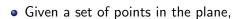
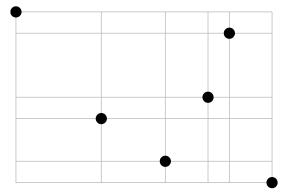
A Simple 3-Approximation of Minimum Manhattan Networks

Bernhard Fuchs and Anna Schulze

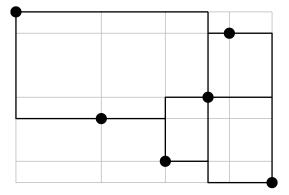
TU Braunschweig and Uni Köln

CTW 2008

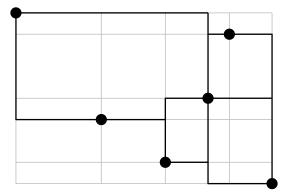




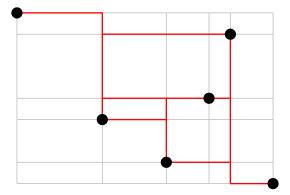
- Given a set of points in the plane,
- a Manhattan network contains all pairwise shortest rectilinear paths.



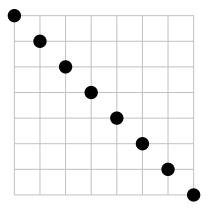
- Given a set of points in the plane,
- a Manhattan network contains all pairwise shortest rectilinear paths.



- Given a set of points in the plane,
- a Manhattan network contains all pairwise shortest rectilinear paths.
- Task: Find a Minimum Manhattan Network (MMN)!

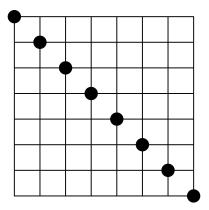


- Given a set of points in the plane,
- a Manhattan network contains all pairwise shortest rectilinear paths.
- Task: Find a Minimum Manhattan Network (MMN)!



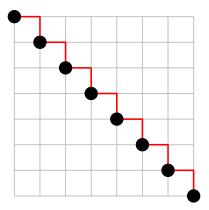
• First heuristic: Take the whole Hannan grid, length $\Omega(n^2)$.

CTW 2008 3 / 14

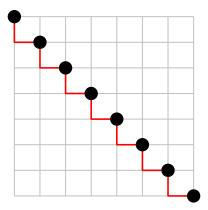


• First heuristic: Take the whole Hannan grid, length $\Omega(n^2)$.

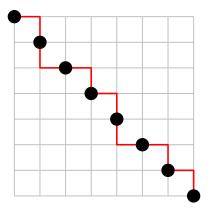
CTW 2008 3 / 14



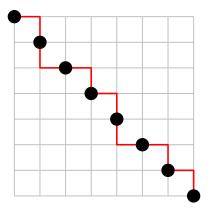
First heuristic: Take the whole Hannan grid, length Ω(n²).
MMN has length O(n).



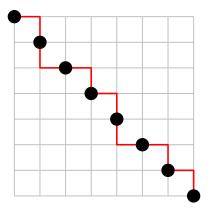
First heuristic: Take the whole Hannan grid, length Ω(n²).
MMN has length O(n).



First heuristic: Take the whole Hannan grid, length Ω(n²).
MMN has length O(n).

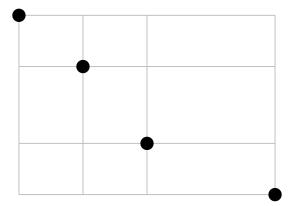


- First heuristic: Take the whole Hannan grid, length $\Omega(n^2)$.
- MMN has length O(n).
- No constant factor approximation.

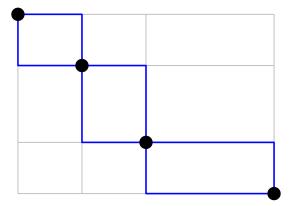


- First heuristic: Take the whole Hannan grid, length $\Omega(n^2)$.
- MMN has length O(n).
- No constant factor approximation.
- Next idea: Just insert critical rectangles!

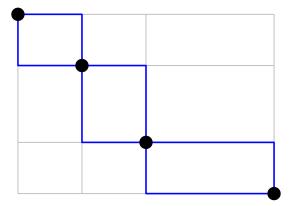
B. Fuchs (TU Braunschweig)



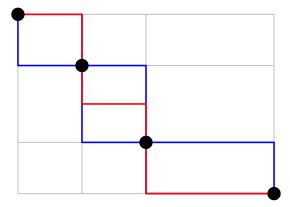
• A critical rectangle contains *exactly* the two points spanning it.



• A critical rectangle contains *exactly* the two points spanning it.

