+^N$

Other derived **UF**

- Max Taken (MTk): $\mu(x) = \max_{i=1,...,N} \{x_i\}$
- Diversification (Div):

$$\mu(\boldsymbol{x}) = \sum (\min\{1, x_i\})$$

• Impact Ratio (IR):

$$\mu(\boldsymbol{x}) = -\max_{i} \frac{a_{ij} x_j}{b_i}$$

• 2Sum: $\mu(\mathbf{x}) = -\max_{i,j \neq k} \frac{a_{ij}x_j + a_{ik}x_k}{b_i}$

MKC Simulator

- Generation of problems
- Solve Models inc. Robust (combining possible)
- Simulation with user-defined parameters

Simulation Results

- Partial results on 8 of 24 classes
- Classes according to
 - i. Cost-correlated A matrix
 - ii. Granularity
 - iii. Number of Constraints
 - iv. Number of varying coefficients

Simulation Results

- Simulations according to
 - a. Exact variability matrix \hat{A}
 - b. Variability matrix based on A
 - c. Random Variability Matrix
 - d. High or Low variances

	ROBUST Â	ROBUST 0.1*A	IR rho = 10%	_MTk + 2Sum rho = 10%	Div rho = 10%
Nbr Unfeasible	21470	25763	40680	40841	50212
% of unfeasible	25.56	30.67	48.43	48.62	59.78
Avg Optimality Gap (%)	18.07	11.66	9.25	9.23	7.94
Max Optimiality Gap (%)	98.13	96.89	96.4	96.4	96.89

Used Model	ROBUST Â			_MTk			
Var. Matrix	Â	0.2*A	RANDOM	Â	0.2*A	RANDOM	
Nbr Unfeasible	2	15	761	47	117	1186	
% of unfeasible	<0.01	1.00	50.73	3.13	7.8	79.07	
Avg Optimality Gap (%)	3.95	4.10	9.59	9.67	9.45	6.57	
Max Optimiality Gap (%)	37.43	33.55	90.01	24.97	24.98	89.22	

Future Work

- Extended Tests on MKC
- Application of UFO to Airline Transportation
- Find an UF generator ?

Conclusions

- UFO allows to cope with uncertainty IMPLICITLY
- Use explicit uncertainty model is still possible
- UFO can be combined with any already existing method
- It is NOT an alien method !

THANKS for your attention

Any Questions?

