On the Bi-Enhancement of Chordal-Bipartite Probe Graphs

> Elad Cohen Martin Charles Golumbic Marina Lipshteyn Michal Stern

Outline

- Definitions
- Previous work
- - Chordal probe
 - Chordal-bipartite probe
- Open questions

Definitions

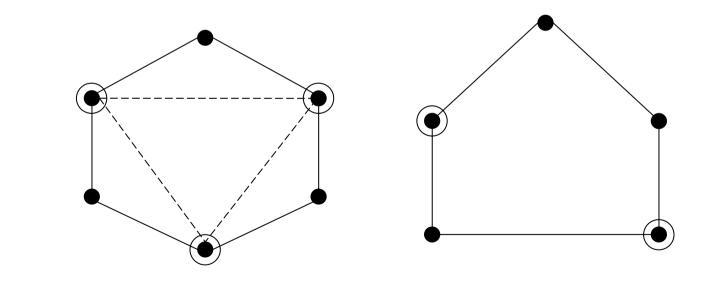
- $\Box C_k$ chordless cycle of size k.
- Chordal graph a graph with no induced C_k, for k>3.
- Chordal-bipartite graph a bipartite graph that has no induced C_k, for k>4.
- Interval graph is the intersection graph of a set of intervals on the real line.

The *C*-probe problem

- □ Let *C* be a graph family.
- □ A graph G=(V,E) is called *C*-probe if
 - 1. \exists partition V=P(probes) \cup N(non-probes), N is a stable set
 - 2. ∃ completion E' ⊆ {(u,v)|u,v∈N} such that G'=(V,E∪E') is in \mathscr{C} . (Clearly G_P is in \mathscr{C})
- In the *partitioned* version the partition into probes and non-probes is given and fixed.

The *C*-probe problem - example

□ Let *C* be the chordal graphs family.

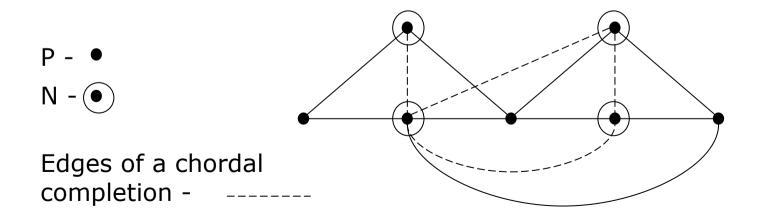


Previous work

- Probe interval graphs and their application to physical mapping of DNA" [Zhang, 1994]
- "Chordal probe graphs" [Golumbic, Lipshteyn, 2004]
- "Cycle-bicolorable graphs and triangulating chordal probe graphs" [Berry, Golumbic, Lipshteyn, 2007]

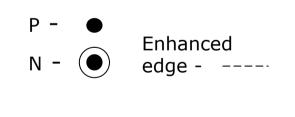
Chordal probe – a necessary condition

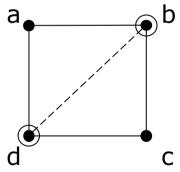
■ Lemma 1 – If G is a chordal probe graph with respect to the partition PON, then probes and non-probes must alternate on every chordless cycle.



Chordal probe - C₄ case

- The C₄ graph is a special case of chordal probe graphs where it has:
 - 1. Alternating probe/non-probe vertices.
 - 2. An edge is <u>forced</u> between the two non-probe vertices, called an *enhanced edge*, for the C₄ to be completed into chordal graph. $a_{\phi} = b^{b}$





Let G be a graph, the *enhanced graph* G* is the graph G together with all the enhanced edges.

Chordal probe - C₄ enhancing

Let G be a graph containing no induced chordless cycles C_k, for k>4:

Lemma 2[GL04][Z94] – If G has a probe/nonprobe partition in which probes and non-probes alternate on every chordless 4-cycle, then the enhanced graph G* is a chordal completion of G.

