Decomposing trees with large diameter

Decomposing trees with large diameter

Romain Ravaux

May 2008

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Decomposing trees with large diameter

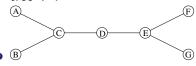
◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ = ・ の < @

• A partition of the integer *n* is a sequence of positive integers $\lambda = (\lambda_1, \lambda_2, ..., \lambda_k)$ such that $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_k$ and $\sum_{i=1}^k \lambda_i = n$.

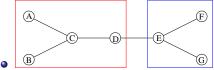
• $\lambda = (3,3,1)$ is a partition of the integer n = 7

- A partition of the integer *n* is a sequence of positive integers $\lambda = (\lambda_1, \lambda_2, ..., \lambda_k)$ such that $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_k$ and $\sum_{i=1}^k \lambda_i = n$.
- $\lambda = (3,3,1)$ is a partition of the integer n = 7
- Let G = (V, E) be a *n*-vertex graph of order.
- A decomposition of G for λ , called a (λ, G) -decomposition, is a partition $\{V_1, \ldots, V_p\}$ of V such that for all $1 \le i \le p$, we have $|V_i| = \lambda_i$, and the subgraph of G induced by any subset V_i is connected.

- A partition of the integer *n* is a sequence of positive integers $\lambda = (\lambda_1, \lambda_2, ..., \lambda_k)$ such that $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_k$ and $\sum_{i=1}^k \lambda_i = n$.
- $\lambda = (3,3,1)$ is a partition of the integer n = 7
- Let G = (V, E) be a *n*-vertex graph of order.
- A decomposition of G for λ, called a (λ,G)-decomposition, is a partition {V₁,..., V_p} of V such that for all 1 ≤ i ≤ p, we have |V_i| = λ_i, and the subgraph of G induced by any subset V_i is connected.
- Consider the partition $\lambda = (\lambda_1 = 4, \lambda_2 = 3)$ and the following tree \mathcal{T} :



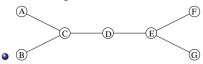
- A partition of the integer *n* is a sequence of positive integers $\lambda = (\lambda_1, \lambda_2, ..., \lambda_k)$ such that $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_k$ and $\sum_{i=1}^k \lambda_i = n$.
- $\{3,3,1\}$ is a partition of the integer n = 7
- Let G = (V, E) be a *n*-vertex graph of order.
- A decomposition of G for λ, called a λ-decomposition, is a partition {V₁,..., V_p} of V such that for all 1 ≤ i ≤ p, we have |V_i| = λ_i, and the subgraph of G induced by any subset V_i is connected.
- Consider the partition $\lambda = (\lambda_1 = 4, \lambda_2 = 3)$ and the following tree *T* :



• T is λ -decomposable

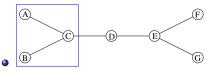
- A decomposition of G for λ , called a λ -decomposition, is a partition $\{V_1, \ldots, V_p\}$ of V such that for all $1 \le i \le p$, we have $|V_i| = \lambda_i$, and the subgraph of G induced by any subset V_i is connected.
- Consider the partition $\lambda = (\lambda_1 = 3, \lambda_2 = 2, \lambda_3 = 2)$ and the following tree T:

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●



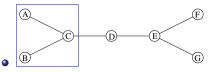
- Let G = (V, E) be a *n*-vertex graph of order.
- A decomposition of G for λ, called a λ-decomposition, is a partition {V₁,..., V_p} of V such that for all 1 ≤ i ≤ p, we have |V_i| = λ_i, and the subgraph of G induced by any subset V_i is connected.
- Consider the partition $\lambda = (\lambda_1 = 3, \lambda_2 = 2, \lambda_3 = 2)$ and the following tree T:

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●



• T is not λ -decomposable.

- Let G = (V, E) be a *n*-vertex graph of order.
- A decomposition of G for λ, called a λ-decomposition, is a partition {V₁,..., V_p} of V such that for all 1 ≤ i ≤ p, we have |V_i| = λ_i, and the subgraph of G induced by any subset V_i is connected.
- Consider the partition $\lambda = (\lambda_1 = 3, \lambda_2 = 2, \lambda_3 = 2)$ and the following tree T:



- *T* is not λ-decomposable.
- A graph G is said decomposable if and only if for all partition λ of n the graph G is decomposable for λ .