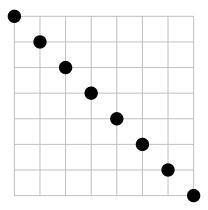


- A critical rectangle contains *exactly* the two points spanning it.
- It obviously suffices to consider critical rectangles.



- A critical rectangle contains *exactly* the two points spanning it.
- It obviously suffices to consider critical rectangles.
- <u>Note</u>: Each Manhattan network has to cross such a rectangle!

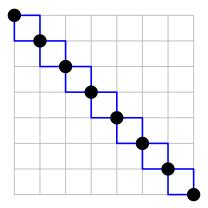
B. Fuchs (TU Braunschweig)



- A critical rectangle contains *exactly* the two points spanning it.
- It obviously suffices to consider critical rectangles.
- <u>Note</u>: Each Manhattan network has to cross such a rectangle!

B. Fuchs (TU Braunschweig)

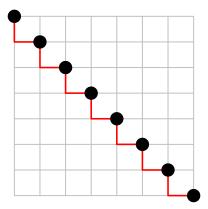
< m



- A critical rectangle contains *exactly* the two points spanning it.
- It obviously suffices to consider critical rectangles.
- <u>Note</u>: Each Manhattan network has to cross such a rectangle!

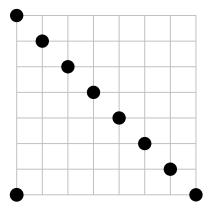
B. Fuchs (TU Braunschweig)

< 口 > < 同

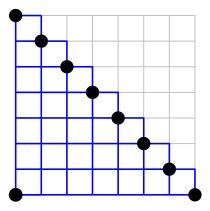


- A critical rectangle contains *exactly* the two points spanning it.
- It obviously suffices to consider critical rectangles.
- <u>Note</u>: Each Manhattan network has to cross such a rectangle!

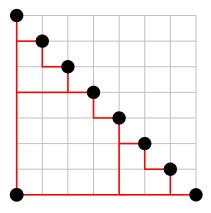
B. Fuchs (TU Braunschweig)



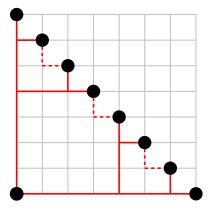
• Add one more point.



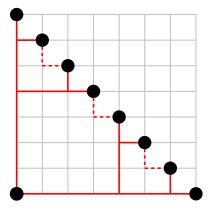
- Add one more point.
- Many more critical rectangles, total length $\Omega(n^2)$.



- Add one more point.
- Many more critical rectangles, total length $\Omega(n^2)$.
- MMN is basically binary tree, length $O(n \log n)$.



- Add one more point.
- Many more critical rectangles, total length $\Omega(n^2)$.
- MMN is basically binary tree, length $O(n \log n)$.



- Add one more point.
- Many more critical rectangles, total length $\Omega(n^2)$.
- MMN is basically binary tree, length $O(n \log n)$.
- Still no constant factor approximation.

B. Fuchs (TU Braunschweig)

• Complexity of MMN: Still unknown!

< 一型

- Complexity of MMN: Still unknown!
- Approximation algorithms so far:

- Complexity of MMN: Still unknown!
- Approximation algorithms so far:

- Complexity of MMN: Still unknown!
- Approximation algorithms so far:

[Gudmunsson et al.]	99	8-approx.	in $O(n^3)$
		4-approx.	in $O(n \log n)$
[Kato et al.]	02	2-approx.	in $O(n^3)$

- Complexity of MMN: Still unknown!
- Approximation algorithms so far:

[Gudmunsson et al.]	99	8-approx.	in $O(n^3)$
		4-approx.	in $O(n \log n)$
[Kato et al.]	02	2-approx.	in $O(n^3)$

incomplete

- Complexity of MMN: Still unknown!
- Approximation algorithms so far:

99	8-approx.	in $O(n^3)$	
	4-approx.	in $O(n \log n)$	
02	2-approx.	in $O(n^3)$	i
04	3-approx.	in $O(n \log n)$	
	02	 99 8-approx. 4-approx. 02 2-approx. 04 3-approx. 	4-approx. in $O(n \log n)$ 02 2-approx. in $O(n^3)$

incomplete

- Complexity of MMN: Still unknown!
- Approximation algorithms so far:

[Gudmunsson et al.]	99	8-approx.	in <i>O</i> (<i>n</i> ³)	
		4-approx.	in $O(n \log n)$	
[Kato et al.]	02	2-approx.	in $O(n^3)$	incomplete
[Benkert et al.]	04	3-approx.	in $O(n \log n)$	
[Chepoi et al.]	05	2-approx.	via LP-rounding	

- Complexity of MMN: Still unknown!
- Approximation algorithms so far:

