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Motivation 1/2

* This work is motivated by the requirements to design optimal,
large scale Personal Rapid Transit ( PRT ) networks.

* PRT is an innovative type of public transport, composed of fully
automated vehicles, running on a dedicated network of one-way
guide ways with off-line stations.
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Motivation 2/2

* A crucial issue is to improve the capacity limit of PRT systems
through an intelligent design of the network.

* This work deals with the definition of models in order to find an
optimized lay-out for a non-trivial PRT network

* Examples of real-world istances:




Problem Description

INPUT: OUTPUT:

* Undirected Graph G * An orientation D of G
* OD matrix

* ( Edge capacities )

AN

0
@® -station
OBJECTIVE:

e Minimize the sum of the Shortest-Path distances between the stations in D
( weighted on the OD matrix )



Model Description 1/2

A
set of the possible arcs arising from orientations of the edges

R
set of origin-destination pairs r=(s, ,¢.)with a demand d associated

[

e

lenght of the edge e

xl).]

variable equal to one if the edge|i, j]is oriented from node i to node j

r

yi,j
variable equal to one if the path joining origin s, to destination ¢, uses arc a=(i, j)€EA

fi

constant equal to 1 if i=s, and equal to —1 if i=¢,, equal to zero otherwise



Model Description 2/2

A
set of the possible arcs arising
from orientations of the edges

R
set of origin-destination pairs r=(s,,,)
with a demand d associated

[

e

lenght of the edge e

X,
L,J
variable equal to one if the edge{i, j}

is oriented from nodeito node j

r

y i,Jj
variable equal to one if the path
joining origin s, to destination ¢,

uses arc a=(i, j)EA

fi
constant equal to 1 if i=s
and equal to —1 if i=¢ ,

.

equal to zero otherwise

Minimize the weighted
total routing cost

//
min D, 2, d'l,y,

reER acA

Orientation constraints
for each edge

x; ;+tx,, =1, V(i j)EE, Flow contraints fo
each path
Doy =D y=f, Viev,Vr=(s,t)€ER,
aes (i) acs (i) Link constraints
between x and y
yi <x, ., V(i,j)€EA,VreRr CEITRE

constraints
NOTE: in this work
we will not take into
acocount the

capacity
constraints

(Y. dy <c, YacA)

rer

x,€{0,1}, YacA

y. =20, Ya€A,VreRr



Complexity 1/2

Proposition 1:

In case the capacity constraint is imposed testing if the problem has a feasible solution is NP-
complete.

Proof :

In case c, =1 for all e € E, the problem has a solution it and anly if G contains |R| edge-
disjointpaths, one from s, to t_for r € R. This is well known to be NP-complete.[]

Proposition 2:

In case the capacity constraint is not imposed, testing if the problem considered has a feasible
solution can be done in linear time.

Proof:

Whitout capacity constraint, the problem has a solution if and only if there exist an orientation
of the edges of G such that, for r € R, there exist a direct path from s to t, . Chung, Garey

and Tarjan Algorith ( 1985 ) proposed an algorithm that test in linear time whether there is
an orientation for a mixed graph that preserves strong connectivity and construct such and
orientation whenever possible.[]

Note that with this algorithm it is possible to obtain an easy-to-compute upper bound.



Complexity 2/2

Theorem :

The problem considered is NP-hard ( even in case the capacity constraint is not
imposed ) .

Proof:

Chvatal and Thomassen ( 1978 ) showed that given a graph G = (V, E), finding
an orientation of G of diameter 2 is NP-complete.

We can reduce an istance of this problem to our problem ( without the capacity
constraint ) mantaining the same graph GinwhichR:={(i,j):i,j € V,i
=]} ,d :=1andall edge lenghts | := 1.

Consider a generic orientation D of G. Foreach (i,j) € R,if (i, ) € E, one of
the two paths will have weight 1, whereas the other one will have weight at
least 2; if (i , j) € E, both paths will have weight at least 2. This proves that
the optimal value of our problem is at least 3 |[E| + 4 |[R\ E]|.

Moreover, the optimal value is exactly 3 |E| + 4 |[R\ E| if and only if there exists
an orientation of diameter 2. []



Solution approach:
Benders decomposition 1/2

The direct solution of ILP by a general purpose ILP solver quickly becomes
impactical as the size of G grows.

In our study we try to raise the size of the solvable instances throught find an
efficient way to solve the LP relaxation.

We solve the LP relaxation of the ILP by a Benders decomposition approach, with a
Master Problem ( MP ) with orientation constraints, optimality constraints and
feasibility constraints provided by the |R| subproblems.

Original
Formulation

-

Master
Problem

Subproblem

each subproblem
decomposes in |R|
indipendent Subproblem(r)

Subproblem

Subproblem

Subproblem

-

(n |
() |
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() |
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Solution approach:
Benders decomposition 2/2

Br

variable associated to MASTER PROBLEM
the contribute of a min Z B’

origin dedstination =t

E, X, i +x; =1, VY (i, jEE,

set of extreme points of the

r-th subproblem B'=0, VreR

E% PRIMAL

set of extreme rays of the SUBPROBLEM

r-th subproblem
min Z dly

a€A

Y y.— 2 vi=1f, Viev,

a€s’ (i) acs (i)
y:,jSJT,j’ V (i, j)EZ

Y d'y'<c, VacA

rer

'e{0,1}, VaeA



Solution approach:
Benders decomposition 2/2

Br
variable associated to MASTER PROBLEM
the contribute of a min Z B’
origin dedstination =t
E, X, i +x; =1, VY (i, jEE,
set of extreme points of the
r-th subproblem B'=0, VreR
E% PRIMAL
set of extreme rays of the SUBPROBLEM E— DUAL SUBPROBLEM
r-th subproblem .
mlnz dr lay; maxz ‘xaua_vs,-i_vt,
acA