 1976-1977, Györi and Lovász: Any *n*-vertex *k*-connected graph G is decomposable for all partitions λ = (λ₁,...,λ_k) of *n* which contain k integers.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

- 1976-1977, Györi and Lovász: Any *n*-vertex *k*-connected graph *G* is decomposable for all partitions λ = (λ₁,...,λ_k) of *n* which contain *k* integers.
- 1990, Suzuki, Takahashi and Nishizeki, Miyano: a linear time algorithm for the case k = 2 and a quadratic time algorithm for the case k = 3.
- 1997, Nakano, Rahman and Nishizeki: a linear time algorithm for the case k = 4 and when the graph is planar.

- 1976-1977, Györi and Lovász: Any *n*-vertex *k*-connected graph G is decomposable for all partitions λ = (λ₁,...,λ_k) of *n* which contain k integers.
- 1990, Suzuki, Takahashi and Nishizeki, Miyano: a linear time algorithm for the case k = 2 and a quadratic time algorithm for the case k = 3.
- 1997, Nakano, Rahman and Nishizeki: a linear time algorithm for the case k = 4 and when the graph is planar.

• Trees : structural results : degre inferior at 5 , degree 4 limited , it remains degree 3.

- 1976-1977, Györi and Lovász: Any *n*-vertex *k*-connected graph G is decomposable for all partitions λ = (λ₁,...,λ_k) of *n* which contain k integers.
- 1990, Suzuki, Takahashi and Nishizeki, Miyano: a linear time algorithm for the case k = 2 and a quadratic time algorithm for the case k = 3.
- 1997, Nakano, Rahman and Nishizeki: a linear time algorithm for the case k = 4 and when the graph is planar.

- Trees : structural results : degre inferior at 5 , degree 4 limited , it remains degree 3.
- a tree T + a partition λ : NP-complet

- 1976-1977, Györi and Lovász: Any *n*-vertex *k*-connected graph G is decomposable for all partitions λ = (λ₁,...,λ_k) of *n* which contain k integers.
- 1990, Suzuki, Takahashi and Nishizeki, Miyano: a linear time algorithm for the case k = 2 and a quadratic time algorithm for the case k = 3.
- 1997, Nakano, Rahman and Nishizeki: a linear time algorithm for the case k = 4 and when the graph is planar.
- Trees : structural results : degre inferior at 5 , degree 4 limited , it remains degree 3.
- a tree T + a partition λ : NP-complet
- In [8] it has been shown a polynomial algorithm for deciding if a tripode (3 chains linked to one vertex degree 3) is decomposable.

- 1976-1977, Györi and Lovász: Any *n*-vertex *k*-connected graph G is decomposable for all partitions λ = (λ₁,...,λ_k) of *n* which contain k integers.
- 1990, Suzuki, Takahashi and Nishizeki, Miyano: a linear time algorithm for the case k = 2 and a quadratic time algorithm for the case k = 3.
- 1997, Nakano, Rahman and Nishizeki: a linear time algorithm for the case k = 4 and when the graph is planar.
- Trees : structural results : degre inferior at 5 , degree 4 limited , it remains degree 3.
- a tree T + a partition λ : NP-complet
- In [8] it has been shown a polynomial algorithm for deciding if a tripode (3 chains linked to one vertex degree 3) is decomposable.
- bi-tripode (two vertices degree 3) decomposable ? don't know

• chain: decomposable

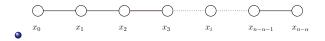
- chain: decomposable
- Is complexity fonction of proximity with a chain ?

- chain: decomposable
- Is complexity fonction of proximity with a chain ?
- Study : Trees with large diameter : diameter $n \alpha$.