[Gudmunsson et al.]	99	8-approx.	in $O(n^3)$	
		4-approx.	in $O(n \log n)$	
[Kato et al.]	02	2-approx.	in $O(n^3)$	incomplete
[Benkert et al.]	04	3-approx.	in $O(n \log n)$	
[Chepoi et al.]	05	2-approx.	via LP-rounding	
[Seibert, Unger]	05	1.5-approx.	in $O(n^3)$	

- Complexity of MMN: Still unknown!
- Approximation algorithms so far:

[Gudmunsson et al.]	99	8-approx.	in $O(n^3)$	
		4-approx.	in <i>O</i> (<i>n</i> log <i>n</i>)	
[Kato et al.]	02	2-approx.	in $O(n^3)$	incomplete
[Benkert et al.]	04	3-approx.	in <i>O</i> (<i>n</i> log <i>n</i>)	
[Chepoi et al.]	05	2-approx.	via LP-rounding	
[Seibert, Unger]	05	1.5-approx.	in $O(n^3)$	incomplete

- Complexity of MMN: Still unknown!
- Approximation algorithms so far:

in $O(n^3)$ [Gudmunsson et al.] 99 8-approx. in $O(n \log n)$ 4-approx. [Kato et al.] 2-approx. incomplete in $O(n \log n)$ [Benkert et al.] 04 3-approx. [Chepoi et al.] via LP-rounding 05 2-approx. in $O(n^3)$ Seibert, Unger] 05 1.5-approx. incomplete in $O(n \log n)$ [Nouioua] 2-approx.

- Complexity of MMN: Still unknown!
- Approximation algorithms so far:

in $O(n^3)$ [Gudmunsson et al.] 99 8-approx. in $O(n \log n)$ 4-approx. [Kato et al.] 2-approx. incomplete in $O(n \log n)$ [Benkert et al.] 04 3-approx. [Chepoi et al.] 05 via LP-rounding 2-approx. Seibert, Unger] 05 1.5-approx. incomplete [Nouioua] in $O(n \log n)$ ____ 2-approx. unpublished

- Complexity of MMN: Still unknown!
- Approximation algorithms so far:

in $O(n^3)$ [Gudmunsson et al.] 99 8-approx. in $O(n \log n)$ 4-approx. [Kato et al.] 2-approx. incomplete in $O(n \log n)$ [Benkert et al.] 04 3-approx. [Chepoi et al.] via LP-rounding 05 2-approx. Seibert, Unger] 05 1.5-approx. incomplete [Nouioua] in $O(n \log n)$ ____ 2-approx. unpublished

- Complexity of MMN: Still unknown!
- Approximation algorithms so far:

[Gudmunsson et al.]	99	8-approx.	in $O(n^3)$	
		4-approx.	in <i>O</i> (<i>n</i> log <i>n</i>)	
[Kato et al.]	02	2-approx.	in $O(n^3)$	incomplete
[Benkert et al.]	04	3-approx.	in $O(n \log n)$	
[Chepoi et al.]	05	2-approx.	via LP-rounding	
[Seibert, Unger]	05	1.5-approx.	in $O(n^3)$	incomplete
[Nouioua]		2-approx.	in $O(n \log n)$	unpublished

• Our algorithm: A new 3-approximation in $O(n \log n)$.

- Complexity of MMN: Still unknown!
- Approximation algorithms so far:

[Gudmunsson et al.]	99	8-approx.	in $O(n^3)$	
		4-approx.	in <i>O</i> (<i>n</i> log <i>n</i>)	
[Kato et al.]	02	2-approx.	in $O(n^3)$	incomplete
[Benkert et al.]	04	3-approx.	in $O(n \log n)$	
[Chepoi et al.]	05	2-approx.	via LP-rounding	
[Seibert, Unger]	05	1.5-approx.	in $O(n^3)$	incomplete
[Nouioua]		2-approx.	in $O(n \log n)$	unpublished

- Our algorithm: A new 3-approximation in $O(n \log n)$.
- Much simpler than [Benkert et al.], both algorithm and proof.

Our algorithm has two phases:

< A

.∃ >

Our algorithm has two phases:

Phase I

A horizontal and a vertical sweep adding line segments 'on-the-fly'.

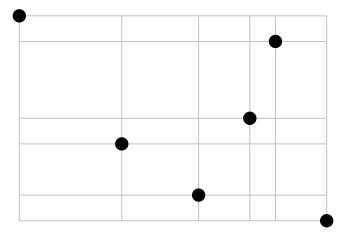
Our algorithm has two phases:

Phase I

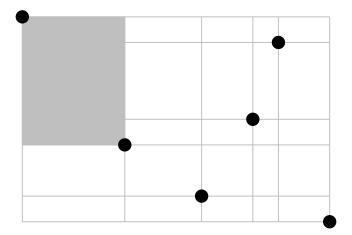
A horizontal and a vertical sweep adding line segments 'on-the-fly'.

