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Definitions

Let G = (V ,E ) be a n-vertex graph of order.

A decomposition of G for λ, called a λ-decomposition, is a
partition {V1, . . . ,Vp} of V such that for all 1 ≤ i ≤ p, we
have |Vi | = λi , and the subgraph of G induced by any subset
Vi is connected.

Consider the partition λ = (λ1 = 3, λ2 = 2, λ3 = 2} and the
following tree T :

A

B

C D E

F

G

T is not λ-decomposable.

A graph G is said decomposable if and only if for all partition
λ of n the graph G is decomposable for λ.
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Results

1976-1977, Györi and Lovász: Any n-vertex k-connected
graph G is decomposable for all partitions λ = (λ1, . . . , λk ) of
n which contain k integers.

1990, Suzuki, Takahashi and Nishizeki, Miyano: a linear time
algorithm for the case k = 2 and a quadratic time algorithm
for the case k = 3..

1997, Nakano, Rahman and Nishizeki: a linear time algorithm
for the case k = 4 and when the graph is planar.

Trees : structural results : degre inferior at 5 , degree 4
limited , it remains degree 3.

a tree T + a partition λ : NP-complet

In [8] it has been shown a polynomial algorithm for deciding if
a tripode ( 3 chains linked to one vertex degree 3 ) is
decomposable.

bi-tripode (two vertices degree 3) decomposable ? don’t know
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Second approach , My result

Study : Trees with large diameter : diameter n − α.
Remark : compute a chain of n − α + 1 vertices
〈x0, x1, . . . , xn−α〉 can be done with time complexity nO(1).

xn−αxn−α−1

uα−1uj+1uj

xix3x2x1x0

u1

u2

u3

u4 u5

u6

u7

u8

Theorem

Deciding if a tree T with diameter n − α is decomposable can be
done with time complexity nO(α).

remark: number of partitions of n is O(2n).
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Proof

Propositon

Consider a n-vertex tree T = (V ,E ) with diameter D(T ) = n − α.
Deciding if the tree T is decomposable for all partitions λ with
|sp(λ)| < α can be done with a time complexity nO(α).

Deciding if T with diameter n − α is decomposable for a
partition λ can be done with time complexity nO(α).

The number of partitions λ with |sp(λ)| < α is nO(α)
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Proof

Deciding if T with diameter n − α is decomposable for a
partition λ can be done with time complexity nO(α).

xn−αxn−α−1

uα−1uj+1uj

xix3x2x1x0
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u2
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Partition λ = (λ1, .., λp).
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Proof

Deciding if T with diameter n − α is decomposable for a
partition λ can be done with time complexity nO(α).

xn−αxn−α−1

uα−1uj+1uj

xix3x2x1x0

u1

u2

u3

u4 u5

u6

u7

u8

Partition λ = (λ1, .., λp).

Generate all possibles sets containing vertices {u1, .., uα−1}.
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1) Generate all possibles sets containing vertice u1.
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Proof

x0 x1 x2 x3 xi xn−α−1 xn−α

uα−1uj+1uj

u6

u7

u8

u5u4

u3

u2

u1

1) Generate all possibles sets containing vertice u1.

Size of the set containing u1 : at most n possibilities.

Other vertices ui which are in the same set: 2α possibilities.

Example : Vertices u2, uj , uj+1 are in the set which contains
vertice u1.
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x0 x1 x2 x3 xi xn−α−1 xn−α

uα−1uj+1uj

u6

u7

u8

u4 u5

u3

u2

u1

Vertices of the chain linking x1 to xi : Connexity

Have to fill the set : at most n possibilities

number of possible sets containing u1 is at most n22α.
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x0

u4

u3

u5

u8

u7

u6

uα−1

xn−α−1 xn−α

number of possible sets containing u1 is at most n22α.

Continue with u3.



Decomposing trees with large diameter

Proof

x0

u4

u3

u5

u8

u7

u6
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number of possible sets containing u1 is at most n22α.

Continue with u3.

At most α− 1 steps.
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It remain a forest composed of chains ( at most α ).
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x0 xn−α

It remain a forest composed of chains ( at most α ).

dynamical Programming, α-subset sum : αnα+1.

Number of possibles sets containing vertices u1, .., uα−1 is at
most (n22α)α−1.
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Proof

x0 xn−α

It remain a forest composed of chains ( at most α ).

dynamical Programming, α-subset sum : αnα+1.

Number of possibles sets containing vertices u1, .., uα−1 is at
most (n22α)α−1.

nO(α).
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Proof

Propositon

Consider a n-vertex tree T = (V ,E ) with diameter D(T ) = n − α.
The tree T is decomposable for all partitions λ = (λ1, λ2, . . . , λp)
of n with |sp(λ)| ≥ α.

xi+1 xn−αx0

A0 A1

x1 x2

A2 Ai

xi

Ai+1 An−α

Ai is the set of vertices of the i eme tree.
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uj

u5

u6

x0 x1 x2 x3 xi xn−α−1 xn−α

uα−1uj+1

u7

u8

u4

u3

u2

u1

A1

A0
A2

A3
Ai

An−α−1

An−α

A1 = {x1, u1, u2, u3, u4, u5}.
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Proof

Propositon

Consider a n-vertex tree T = (V ,E ) with diameter D(T ) = n − α.
The tree T is decomposable for all partitions λ = (λ1, λ2, . . . , λp)
of n with |sp(λ)| ≥ α.