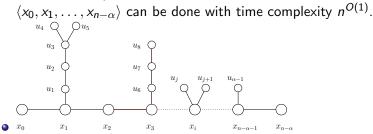
< D > < 同 > < E > < E > < E > < 0 < 0</p>

- chain: decomposable
- Is complexity fonction of proximity with a chain ?
- Study : Trees with large diameter : diameter $n \alpha$.
- Remark : compute a chain of $n \alpha + 1$ vertices $\langle x_0, x_1, \dots, x_{n-\alpha} \rangle$ can be done with time complexity $n^{O(1)}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

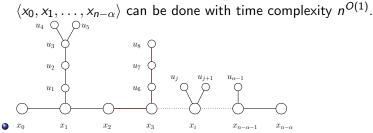


- Study : Trees with large diameter : diameter $n \alpha$.
- Remark : compute a chain of $n \alpha + 1$ vertices



◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

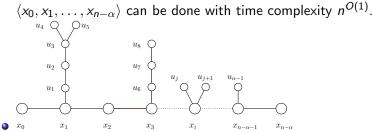
- Study : Trees with large diameter : diameter $n \alpha$.
- Remark : compute a chain of $n \alpha + 1$ vertices



Theorem

Deciding if a tree T with diameter $n - \alpha$ is decomposable can be done with time complexity $n^{O(\alpha)}$.

- Study : Trees with large diameter : diameter $n \alpha$.
- Remark : compute a chain of $n \alpha + 1$ vertices



Theorem

Deciding if a tree T with diameter $n - \alpha$ is decomposable can be done with time complexity $n^{O(\alpha)}$.

- 20

• remark: number of partitions of *n* is $O(2^n)$.

The spectrum of a partition λ = (λ₁, λ₂, ..., λ_p) is defined by sp(λ) = {λ₁, λ₂, ..., λ_p}.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The spectrum of a partition λ = (λ₁, λ₂, ..., λ_p) is defined by sp(λ) = {λ₁, λ₂, ..., λ_p}.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

• example : $\lambda = (7, 7, 7, 5, 4, 4)$, $sp(\lambda) = \{7, 5, 4\}$.

- The spectrum of a partition $\lambda = (\lambda_1, \lambda_2, ..., \lambda_p)$ is defined by $sp(\lambda) = \{\lambda_1, \lambda_2, ..., \lambda_p\}.$
- example : $\lambda = (7, 7, 7, 5, 4, 4)$, $sp(\lambda) = \{7, 5, 4\}$.

Propositon

Consider a n-vertex tree T = (V, E) with diameter $D(T) = n - \alpha$. The tree T is decomposable for all partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$ of n with $|sp(\lambda)| \ge \alpha$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

- The spectrum of a partition $\lambda = (\lambda_1, \lambda_2, ..., \lambda_p)$ is defined by $sp(\lambda) = \{\lambda_1, \lambda_2, ..., \lambda_p\}.$
- example : $\lambda = (7, 7, 7, 5, 4, 4)$, $sp(\lambda) = \{7, 5, 4\}$.

Propositon

Consider a n-vertex tree T = (V, E) with diameter $D(T) = n - \alpha$. The tree T is decomposable for all partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$ of n with $|sp(\lambda)| \ge \alpha$.

Propositon

Consider a n-vertex tree T = (V, E) with diameter $D(T) = n - \alpha$. Deciding if the tree T is decomposable for all partitions λ with $|sp(\lambda)| < \alpha$ can be done with a time complexity $n^{O(\alpha)}$.

Propositon

Consider a n-vertex tree T = (V, E) with diameter $D(T) = n - \alpha$. Deciding if the tree T is decomposable for all partitions λ with $|sp(\lambda)| < \alpha$ can be done with a time complexity $n^{O(\alpha)}$.

Deciding if T with diameter n - α is decomposable for a partition λ can be done with time complexity n^{O(α)}.

Propositon

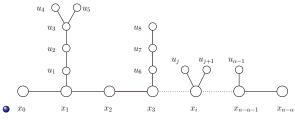
Consider a n-vertex tree T = (V, E) with diameter $D(T) = n - \alpha$. Deciding if the tree T is decomposable for all partitions λ with $|sp(\lambda)| < \alpha$ can be done with a time complexity $n^{O(\alpha)}$.