Phase II

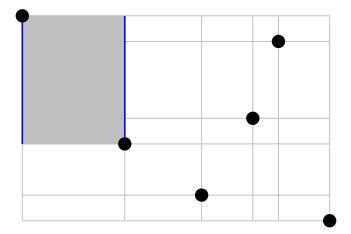
A standard 2-approximation algorithm inside so-called 'staircases'.



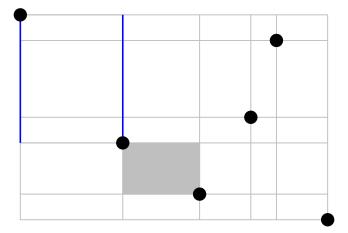
• Consider critical rectangles spanned by horizontal, or x-neighbors.



• Consider critical rectangles spanned by horizontal, or x-neighbors.

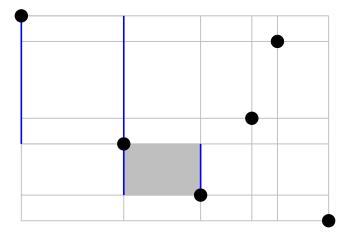


- Consider critical rectangles spanned by horizontal, or x-neighbors.
- Add vertical sides of rectangle.



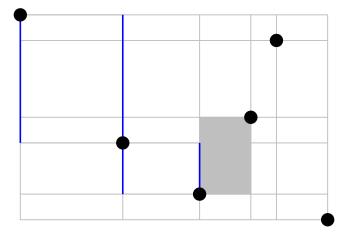
- Consider critical rectangles spanned by horizontal, or x-neighbors.
- Add vertical sides of rectangle.

B. Fuchs (TU Braunschweig)



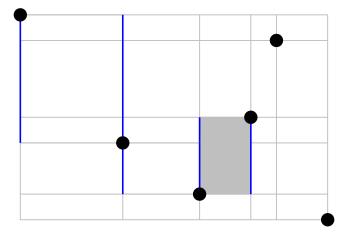
- Consider critical rectangles spanned by horizontal, or x-neighbors.
- Add vertical sides of rectangle.

B. Fuchs (TU Braunschweig)



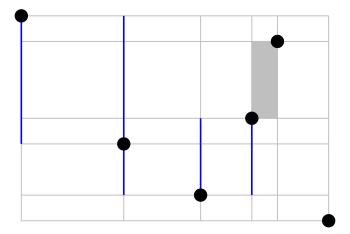
- Consider critical rectangles spanned by horizontal, or x-neighbors.
- Add vertical sides of rectangle.

B. Fuchs (TU Braunschweig)



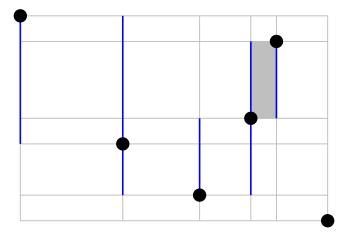
- Consider critical rectangles spanned by horizontal, or x-neighbors.
- Add vertical sides of rectangle.

B. Fuchs (TU Braunschweig)



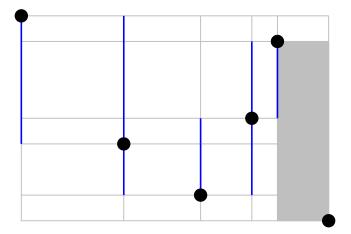
- Consider critical rectangles spanned by horizontal, or x-neighbors.
- Add vertical sides of rectangle.

B. Fuchs (TU Braunschweig)



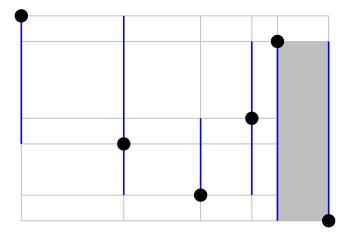
- Consider critical rectangles spanned by horizontal, or x-neighbors.
- Add vertical sides of rectangle.

B. Fuchs (TU Braunschweig)



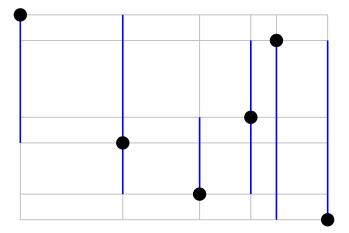
- Consider critical rectangles spanned by horizontal, or x-neighbors.
- Add vertical sides of rectangle.

B. Fuchs (TU Braunschweig)



- Consider critical rectangles spanned by horizontal, or x-neighbors.
- Add vertical sides of rectangle.
- Iterate through rectangles from left to right.

