
Classbased Detailed Routing in VLSI Design

C. Schulte, T. Nieberg

Research Institute for Discrete Mathematics
University of Bonn

CTW 2008

Overview of the Talk

I Introduction to VLSI Routing

I Challenges of the new 65nm Technology

I Offgrid Pinaccess

I Equivalence Classes of Circuits

I First Experimental Results

Introduction to VLSI Routing

I Chip: Realization of a large boolean function.
Consists of many circuits implementing simple boolean
functions (and, or, xor, . . .).

I Circuits contain pins for I/O that have to be connected by
wires.

I First stage of physical VLSI design: Placement of all circuits
of the chip on the chiparea.

I We have a netlist which partitions the set of all pins into nets.

I Routing task: Connect the pins of each net by wires.
I.e. for each net find a Steiner tree containing its pins which is
disjoint from all other nets.

I Traditionally solved on an incomplete 3-dimensional grid
graph obtained by removing space already occupied by circuits
and power supply.

Introduction to VLSI Routing

Feasible Routing:

I Many errors have to be avoided such as minimum distance
violations, samenet errors,. . .

I There are so called ground rules which determine how a
feasible routing looks like.

Optimization Goals:

I There are different optimization goals to be considered:
Minimizing netlength, power consumption, production yield...

Problem:

I Included Steiner tree packing problem is NP-hard.

I Practical instances are huge:

I Over 5 million nets with a total of over 20 million pins.
I Routing grid with over 100 billion vertices.
I Up to 1,000m total wirelength needed.

Inroduction to VLSI Routing: Chip Example

Inroduction to VLSI Routing: BonnRoute

Practical solution implemented in our routing tool BonnRoute:

I Build Steiner trees by successively searching shortest paths
between different connected components of each net.

I Determine smaller searchspaces for the path searches of each
net in a prior global routing step.

I Use of a sophisticated interval based Dijkstra algorithm with
future cost.

Challenges of the new 65nm Technology

I In former technologies all pins were nicely aligned to the
routing grid and could be accessed ongrid.

I In newer technologies ≤ 65nm: Pins are no longer guaranteed
to contain any ongrid location and may have to be accessed
offgrid.

I Additionally there are many new offgrid rules that restrict the
way of accessing pins even more.

I Using a finer routing grid would be completely intractable
because of the already huge instance sizes.

Offgrid Pinaccess

Idea:

I Still use the grid graph for larger distances and locally
construct simple, small paths from pins to ongrid locations.

I The endpoints of these offgrid paths are used as source/target
points for the ongrid pathsearch.

I After an ongrid path has been found, combine it with the two
corresponding offgrid paths.

Offgrid Pinaccess

I Simply connecting pins to the nearest ongrid point(s) is not
feasible because of ground rule restrictions:

. (a) (b) (c)

I (a): samenet minspace error, i.e. two shapes of the same net
are to close together.

I (b) + (c): short edge error, i.e. both of two adjacent edges
are shorter than a required minimum length.
Note: The error in (b) does not depend on the length of the north

wire.

Offgrid Pin Access: Path Computation Heuristic

I Determine feasible startingpoints for paths inside the pin
(pinshrink).

I Restriction to simple paths (at most 3 segments).

I Compute minimum run length of first path segment
depending on short edge and samenet minspace rules.

I Extend the path to the nearest ongrid location, also
respecting certain minimum lengths to avoid samenet errors
when the ongrid path search connects to the end of the path.

I Delete paths that are illegal because of minspace violations to
blockages or other nets.

Offgrid Pin Access: Pinshrink

I Basic Idea: Compute forbidden access regions with the
property that any wire connecting to the pin from a certain
direction causes a samenet error regardless of its length if it
ends within the region.

I Pinshrink depends on the direction in which the wire leaves
the pin. ⇒ Different shrinktypes.

I Shrunk pin: Substract forbidden access regions from the pin.

Offgrid Pin Access: Example

Offgrid Pin Access: Example

Offgrid Pin Access: Example

Offgrid Pin Access: Example

Offgrid Pin Access: Weaknesses

I Our simple path computation heuristic does not find all
feasible paths - especially in areas with high pin density.
⇒ More sophisticated approach needed.

I Problem: Millions of pins and for each pin offgrid paths are
needed multiple times.

I Fortunately many pins occur in equal configurations multiple
times on the chip.

Idea:

I Build classes of circuits for which we can use the same offgrid
paths.

I Precompute and save paths for each class, use table lookup
during routing.

Equivalence Classes of Circuits

I We call two circuits equivalent if they have
I the same internal structure (pins and blockages),
I the same outer blockages (for example power supply wires)

intersecting its area,
I the same relative offset to the routing grid,

up to translation and certain kinds of rotation and mirroring.

I ⇒ Computing offgrid paths for the pins of only one
representative of each class is sufficient.

I Paths illegal for one circuit are also illegal for all other circuits
of the same class.

Circuit Class Structure

inner blk and pins + outer blk = cktclass

Circuit Class Example

⇒

Classbased Offgrid Pinaccess

During initialization:

I Build circuit classes.

I Compute legal offgrid paths for each pin of one representative
circuit of each class and save them in a table.

I Assign these paths also to the equal pins of the other circuits
of the class.

Before every ongrid path search during routing:

I For each pin: Look up corresponding offgrid paths in constant
time.

I Delete offgrid paths that are illegal in the current local routing
situation.

I Do resulting ongrid routing.

First Results: Circuit Classes

ckts # classes #classes
#ckts (%)

chip1 16.791 2.711 16.1
chip2 77.688 14.937 19.2
chip3 90.225 8.629 9.6
chip4 159.835 13.807 8.6
chip5 521.919 13.032 2.5
chip6 649.107 19.652 3.0
chip7 3.439.610 31.711 0.9
chip8 5.234.931 37.842 0.7

First Results: Classbased Offgrid Pinaccess

chip #opa #opa classb. #opa classb.
#opa (%)

chip1 56455 11231 19.9
chip2 280623 64387 22.9
chip3 247552 33306 13.5
chip4 564035 62142 11.0
chip5 1863850 52940 2.8
chip6 2439338 129912 5.3

In addition a first complete routing run using class based pinaccess
showed:

I 67% of precomputed offgrid paths are still legal at the time
they are needed.

I Factor 1,4 overall runtime improvement compared to
on-the-fly method.

Conclusion and Future Work

Conclusion:

I Circuit classes allow significant speed-up of offgrid pinaccess.

I However, impossible to account for all situations
⇒ local on-the-fly offgrid pinaccess still needed.

Future Work:

I Exact algorithm to construct offgrid paths.

I Sophisticated choice of paths from lookup table.

{schulte, nieberg}@or.uni-bonn.de