Deciding if T with diameter n - α is decomposable for a partition λ can be done with time complexity n^{O(α)}.

• The number of partitions λ with $|sp(\lambda)| < \alpha$ is $n^{O(\alpha)}$

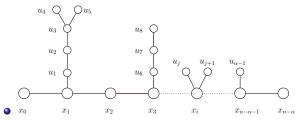
Deciding if T with diameter n - α is decomposable for a partition λ can be done with time complexity n^{O(α)}.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

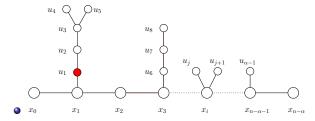


• Partition $\lambda = (\lambda_1, ..., \lambda_p)$.

Deciding if T with diameter n - α is decomposable for a partition λ can be done with time complexity n^{O(α)}.

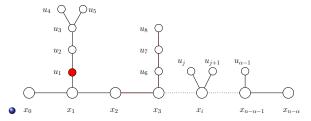


- Partition $\lambda = (\lambda_1, .., \lambda_p)$.
- Generate all possibles sets containing vertices $\{u_1, .., u_{\alpha-1}\}$.



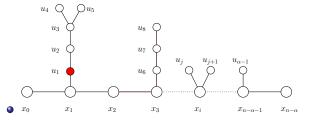
• 1) Generate all possibles sets containing vertice u_1 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



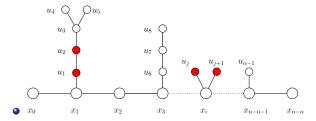
- 1) Generate all possibles sets containing vertice u_1 .
- Size of the set containing the vertice u_1 : at most n possibilities.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ∽のへ⊙

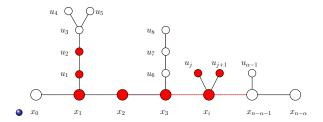


- 1) Generate all possibles sets containing vertice u_1 .
- Size of the set containing the vertice u_1 : at most n possibilities.
- Other vertices u_i which are in the same set: 2^{α} possibilities.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

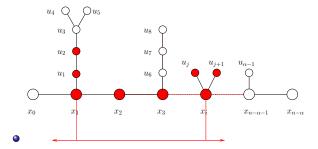


- 1) Generate all possibles sets containing vertice u_1 .
- Size of the set containing u_1 : at most *n* possibilities.
- Other vertices u_i which are in the same set: 2^{α} possibilities.
- Example : Vertices u_2, u_j, u_{j+1} are in the set which contains vertice u_1 .



• Vertices of the chain linking x_1 to x_i : Connexity

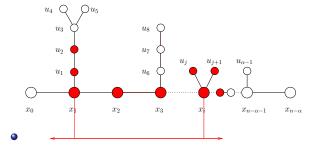
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



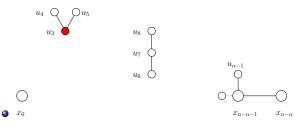
• Vertices of the chain linking x_1 to x_i : Connexity

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

• Have to fill the set: at most *n* possibilities

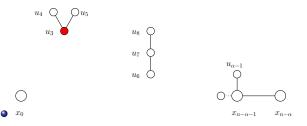


- Vertices of the chain linking x_1 to x_i : Connexity
- Have to fill the set : at most *n* possibilities
- number of possible sets containing u_1 is at most $n^2 2^{\alpha}$.



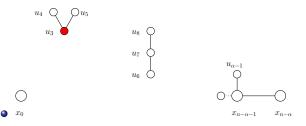
• number of possible sets containing u_1 is at most $n^2 2^{\alpha}$.

• Continue with *u*₃.

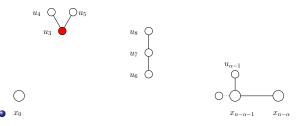


• number of possible sets containing u_1 is at most $n^2 2^{\alpha}$.

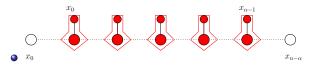
- Continue with *u*₃.
- At most $\alpha 1$ steps.



