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Introduction Related Problem

Capacitated Vehicle Routing Problem (CVRP)

Figure: CVRP instance with |U| = 15, m = 3 and Q = 6.
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Introduction Related Problem

A Solution for the CVRP

Figure: A solution for the CVRP instance with m = 3, Q = 6 and graph in
Figure 1.
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Introduction Related Problem

Capacitated Vehicle Routing Problem (CVRP)

Given:

a graph G = (V ,E ) where V = {0} ∪ U, (depot 0 and a set of
customers U);

a fleet of m identical vehicles (each of them having a capacity Q);

costs ce ≥ 0, ∀e ∈ E ;

demands di ≥ 0,∀i ∈ U.
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Given:

a graph G = (V ,E ) where V = {0} ∪ U, (depot 0 and a set of
customers U);

a fleet of m identical vehicles (each of them having a capacity Q);

costs ce ≥ 0, ∀e ∈ E ;

demands di ≥ 0,∀i ∈ U.

The CVRP consists of finding routes for m vehicles such that:

each route starts and ends at the depot;

each customer is visited by a single vehicle;

the total demand of all customers in any route is at most Q, and;

the sum of the costs of all routes is minimum.
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Introduction Related Problem

Alternative Solution

Figure: A solution that allows some customers stay outside of all routes.
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Introduction Definition of the Problem

Capacitated m-Ring-Star Problem (CmRSP)

Given:

a mixed graph G = (V ,E ∪ A) where V = {0} ∪ U ∪ W (depot 0, a
set of customers U and a set of Steiner points W );

unitary demands;

integer values m and Q;

route costs ce > 0, ∀e ∈ E = {(i , j) : i , j ∈ V }, satisfying the
triangular inequalities;

connection costs we > 0, ∀e ∈ A ⊆ {ij : i ∈ U, j ∈ U ∪ W }.
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a pair (R ,S) is a Q-ring-star if:
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a mixed graph G = (V ,E ∪ A) where V = {0} ∪ U ∪ W (depot 0, a
set of customers U and a set of Steiner points W );

unitary demands;

integer values m and Q;

route costs ce > 0, ∀e ∈ E = {(i , j) : i , j ∈ V }, satisfying the
triangular inequalities;

connection costs we > 0, ∀e ∈ A ⊆ {ij : i ∈ U, j ∈ U ∪ W }.

The CmRSP consists of finding m Q-ring-stars with minimum costs and
covering all customers.

a pair (R ,S) is a Q-ring-star if:
R ⊆ E is a cycle passing by the depot 0;
ij ∈ S ⊆ A such that i 6∈ V [R ] and j ∈ V [R ];
|U ∩ (V [R ] ∪ V [S ])| ≤ Q.

We say that a Q-ring-star covers a customer i if i ∈ V [R ] ∪ V [S ].
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Introduction Examples

Example of a Q-ring-star
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Figure: Two 9-ring-stars
({(0, g), (g , h), (h, i), (i , j), (j , k), (k , 0)}, {mi , ni , oj , pk , qk}) and
({(0, a), (a, b), (b, c), (c , 0)}, {(ec , fc}).
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Introduction Examples

Example of a CmRSP Instance
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Figure: Instance eil51.tsp with |U| = 25.
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Introduction Examples

Example of a Q-ring-star
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Figure: 8-ring-star for the instance in Figure 5.
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Introduction Examples

A Solution for the CmRSP instance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80  90

deposito
cliente
steiner
solucao
arcos

Figure: A solution for eil51.tsp with m = 3 e Q = 10.
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Motivations Related Work

Integer Programming (IP) Formulation
Formulation proposed by Baldacci et al and used into a branch-and-cut algorithm.

(BC) min
X

e∈E

cexe +
X

ij∈A

wijzij

subject to
X

e∈δ(0)

xe = 2m (1)

X

e∈δ(i)

xe = 2yi ,∀i ∈ V \ {0} (2)

X

ij∈A

zij + yi = 1, ∀i ∈ U (3)

X

e∈δ(S)

xe ≥
2

Q

X

i∈U

X

j∈S:ij∈A

zij , ∀S ⊆ V \ {0} : S 6= {} (4)

y ∈ {0, 1}|V
′ |
, zij ∈ {0, 1}, xij ∈ {0, 1}. (5)
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Motivations Related Work

Motivations

Practical applications arising in telecommunications and logistics;

Large fiber optics networks design;
Logistics of product distribution;
School bus allocation.