B. Fuchs (TU Braunschweig)

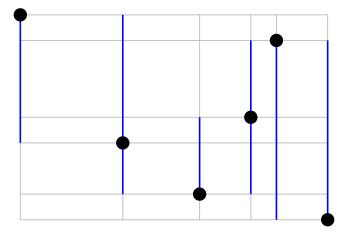


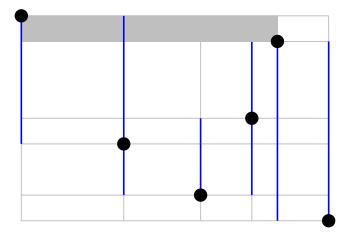
- Consider critical rectangles spanned by horizontal, or x-neighbors.
- Add vertical sides of rectangle.

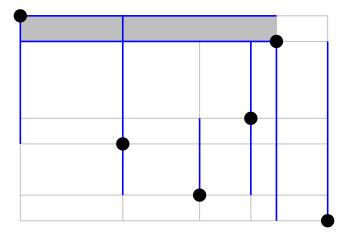
B. Fuchs (TU Braunschweig)

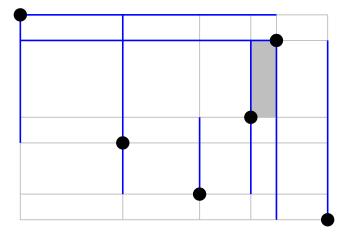
Simple 3-Approximation of MMNs

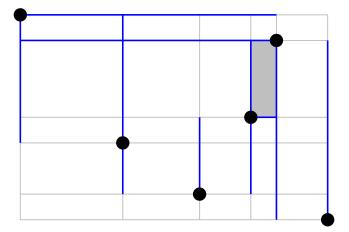
CTW 2008 8 / 14

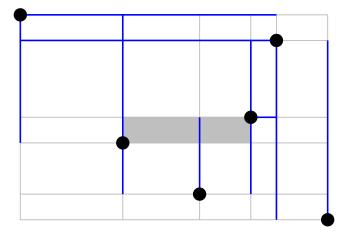


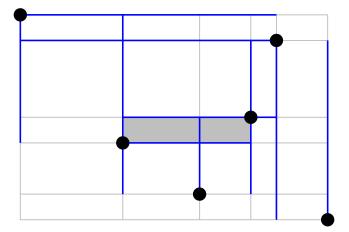


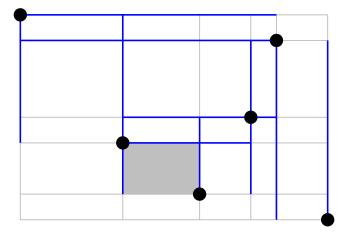


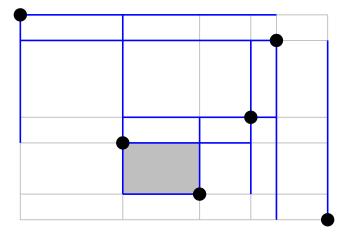


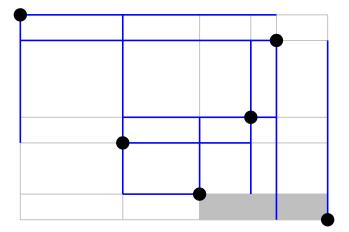


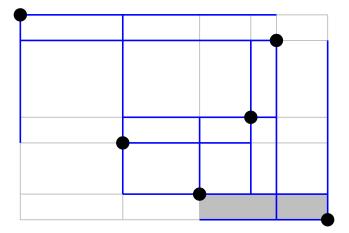


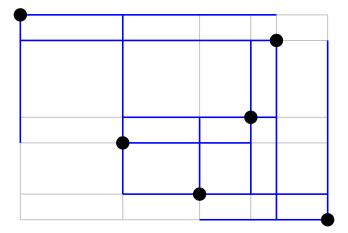


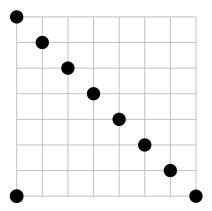


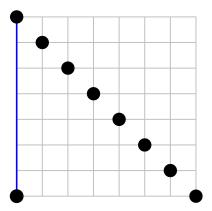


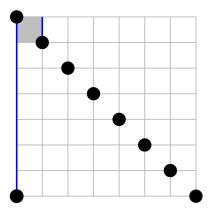


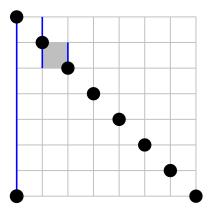


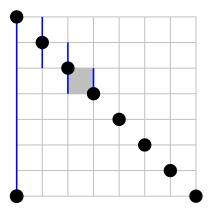


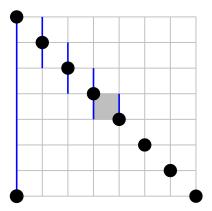


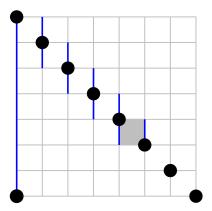


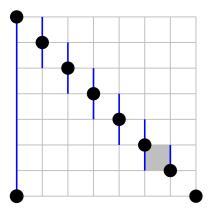


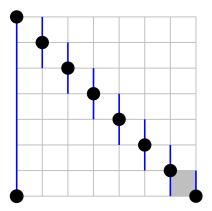




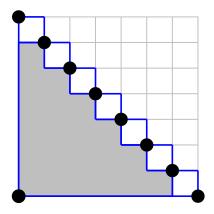




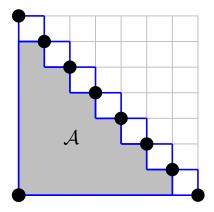




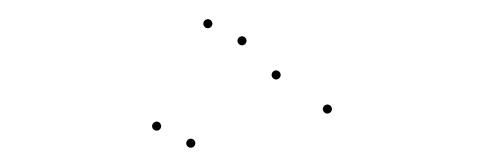




- In general, no Manhattan network after sweep.
- So-called staircases still empty.



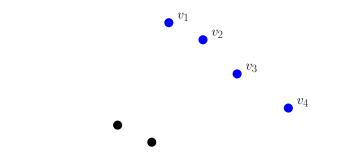
- In general, no Manhattan network after sweep.
- So-called staircases still empty.
- Call *A* the *staircase area*.



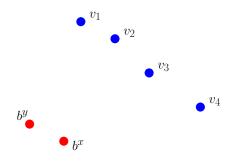
B. Fuchs (TU Braunschweig)

Simple 3-Approximation of MMNs

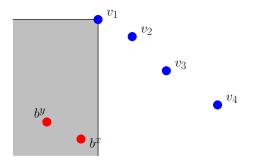
CTW 2008 10 / 14



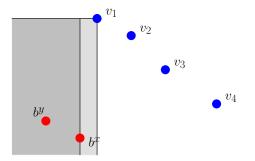