- number of possible sets containing u_1 is at most $n^2 2^{\alpha}$.
- Continue with u_3 .
- At most $\alpha 1$ steps.
- Number of possibles sets containing vertices u₁, ..., u_{α-1} is at most (n²2^α)^{α-1}.



- number of possible sets containing u_1 is at most $n^2 2^{\alpha}$.
- Continue with u_3 .
- At most $\alpha 1$ steps.
- Number of possibles sets containing vertices u₁, ..., u_{α-1} is at most (n²2^α)^{α-1}.
- $\bullet\,$ It remain a forest composed of chains (at most α).



• It remain a forest composed of chains (at most α).

• It remain a forest composed of chains (at most α).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• It remain a forest composed of chains (at most α).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• dynamical Programming, α -subset sum : $\alpha n^{\alpha+1}$.

- $\bullet\,$ It remain a forest composed of chains (at most α).
- dynamical Programming, α -subset sum : $\alpha n^{\alpha+1}$.
- Number of possibles sets containing vertices u₁, ..., u_{α-1} is at most (n²2^α)^{α-1}.

- $\bullet\,$ It remain a forest composed of chains (at most α).
- dynamical Programming, α -subset sum : $\alpha n^{\alpha+1}$.
- Number of possibles sets containing vertices u₁, ..., u_{α-1} is at most (n²2^α)^{α-1}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

• $n^{O(\alpha)}$.

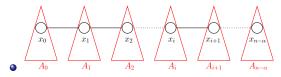
Propositon

Consider a n-vertex tree T = (V, E) with diameter $D(T) = n - \alpha$. The tree T is decomposable for all partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$ of n with $|sp(\lambda)| \ge \alpha$.

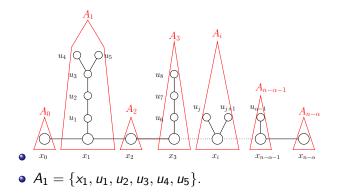
Propositon

Consider a n-vertex tree T = (V, E) with diameter $D(T) = n - \alpha$. The tree T is decomposable for all partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$ of n with $|sp(\lambda)| \ge \alpha$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●



• A_i is the set of vertices of the i^{eme} tree.

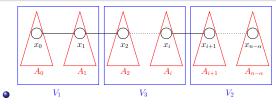


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Propositon

Consider a n-vertex tree T = (V, E) with diameter $D(T) = n - \alpha$. The tree T is decomposable for all partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$ of n with $|sp(\lambda)| \ge \alpha$.

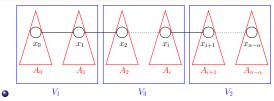
◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●



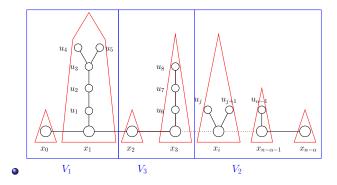
T = (V, E) with diameter D(T) = n − α.
λ = (λ₁, λ₂,..., λ_p) of n with |sp(λ)| ≥ α.

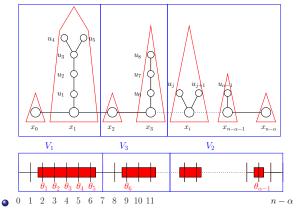
Propositon

Consider a n-vertex tree T = (V, E) with diameter $D(T) = n - \alpha$. The tree T is decomposable for all partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$ of n with $|sp(\lambda)| \ge \alpha$.



- T = (V, E) with diameter $D(T) = n \alpha$.
- $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$ of *n* with $|sp(\lambda)| \ge \alpha$.
- Show that it exists a (T,λ)-partition V₁, V₂, ..., V_p of V such that for any 0 ≤ i ≤ n − α it exists j ∈ {1, ..., p} for which we have A_i ⊆ V_j.





- *I* = {θ₁,..,θ_{α-1}} the set of forbidden integers. *P* = {0,..,n} *I* set of possible integers.
- equivalent to show that it exists a permutation $\pi = \pi_1, ..., \pi_p$ of $\lambda = (\lambda_1, \lambda_2, ..., \lambda_p)$ such that partial sums are in P.