Y y= 2 y=f, Viev, —u,—vi+vi=d 1, V(i,j)EA
a€é’ (i) ac s (i)
_ u free, Yac€A
yj,js)m, V(i,jeA
vi=0, VieV
Y d'y'<c, VacA
rek X is the current MP solution

'e{0,1}, VaeA



Solution approach:
Benders decomposition 2/2

Br
variable associated to
the contribute of a

origin dedstination

E,
set of extreme points of the
r-th subproblem

E
set of extreme rays of the
r-th subproblem

MASTER PROBLEM

minz B’ Zuaxa+[3r2vtr—vsr, YreR,VE,

reR acA

x, +x, <1, V(i,j€EE, - ZuaxGZVI—vS, VreR VE,

a€A

B'=0, VreR

PRIMAL
SUBPROBLEM

min Z dly

a€A

14

At each iteration we add up to
|R| optimality or feasibility
cuts

—— DUAL SUBPROBLEM

—_ r
maxz xa”a_"s,"“’z,

Y y= 2 y=f, Viev, —u,—vi+vi=d 1, V(i,j)EA
a€é’ (i) ac s (i)
_ u free, Yac€A
yj,js)m, V(i,jeA
vi=0, VieV
Y d'y'<c, VacA
rek X is the current MP solution

'e{0,1}, VaeA




Pareto optimal cut

Moreover, we add Pareto-optimal cuts using the procedure defined by
Magnanti and Wong (1981) :

Def ( Magnanti and Wong, 1981 ):

An (optimality ) cut B = gx + by dominatesacutf=a x+b, if ax+b 2
a, x + b, for all x, with a strict inequality for at least one point x. We call
a cut Pareto optimal if no cut dominates it.

Magnanti and Wong show that, starting from an optimality cut it is possible

to obtain a Pareto-optimal cut throght the solution of an auxiliary
problem:

Theorem:

Let X be the set of all the feasible points of MP, let x° be a point in the
interior of X, let U(x*) and U(x°) be the set of optimal solutions of the
DSP corresponding to x* and x°.

If u* € U(x*) and u® € U(x ) then u” defines a pareto-optimal cut.



Pareto optimal cut

The new cut can be obtained through the solution of a second LP problem
after the solution of the DSP:

DSP(r) DSP(r)-aux
max Z X U, — v, +v, max Z X, U, — v, v,
—u,—v+vi<d 1, V(i,j)EA ﬁ —u,—v;+v;=d,l, V(i j)EA
u’ free, Y acA X,u,—v, +v, =z(X)
vi>=0, VieV u, free, Y a€A \\
the new optimal
v;=0, VieV

value must be also
an optimal value
for DSP(r)




I Computational results
I istances

The istances studied are “ realistc “.

I * structure of G: complete grid

® e o o o

® © O o ©o
Length of the edges: uniformly distributed in [0.5; 1.5]

Half of the nodes are stations

e OD matrix: uniformly distributed in [0; 50]



Computational results
Instance T Direct T Bend T Bend P-opt Val-LP T Tarj Val-Heur
Grid 9x5 1 3 3 11083.05 0 14275.38
Grid 5x6 3 10 6 20417.29 1 25649.4
Grid 6x6 9 31 10 32241.3 2 41978.9
Grid 7x6 20 45 21 47637.86 3 67605.18
Grid 7x7 44 43 89 66257.66 5 90888.58
Grid 8x7 149 439 123 95738.94 10 134738.73
Grid 8x8 294 1653 158 122990.54 19 179941.45
Grid 9x8 577 1566 255 173764.11 27 269328.09
Grid 9x9 989 2829 482 221266.24 42 324867.27
Grid 10x9 2980  Tlm 895 285151.28 52 408750.55
Grid 10x10 Tlim lim 1064 3715149 83 559278.14
Grid 11x10 Tlim lim 3661 469287.5 139 800488.2




Literature

[1] Anderson, J.E. et al. (1998). Special issue: emerging systems for public transportation.
Journal of Advanced Transportation, 32, 1-128.

[2] Chung, F.R.K., Garey, M.R., Tarjan, R.E. (1985). Strongly connected orientations of mixed
multigraphs. Networks, 15, 477-484.

[3] Chvatal, V., Thomassen, C. (1978). Distances in orientations of graphs. Journal of
Combinatorial Theory Ser. B, 24, 61-75.

[4] Kaspi, M. and Tanchoco, J.M.A. (1990). Optimal ?ow path design of unidirectional AGV
systems. International Journal of Production Research, 28,1023-1030.

[5] Langevin, A., Riopel, D., Savard G., Bachmann, R. (2004). A multy-comodity network
desing approach fo automated guided vehicle systems. INFOR, 2, 113-123.

[6] Johnson, E.L., Pieroni A. (1983). A linear programming approach to the optimum network
orientation problem. Presented at NETFLOW 83: International Workshop on Network Flow
Optimization Theory and Practice, Pisa, Italy.

[7] Benders, J.F. (1962). Partitioning procedures for solving mixed variables programming
problems. Num. Math, 4, 238-252.

[8] Magnanti, T.L., Mireault, P., Wong, R.T.(1986) Tailoring Benders domposition for
uncapacitated network design. Mathematical Programming Study, 26, 112-154