• k sequence points (v_1, \ldots, v_k) .



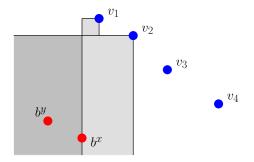
- k sequence points (v_1, \ldots, v_k) .
- Two base points b^x , b^y . ($b^x = b^y$ possible.)



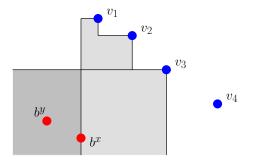
- k sequence points (v_1, \ldots, v_k) .
- Two base points b^x , b^y . ($b^x = b^y$ possible.)
- For all v_i , b^x is the x-neighbor of v_i in the third quadrant of v_i .



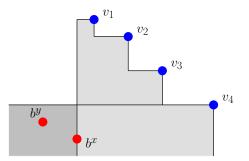
- k sequence points (v_1, \ldots, v_k) .
- Two base points b^x, b^y . ($b^x = b^y$ possible.)
- For all v_i , b^x is the x-neighbor of v_i in the third quadrant of v_i .



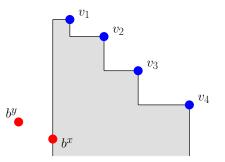
- k sequence points (v_1, \ldots, v_k) .
- Two base points b^x, b^y . ($b^x = b^y$ possible.)
- For all v_i , b^x is the x-neighbor of v_i in the third quadrant of v_i .



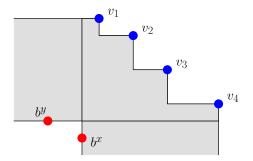
- k sequence points (v_1, \ldots, v_k) .
- Two base points b^x , b^y . ($b^x = b^y$ possible.)
- For all v_i , b^x is the x-neighbor of v_i in the third quadrant of v_i .



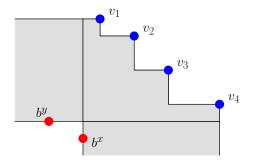
- k sequence points (v_1, \ldots, v_k) .
- Two base points b^x , b^y . ($b^x = b^y$ possible.)
- For all v_i , b^x is the x-neighbor of v_i in the third quadrant of v_i .



- k sequence points (v_1, \ldots, v_k) .
- Two base points b^x , b^y . ($b^x = b^y$ possible.)
- For all v_i , b^x is the x-neighbor of v_i in the third quadrant of v_i .



- k sequence points (v_1, \ldots, v_k) .
- Two base points b^x, b^y . ($b^x = b^y$ possible.)
- For all v_i , b^x is the x-neighbor of v_i in the third quadrant of v_i .
- For all v_i , b^y is the y-neighbor of v_i in the third quadrant of v_i .