• Proof by recurrence on α .

- Proof by recurrence on α .
- rank α = 0 : T is a chain, I = Ø, thus whatever the permutation π of λ, all the partial sums are in P.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Proof by recurrence on α .
- rank α = 0 : T is a chain, I = Ø, thus whatever the permutation π of λ, all the partial sums are in P.
- suppose that it is true until the rank $\alpha 1$. We are going to show that it is true at the rank α .

- Proof by recurrence on α .
- rank α = 0 : T is a chain, I = Ø, thus whatever the permutation π of λ, all the partial sums are in P.
- suppose that it is true until the rank $\alpha 1$. We are going to show that it is true at the rank α .

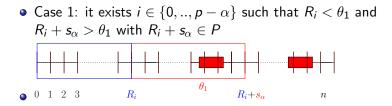
• $|sp(\lambda)| \ge \lambda$: $(s_1, ..., s_{\alpha})$ such that $s_1 < ... < ... < s_{\alpha}$, and $s_1 = \lambda_1$, $S_i = \sum_{j=1}^i s_j$.

- Proof by recurrence on α .
- rank α = 0 : T is a chain, I = Ø, thus whatever the permutation π of λ, all the partial sums are in P.
- suppose that it is true until the rank $\alpha 1$. We are going to show that it is true at the rank α .

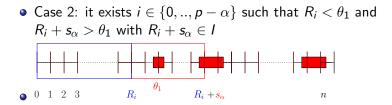
- $|sp(\lambda)| \ge \lambda : (s_1, ..., s_\alpha)$ such that $s_1 < ... < ... < s_\alpha$, and $s_1 = \lambda_1$, $S_i = \sum_{j=1}^i s_j$.
- other integers of λ : $(r_1, ..., r_{p-\alpha})$, $R_i = \sum_{j=1}^i r_j$, and $R = R_{p-\alpha}$.

- Proof by recurrence on α .
- rank α = 0 : T is a chain, I = Ø, thus whatever the permutation π of λ, all the partial sums are in P.
- suppose that it is true until the rank $\alpha 1$. We are going to show that it is true at the rank α .

- $|sp(\lambda)| \ge \lambda : (s_1, ..., s_\alpha)$ such that $s_1 < ... < ... < s_\alpha$, and $s_1 = \lambda_1$, $S_i = \sum_{j=1}^i s_j$.
- other integers of λ : $(r_1, ..., r_{p-\alpha})$, $R_i = \sum_{j=1}^i r_j$, and $R = R_{p-\alpha}$.
- T with diameter $D(T) = n \alpha$, $I = \{\theta_1, .., \theta_{\alpha-1}\}$.

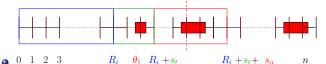


◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで



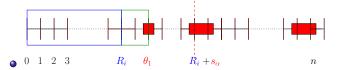
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

• Case 2: it exists $i \in \{0, .., p - \alpha\}$ such that $R_i < \theta_1$ and $R_i + s_\alpha > \theta_1$ with $R_i + s_\alpha \in I$



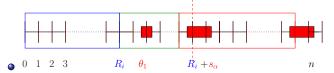
• it exists a $t \in \{1, .., \alpha - 1\}$ for which we have $R_i + s_t \in P$ and $R_i + s_t + s_{\alpha+1} \in P$

• Case 2: it exists $i \in \{0, .., p - \alpha\}$ such that $R_i < \theta_1$ and $R_i + s_\alpha > \theta_1$ with $R_i + s_\alpha \in I$

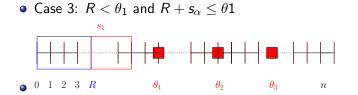


• it exists a $t \in \{1, .., \alpha - 1\}$ for which we have $R_i + s_t \in P$ and $R_i + s_t + s_{\alpha+1} \in P$