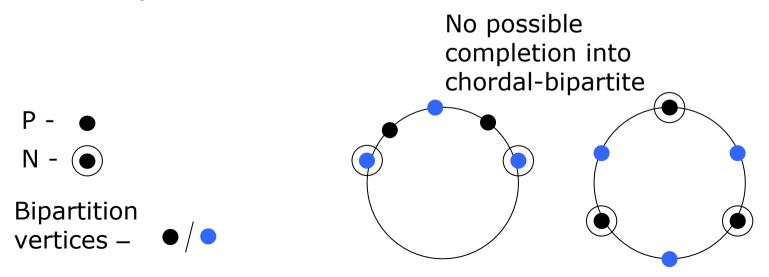
□ Theorem 3 – If G is a C_k-free graph for k>4, then G is chordal probe \Leftrightarrow G* is chordal.

Chordal-bipartite probe graphs

- A graph G=(V,E) is called chordal bipartite probe if
 - 1. \exists partition V=P(probes) \cup N(non-probes), N is a stable set
 - 2. \exists completion $E' \subseteq \{(u,v) | u,v \in \mathbb{N}, u \text{ and } v \text{ are}$ in different biparts $\}$ such that $G' = (V, E \cup E')$ is bipartite.
- Since G_p is a chordal bipartite graph and N is a stable set, clearly G is a bipartite graph. Since there is only one bipartition, we keep the same bipartition by adding edge only between vertices from different biparts.

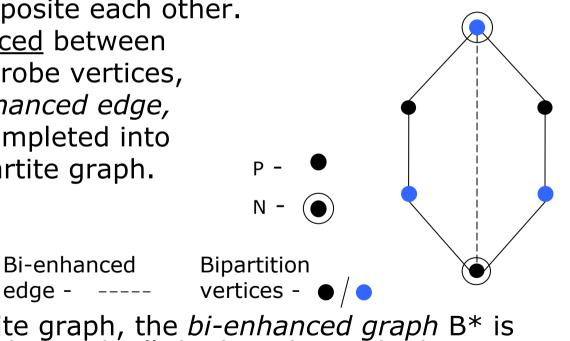
Chordal-bipartite probe – a necessary condition

- Lemma 4 [BCGLPSS07] In every induced C_k , for $k \ge 6$, of a chordal-bipartite probe graph the following properties must hold:
 - 1. Every probe sees at most one other probe.
 - 2. There is at least one edge of the cycle whose endpoints are probes.



Chordal-bipartite probe - C₆ case

- C₆ is a special case of chordal-bipartite probe graphs where:
 - 1. There are exactly two non-probes, one black and the other blue, opposite each other.
 - 2. An edge is <u>forced</u> between the two non-probe vertices, called a *bi-enhanced edge*, for C_6 to be completed into a chordal-bipartite graph.



Let B be a bipartite graph, the bi-enhanced graph B* is the graph B together with all the bi-enhanced edges.

Chordal-bipartite probe - C₆ enhancing

■ Let B be a bipartite graph with no induced chordless cycles C_k , for k>6:

Lemma 5 – If B has a probe/non-probe partition in which there are exactly two non-probes opposite each other on every chordless 6-cycle, then the bi-enhanced graph B^* is a chordal-bipartite completion of B.

Proof:

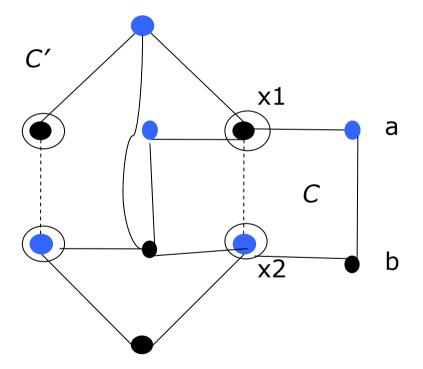
Suppose B^* is not a chordal-bipartite graph.

Then B^* is bipartite graph that has a cycle of size > 4.

Choose C' to be such a cycle in with minimal number h of bienhanced edges.