Just one exact algorithm for CmRSP is reported, to our knowledge;

In general, set covering models provide tight relaxations.
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Motivations Related Work

Motivations

Practical applications arising in telecommunications and logistics;

Large fiber optics networks design;
Logistics of product distribution;
School bus allocation.

Just one exact algorithm for CmRSP is reported, to our knowledge;

In general, set covering models provide tight relaxations.

Our Objective

Evaluate the use of a set covering model for the CmRSP together a
column generation algorithm to solve it.
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Our Proposal The Techniques

Column Generation

(P) min cλ

s.a. Aλ ≥ 1,∀i ∈ N (6)

λ ∈ {0, 1}p (7)
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Our Proposal The Techniques

Column Generation

(P) min cλ

s.a. Aλ ≥ 1,∀i ∈ N (6)

λ ∈ {0, 1}p (7)

p is exponential in |N|, i.e., the total number of columns is big!

Consider just a few number of the columns and construct other

columns implicitly by solving the pricing problem.

cp = cp − πAp (π: dual variables corresponding to constraints (6));

Pricing problem consists of finding p ∈ P that minimizes cp.
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Our Proposal Set Covering Model

Main Idea

each column represents a Q-ring-star;

a solution for the CmRSP consists of m columns such that:

each customer i ∈ U is covered by some column;
the sum of the costs associated with each column is minimum.
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Our Proposal Set Covering Model

Main Idea

each column represents a Q-ring-star;

a solution for the CmRSP consists of m columns such that:

each customer i ∈ U is covered by some column;
the sum of the costs associated with each column is minimum.

Figure: Example of a matrix of coefficients in a set covering model.
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Our Proposal Set Covering Model

Set Covering Formulation

Consider

P = {(R ,S)|(R ,S) is a Q-ring-star };

rp ∈ Z
|U|+|W |+|E |
+ and sp ∈ Z

|U|+|A|
+ : the characteristic vectors of the

ring R and of the star S of a ring-star p = (R ,S);

ue = 1, if e ∈ E \ δ(0), otherwise, ue = 2;

cp =
∑

e∈R(p) ce +
∑

e∈S(p) we : the cost of a ring-star p.
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Our Proposal Set Covering Model

Set Covering Formulation

(F1) min
∑

p∈P

cpλp

subject to
∑

p∈P

λp = m (8)

∑

p∈P

(rp
i + s

p
i )λp ≥ 1, ∀i ∈ U (9)

∑

p∈P

∑

e∈δi

rp
e λp ≤ 1, ∀i ∈ V \ {0} (10)

∑

p∈P

rp
e λp ≤ ue , ∀e ∈ E (11)

∑

p∈P

s
p
ij λp ≤ 1, ∀ij ∈ A (12)

λp ∈ {0, 1}, ∀p ∈ P (13)
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Our Proposal Set Covering Model

The Pricing Problem

Consider

π, µ, ν, β and α: dual variables corresponding to constraints (8), (9),
(10), (11) and (12);

c̃e = ce − βe ;

w̃ij = wij − αij − µi ;

p̃i = µi ;

cp =
∑

e∈E

c̃er
p
e +

∑

ij∈A

w̃ijs
p
ij −

∑

i∈U

p̃ir
p
i + π.

The pricing problem consists of minp∈P cp.
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Our Proposal Set Covering Model

Pricing Problem

Pricing Problem is NP-hard

The profitable tour problem can be reduced in polinomial time to the
pricing problem (W = ∅,Q = |V |, w̃ij =

∑

e∈E c̃e).
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Our Proposal Set Covering Model

Pricing Problem

Pricing Problem is NP-hard

The profitable tour problem can be reduced in polinomial time to the
pricing problem (W = ∅,Q = |V |, w̃ij =

∑

e∈E c̃e).

Alternative

Relax the pricing problem to allow vertex repetition inside a ring-star!
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Figure: An example of a relaxed ring-star.
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Our Proposal Set Covering Model

Relaxed Pricing Problem

We analyzed three relaxations:

BPr: any repetition are allowed;
BPkc: k-cycles are prohibited inside the component R of a ring-star
(R ,S);

k-cycles are cycles with length less than or equal to k ;
BPks: k-stream are prohibited inside a ring-star (R ,S);

A stream is a string of vertices in V [R ] and V [S ] of a ring-star (R , S)
with a fixed order;
k-streams are cycle with length less than or equal to k inside a stream;
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BPkc: k-cycles are prohibited inside the component R of a ring-star
(R ,S);

k-cycles are cycles with length less than or equal to k ;
BPks: k-stream are prohibited inside a ring-star (R ,S);