Observation

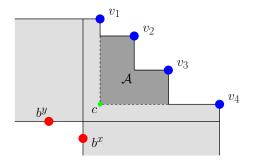
• The grey shaded areas contain no points.

B. Fuchs (TU Braunschweig)

Simple 3-Approximation of MMNs

▲ ■ ▶ ■ • つへで CTW 2008 10 / 14

I ≡ ►

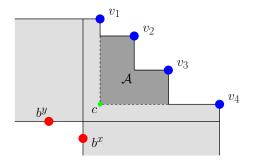


Observation

- The grey shaded areas contain no points.
- No sweep lines lie inside the staircase area \mathcal{A} .

Image: A matrix

3 ×

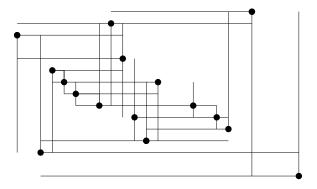


Observation

- The grey shaded areas contain no points.
- No sweep lines lie inside the staircase area \mathcal{A} .
- \Rightarrow Points v_3, \ldots, v_{k-2} need to be connected to *cross point c*.

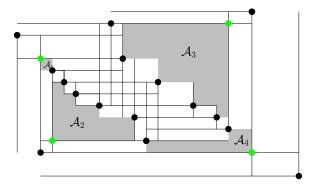
Image: Image:

- ∢ ∃ ▶



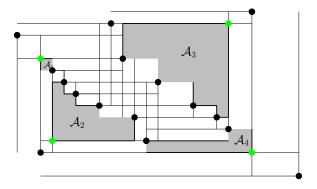
Lemma

• Except for staircase areas, all critical pairs of points are connected via shortest paths after the sweep.



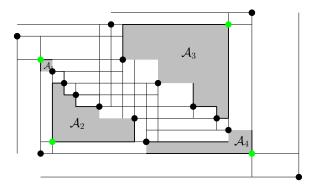
Lemma

• Except for staircase areas, all critical pairs of points are connected via shortest paths after the sweep.



Lemma

- Except for staircase areas, all critical pairs of points are connected via shortest paths after the sweep.
- The staircase areas A_i are bordered by as many line segments from the sweep step as possible,



Lemma

- Except for staircase areas, all critical pairs of points are connected via shortest paths after the sweep.
- The staircase areas A_i are bordered by as many line segments from the sweep step as possible, and are as small as possible.

B. Fuchs (TU Braunschweig)

Simple 3-Approximation of MMNs

Consider the approximation seperately:

- inside staircases ($\mathcal{A} = \bigcup_i \mathcal{A}_i$, Phase II), and
- outside staircases ($\overline{\mathcal{A}} := \mathbb{R}^2 \setminus \mathcal{A}$, Phase I).

Consider the approximation seperately:

- inside staircases ($\mathcal{A} = \bigcup_i \mathcal{A}_i$, Phase II), and
- outside staircases ($\overline{\mathcal{A}} := \mathbb{R}^2 \setminus \mathcal{A}$, Phase I).

Phase I (Area \overline{A})

• By construction, one of the two lines inserted by the sweep is justified.

Consider the approximation seperately:

- inside staircases ($\mathcal{A} = \bigcup_i \mathcal{A}_i$, Phase II), and
- outside staircases ($\overline{\mathcal{A}} := \mathbb{R}^2 \setminus \mathcal{A}$, Phase I).

Phase I (Area \overline{A})

• By construction, one of the two lines inserted by the sweep is justified.

 \Rightarrow 2-Approximation.

Consider the approximation seperately:

- inside staircases ($\mathcal{A} = \bigcup_i \mathcal{A}_i$, Phase II), and
- outside staircases ($\overline{\mathcal{A}} := \mathbb{R}^2 \setminus \mathcal{A}$, Phase I).

Phase I (Area \overline{A})

• By construction, one of the two lines inserted by the sweep is justified.

Consider the approximation seperately:

- inside staircases ($\mathcal{A} = \bigcup_i \mathcal{A}_i$, Phase II), and
- outside staircases ($\overline{\mathcal{A}} := \mathbb{R}^2 \setminus \mathcal{A}$, Phase I).

Phase I (Area \overline{A})

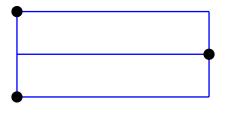
• By construction, one of the two lines inserted by the sweep is justified.

Consider the approximation seperately:

- inside staircases ($\mathcal{A} = \bigcup_i \mathcal{A}_i$, Phase II), and
- outside staircases ($\overline{\mathcal{A}} := \mathbb{R}^2 \setminus \mathcal{A}$, Phase I).