Proof of Lemma 5 –cont.

h=0: C' is a cycle of size >4 in G, a contradiction.
h>0:



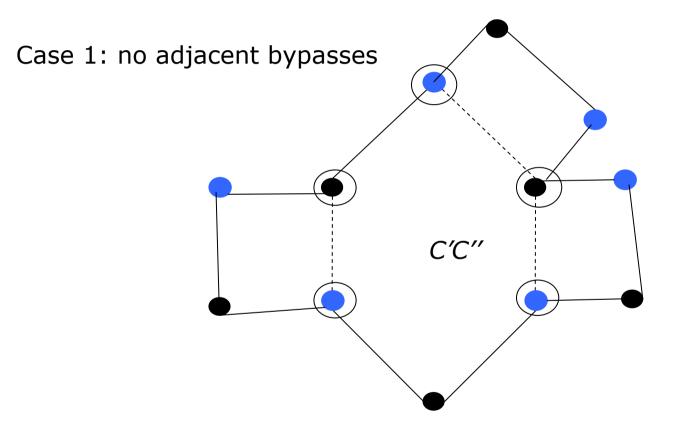
Let [x1,a,b,x2] be a chordless path in B*, where a,b are probes

The pair $\{a,b\}$ is a **bypass** of the edge (x1,x2) if and only if a,b not on C' and have no other neighbors on C'.

<u>Claim 1:</u> Every bi-enhanced edge on C' has a bypass.

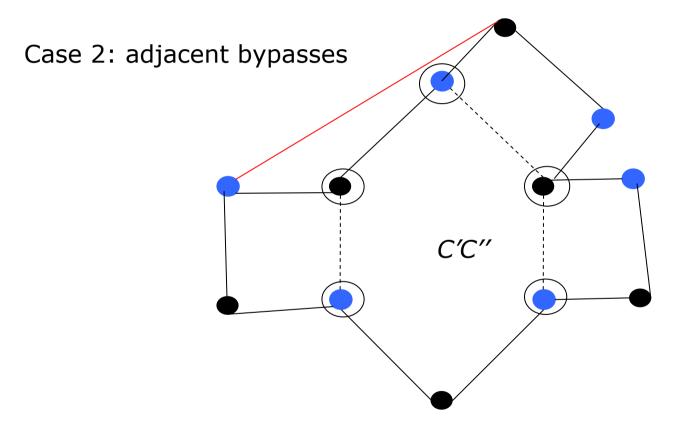
Claim 2: a vertex can be in at most one bypass on C'.

Proof of Lemma 5 –cont.



C" is a chordless cycle of size >4 in G

Proof of Lemma 5 –cont.

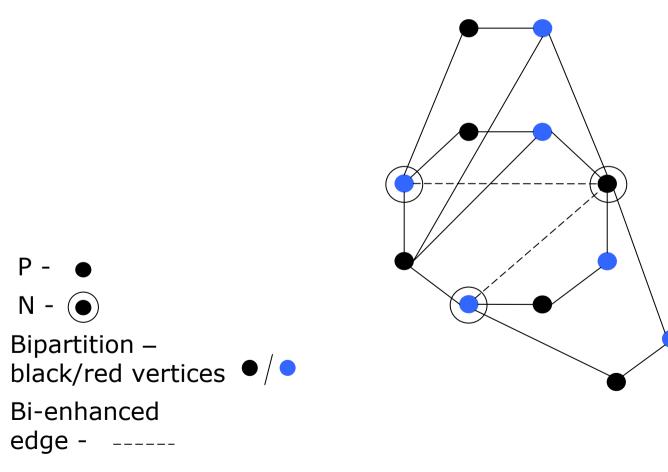


C" is a chordless cycle of size >4 in G

Chordal-bipartite probe - C₆ enhancing

■ Theorem 6 – If B is a bipartite C_k-free graph for k>6, then B is chordal-bipartite probe ⇔ B* is chordal-bipartite.

Chordal-bipartite probe - example



Open questions

Find necessary and sufficient conditions for completing C_k into a chordal-bipartite graph, for k>6.

Does a chordal-bipartite probe graph have a vertex or edge elimination algorithm ?

Research the probe problem on other graph classes.