A stream is a string of vertices in V [R ] and V [S ] of a ring-star (R , S)
with a fixed order;
k-streams are cycle with length less than or equal to k inside a stream;
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Figure: An example of a 2-cycle and a stream acdbefab.
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Our Proposal Set Covering Model

Relaxed Pricing Problem

We analyzed three relaxations:

BPr: any repetition are allowed;

BPkc: k-cycles are prohibited inside the component R of a ring-star
(R ,S);

k-cycles are cycles with length less than or equal to k ;

BPks: k-stream are prohibited inside a ring-star (R ,S);

A stream is a string of vertices in V [R ] and V [S ] of a ring-star (R , S)
with a fixed order;
k-streams are cycle with length less than or equal to k inside a stream;

All these relaxations can be solved in pseudo-polynomial time using
dynamic programming.
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Our Proposal Set Covering Model

Solving the Relaxed Pricing Problem
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c a

Figure: An example of a (q, j)-walk-star.

F (j , q): minimum weight of a (q, j)-walk-star.
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Our Proposal Set Covering Model

Solving the Relaxed Pricing Problem

e

0

d

b
0

ca b

c a

Figure: An example of a (q, j)-walk-star.

F (j , q): minimum weight of a (q, j)-walk-star.

Idea

The minimum weight relaxed ring-star can be found by:

min
j∈V ′,q∈[1..Q]

F (j , q) + c̃j0
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Our Proposal Set Covering Model

Computing F (j , q)

0

k

j

w̃kj

p(j, q − dk)

(a) adding a connection
arc

0 i j
c̃ijp(i, q − dj)

(b) adding an edge

0 i j

k

w̃kj

c̃ijp(i, q − dk)

(c) adding a connection arc and
an edge
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Our Proposal Set Covering Model

Computing F (j , q)

F (j , q) = min



















min
k∈U:j∈Ck

F (j , q − 1) + w̃kj ,






min
i∈V ,i 6=j

F (i , q − 1) + c̃ij + p̃j , if j ∈ U

min
i∈V ,i 6=j ,k∈U:j∈Ck

F (i , q − 1) + w̃kj + c̃ij , if j ∈ W .

where F (0, 0) = 0, F (j , 0) = ∞ and F (0, q > 0) = ∞.
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


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
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





min
i∈V ,i 6=j

F (i , q − 1) + c̃ij + p̃j , if j ∈ U

min
i∈V ,i 6=j ,k∈U:j∈Ck

F (i , q − 1) + w̃kj + c̃ij , if j ∈ W .

where F (0, 0) = 0, F (j , 0) = ∞ and F (0, q > 0) = ∞.

Complexity

The computation of F (j , q) is O(|V |), so, the relaxed pricing problem can
be solved in O(|V |2Q).
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Our Proposal Set Covering Model

Solving the Relaxed Pricing Problem with k-cycle and

k-stream Elimination

Similar idea proposed by Irnich and Villeneuve to solve the
non-elementary shortest path with resource constraint;

They used label setting algorithm to enumerate all resource feasible
paths;

Some dominance rules are used to remove resource feasible paths that
are non-useful (paths that can not be extended to obtain an optimal
solution);

They proposed an algorithm, called Intersection Algorithm, to
recognize useful paths.
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Our Proposal Set Covering Model

Digraph of Intersection

Figure: Part of the intersection digraph for k = 3.

We proposed to use a deterministic finite automaton to recognize an useful path.
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Computational Results

Computational Environment

Pentium IV 2.66GHz,900MB of RAM;

language C, XPRESS optimizer library a.

aXPRESS is a product of Dash Corporation.

Implementation

We have implemented three branch-and-price algorithm, one for each
kind of relaxation.

The BC code is an implementation for the branch-and-cut algorithm
proposed by Baldacci et al.
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Computational Results

Branch-and-Price

Initial basis

We introduced artificial variables with huge costs whose columns form an
identity matrix.
To accelerate convergence, we also included a set of columns
corresponding to ring-stars that are part of a feasible solution generated by
a näıve heuristic inspired in Mauttone et al.
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identity matrix.
To accelerate convergence, we also included a set of columns
corresponding to ring-stars that are part of a feasible solution generated by
a näıve heuristic inspired in Mauttone et al.