Phase I (Area $\overline{\mathcal{A}}$)

• By construction, one of the two lines inserted by the sweep is justified.

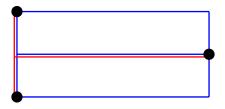


Consider the approximation seperately:

- inside staircases ($\mathcal{A} = \bigcup_i \mathcal{A}_i$, Phase II), and
- outside staircases ($\overline{\mathcal{A}} := \mathbb{R}^2 \setminus \mathcal{A}$, Phase I).

Phase I (Area $\overline{\mathcal{A}}$)

• By construction, one of the two lines inserted by the sweep is justified.



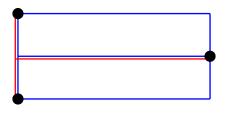
Consider the approximation seperately:

- inside staircases ($\mathcal{A} = \bigcup_i \mathcal{A}_i$, Phase II), and
- outside staircases ($\overline{\mathcal{A}} := \mathbb{R}^2 \setminus \mathcal{A}$, Phase I).

Phase I (Area $\overline{\mathcal{A}}$)

• By construction, one of the two lines inserted by the sweep is justified.

\Rightarrow 3-Approximation. \checkmark



Phase II (Area \overline{A})

• Use standard 2-approximation for staircases.

Phase II (Area \overline{A})

• Use standard 2-approximation for staircases.

• Let \mathcal{A}^* be optimal staircase areas. Note: $\mathcal{A} \subseteq \mathcal{A}^*$.

Phase II (Area \overline{A})

• Use standard 2-approximation for staircases.

- Let \mathcal{A}^* be optimal staircase areas. Note: $\mathcal{A} \subseteq \mathcal{A}^*$.
- Let $alg = alg_{\mathcal{A}} + alg_{\overline{\mathcal{A}}}$ and $opt = opt_{\mathcal{A}^*} + opt_{\overline{\mathcal{A}^*}}$.

Phase II (Area \overline{A})

Use standard 2-approximation for staircases.

- Let \mathcal{A}^* be optimal staircase areas. Note: $\mathcal{A} \subseteq \mathcal{A}^*$.
- Let $alg = alg_{\mathcal{A}} + alg_{\overline{\mathcal{A}}}$ and $opt = opt_{\mathcal{A}^*} + opt_{\overline{\mathcal{A}^*}}$.
- Phase I:

$$alg_{\overline{\mathcal{A}}} \leq 3 \cdot opt_{\overline{\mathcal{A}^*}}.$$

Phase II (Area \overline{A})

Use standard 2-approximation for staircases.

- Let \mathcal{A}^* be optimal staircase areas. Note: $\mathcal{A} \subseteq \mathcal{A}^*$.
- Let $alg = alg_{\mathcal{A}} + alg_{\overline{\mathcal{A}}}$ and $opt = opt_{\mathcal{A}^*} + opt_{\overline{\mathcal{A}^*}}$.
- Phase I:

$$\textit{alg}_{\overline{\mathcal{A}}} \leq 3 \cdot \textit{opt}_{\overline{\mathcal{A}^*}}.$$

Phase II:

$$\mathsf{alg}_\mathcal{A} \leq 2 \cdot \mathsf{opt}_\mathcal{A} \leq 2 \cdot \mathsf{opt}_{\mathcal{A}^*}.$$

Phase II (Area \overline{A})

Use standard 2-approximation for staircases.

- Let \mathcal{A}^* be optimal staircase areas. Note: $\mathcal{A} \subseteq \mathcal{A}^*$.
- Let $alg = alg_{\mathcal{A}} + alg_{\overline{\mathcal{A}}}$ and $opt = opt_{\mathcal{A}^*} + opt_{\overline{\mathcal{A}^*}}$.
- Phase I:

$$alg_{\overline{\mathcal{A}}} \leq 3 \cdot opt_{\overline{\mathcal{A}^*}}.$$

Phase II:

$$\mathsf{alg}_{\mathcal{A}} \leq 2 \cdot \mathsf{opt}_{\mathcal{A}} \leq 2 \cdot \mathsf{opt}_{\mathcal{A}^*}.$$

• Altogether:

$$alg = alg_{\mathcal{A}} + alg_{\overline{\mathcal{A}}} \leq 2 \cdot opt_{\mathcal{A}^*} + 3 \cdot opt_{\overline{\mathcal{A}^*}} \leq 3 \cdot opt.$$

Future work:

Future work:

• Design better approximation algorithms.

Future work:

- Design better approximation algorithms.
- Design PTAS.

.∃ >

Future work:

- Design better approximation algorithms.
- Design PTAS.
- Design efficient optimal algorithm or prove NP-hardness!

Future work:

- Design better approximation algorithms.
- Design PTAS.
- Design efficient optimal algorithm or prove NP-hardness!

Thank you!