xi+1

An−αA0

x0 x1

A1

x2

A2

xi

Ai Ai+1

xn−α

V2V3V1

T = (V ,E ) with diameter D(T ) = n − α.
λ = (λ1, λ2, . . . , λp) of n with |sp(λ)| ≥ α.
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Proof

Propositon

Consider a n-vertex tree T = (V ,E ) with diameter D(T ) = n − α.
The tree T is decomposable for all partitions λ = (λ1, λ2, . . . , λp)
of n with |sp(λ)| ≥ α.

xi+1

An−αA0

x0 x1

A1

x2

A2

xi

Ai Ai+1

xn−α

V2V3V1

T = (V ,E ) with diameter D(T ) = n − α.
λ = (λ1, λ2, . . . , λp) of n with |sp(λ)| ≥ α.
Show that it exists a (T ,λ)-partition V1,V2, ..,Vp of V such
that for any 0 ≤ i ≤ n − α it exists j ∈ {1, .., p} for which we
have Ai ⊆ Vj .
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x0 x1 x2 x3 xi xn−α−1 xn−α

uα−1uj+1uj

u6

u7

u8

u5u4

u3

u2

u1

V1 V3 V2
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x0 x1 x2 x3 xi xn−α−1 xn−α

uα−1uj+1uj

u6

u7

u8

u5u4

u3

u2

u1

V1 V3 V2

n − α0 21 3 4 5 6 7 8 9 10 11

θα−1θ2θ1 θ3 θ4 θ5 θ6

I = {θ1, .., θα−1} the set of forbidden integers.
P = {0, .., n} − I set of possible integers.
equivalent to show that it exists a permutation π = π1, .., πp

of λ = (λ1, λ2, . . . , λp) such that partial sums are in P.
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Decomposing trees with large diameter

Proof

Proof by recurrence on α.

rank α = 0 : T is a chain, I = ∅, thus whatever the
permutation π of λ, all the partial sums are in P.

suppose that it is true until the rank α− 1. We are going to
show that it is true at the rank α.

|sp(λ)| ≥ λ : (s1, .., sα) such that s1 < .. < .. < sα, and
s1 = λ1 , Si =

∑i
j=1 sj .

other integers of λ: (r1, .., rp−α), Ri =
∑i

j=1 rj , and
R = Rp−α.

T with diameter D(T ) = n − α, I = {θ1, .., θα−1}.
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Case 1: it exists i ∈ {0, .., p − α} such that Ri < θ1 and
Ri + sα > θ1 with Ri + sα ∈ P

Ri

θ1

Ri+sα0 21 3 n
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Case 2: it exists i ∈ {0, .., p − α} such that Ri < θ1 and
Ri + sα > θ1 with Ri + sα ∈ I

Ri +sαRi

θ1

0 21 3 n
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Case 2: it exists i ∈ {0, .., p − α} such that Ri < θ1 and
Ri + sα > θ1 with Ri + sα ∈ I

+Ri st +Ri stRi + sαθ10 21 3 n

it exists a t ∈ {1, .., α− 1} for which we have Ri + st ∈ P and
Ri + st + sα+1 ∈ P
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Case 2: it exists i ∈ {0, .., p − α} such that Ri < θ1 and
Ri + sα > θ1 with Ri + sα ∈ I

Ri Ri +sαθ10 21 3 n

it exists a t ∈ {1, .., α− 1} for which we have Ri + st ∈ P and
Ri + st + sα+1 ∈ P
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R
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Proof

Case 3: R < θ1 and R + sα ≤ θ1

R

s1

θ1 θ2 θ30 21 3 n

R + s1 < θ1
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Proof

Case 3: R < θ1 and R + sα ≤ θ1

Sub-case : It exists a i ∈ {2, .., α− 1} such that
R + Si−1 < θi−1 and R + Si ≥ θi , with R + Si−1 ∈ P

R

s1 s2

θ1 θ2 θ30 21 3 n



Decomposing trees with large diameter

Proof

Case 3: R < θ1 and R + sα ≤ θ1

Sub-case : It exists a i ∈ {2, .., α− 1} such that
R + Si−1 < θi−1 and R + Si ≥ θi , with R + Si−1 ∈ P

R + Si ∈ P

R

s1 s2 s3

θ1 θ2 θ3

R RS2
S3+ +

0 21 3
n
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Proof

Case 3: R < θ1 and R + sα ≤ θ1

Sub-case : It exists a i ∈ {2, .., α− 1} such that
R + Si−1 < θi−1 and R + Si ≥ θi , with R + Si−1 ∈ P
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Proof

Case 3: R < θ1 and R + sα ≤ θ1

Sub-case : It does not exist a i ∈ {2, .., α− 1} such that
R + Si−1 < θi−1 and R + Si ≥ θi
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Decomposing trees with large diameter

Proof

Case 3: R < θ1 and R + sα ≤ θ1

Sub-case : It does not exist a i ∈ {2, .., α− 1} such that
R + Si−1 < θi−1 and R + Si ≥ θi

R θ1 θα−1θ2

sα
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R + Sα−1 ¡ θα−1

Case 1.



Decomposing trees with large diameter

Conclusion

if α is a constant, Deciding if Tree T with large diameter
n − α is decomposable is polynomial.



Decomposing trees with large diameter

Conclusion

if α is a constant, Deciding if Tree T with large diameter
n − α is decomposable is polynomial.

Which class in parametrized complexity ?