Branching rule

∑

e∈δ(S)

∑

p∈P

rp
e λp ≥ 2

⌈

|{i ∈ U : Ci ⊆ S}|

Q

⌉

,S ⊆ V \ {0},S 6= ∅.
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Computational Results

Branch-and-Price

Initial basis

We introduced artificial variables with huge costs whose columns form an
identity matrix.
To accelerate convergence, we also included a set of columns
corresponding to ring-stars that are part of a feasible solution generated by
a näıve heuristic inspired in Mauttone et al.

Branching rule

∑

e∈δ(S)

∑

p∈P

rp
e λp ≥ 2

⌈

|{i ∈ U : Ci ⊆ S}|

Q

⌉

,S ⊆ V \ {0},S 6= ∅.

Node selection

The classical best-bound strategy is used to select the next node to be
explored during the enumeration procedure.
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Computational Results

Bounding

No heuristics were developed to compute feasible solutions during the
enumeration. Primal bounds must correspond to IP solutions.

Dual bounds are directly obtained from the linear relaxations or from
Lasdon’s formula.
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Computational Results

Bounding

No heuristics were developed to compute feasible solutions during the
enumeration. Primal bounds must correspond to IP solutions.

Dual bounds are directly obtained from the linear relaxations or from
Lasdon’s formula.

Pricing

all columns with negative reduced cost associated to non relaxed
ring-stars;

for each j ∈ V \ {0}, the most negative reduced cost column related
to the minimum weight relaxed (q, j)-walk-star.
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Computational Results

Table: Comparison between BPr, BP3c, BP3s, BP3sA and BC codes.

BPr × BP3c BP3c × BP3s

instance gap time opt gap time opt

eil40.tsp 1.0 2.8 2/8 * 1.6 1/9
eil51.tsp 1.0 1.4 0/2 0.4 19.9 4/6
eil64.tsp 1.4 * 0/0 1.3 * 4/4
eil76.tsp 0.6 * 1/1 2.5 48.7 0/1

BP3s × BP3sA BC × BP3sA

instance gap time opt gap time opt

eil40.tsp * 3.3 0/9 * 0.4 0/9
eil51.tsp 0.2 3.5 0/6 -0.6 0.6 0/6
eil64.tsp 0.1 2.3 0/4 0.1 0.4 0/4
eil76.tsp 0.2 2.4 0/1 11.8 * 1/1
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Computational Results

(a) nodes processed per instance (b) Pricing time per instance

Figure: Comparison between BP3s and BP3sA codes.
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Computational Results

(a) # instances solved faster (b) Speedup: instances solved by
both

Figure: Comparison between BP3sA and BC.
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Computational Results

(a) Percentage of increase in lower
bound at the root node

(b) Total of instances with best lower
bound at the root node

Figure: Lower bound comparative between BP3sA and BC.
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Computational Results

Preliminary Results for Branch-and-Cut-and-Price (BCP)

Table: Comparison between BP3sA, BC and BCP

BP3sA × BCP BC × BCP

instance gap time opt gap time opt

eil40.tsp * 1.7 0/9 * 2.6 0/9
eil51.tsp 0.9 1.8 1/7 0.0 0.8 0/7
eil64.tsp 0.2 2.2 0/4 0.1 2.5 0/4
eil76.tsp 0.1 1.0 0/1 0.2 * 1/1
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Computational Results

Preliminary Results for Branch-and-Cut-and-Price (BCP)

(a) # instances solved faster (b) Speedup: instances solved by
both

Figure: Comparison between BCP and BC.
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Computational Results

Preliminar Results for Branch-and-Cut-and-Price (BCP)

(a) Percentage of increase in lower
bound at the root node

(b) Total of instances with best lower
bound at the root node

Figure: Lower bound comparative between BCP and BC.
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Conclusions and Further Works

Conclusions

The more complex are the structures forbidden in the relaxation, the
larger is the number of instances that are solved to optimality;
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Conclusions

The more complex are the structures forbidden in the relaxation, the
larger is the number of instances that are solved to optimality;

more stringent relaxations lead to higher speedups in running times
(early pruning);

Using deterministic finite automaton was important to reduce the
pricing time;

Set covering model presented better dual bounds;

The BP3sA and BC do not dominate each other and some instances
are better suited for one or the other algorithm.
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Conclusions and Further Works

Further Works

Introduce primal heuristic (to improve primal dual);

Remove columns during branch-and-price (to reduce LP time);

Add strong-branching (to obtain better dual bound early);

Implement a branch-and-cut-and-price (on going).
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The End

Questions?
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