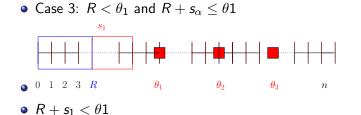
• Case 2: it exists $i \in \{0, .., p - \alpha\}$ such that $R_i < \theta_1$ and $R_i + s_\alpha > \theta_1$ with $R_i + s_\alpha \in I$



• it exists a $t \in \{1, .., \alpha - 1\}$ for which we have $R_i + s_t \in P$ and $R_i + s_t + s_{\alpha+1} \in P$

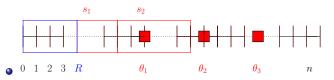


▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙



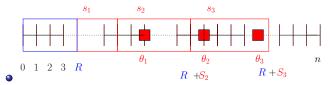
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

- Case 3: $R < \theta_1$ and $R + s_{\alpha} \le \theta_1$
- Sub-case : It exists a $i \in \{2, .., \alpha 1\}$ such that $R + S_{i-1} < \theta_{i-1}$ and $R + S_i \ge \theta_i$, with $R + S_{i-1} \in P$



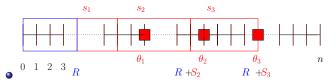
• Case 3:
$$R < \theta_1$$
 and $R + s_\alpha \le \theta_1$

• Sub-case : It exists a $i \in \{2, .., \alpha - 1\}$ such that $R + S_{i-1} < \theta_{i-1}$ and $R + S_i \ge \theta_i$, with $R + S_{i-1} \in P$



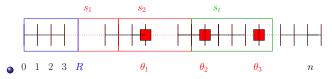
◆□▶ ◆□▶ ◆□▶ ◆□▶ = 三 のへで

- Case 3: $R < \theta_1$ and $R + s_\alpha \le \theta 1$
- Sub-case : It exists a $i \in \{2, .., \alpha 1\}$ such that $R + S_{i-1} < \theta_{i-1}$ and $R + S_i \ge \theta_i$, with $R + S_{i-1} \in P$

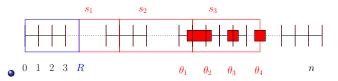


◆□▶ ◆□▶ ◆□▶ ◆□▶ = 三 のへで

- Case 3: $R < \theta_1$ and $R + s_{\alpha} \le \theta_1$
- Sub-case : It exists a $i \in \{2, .., \alpha 1\}$ such that $R + S_{i-1} < \theta_{i-1}$ and $R + S_i \ge \theta_i$, with $R + S_{i-1} \in P$
- $R + S_i \in I$

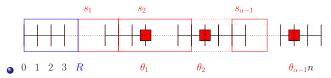


- Case 3: $R < heta_1$ and $R + s_{\alpha} \leq heta_1$
- Sub-case : It exists a $i \in \{2, .., \alpha 1\}$ such that $R + S_{i-1} < \theta_{i-1}$ and $R + S_i \ge \theta_i$, with $R + S_{i-1} \in I$

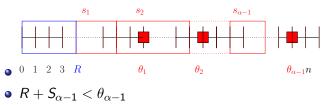


- Case 3: $R < \theta_1$ and $R + s_{\alpha} \le \theta_1$
- Sub-case : It does not exist a $i \in \{2, .., \alpha 1\}$ such that $R + S_{i-1} < \theta_{i-1}$ and $R + S_i \ge \theta_i$

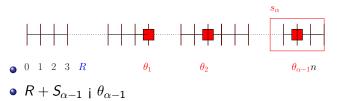
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@



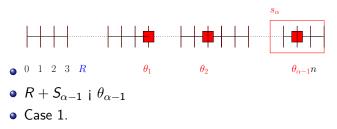
- Case 3: $R < \theta_1$ and $R + s_{\alpha} \le \theta_1$
- Sub-case : It does not exist a $i \in \{2, .., \alpha 1\}$ such that $R + S_{i-1} < \theta_{i-1}$ and $R + S_i \ge \theta_i$



- Case 3: $R < heta_1$ and $R + s_{\alpha} \le heta 1$
- Sub-case : It does not exist a $i \in \{2, .., \alpha 1\}$ such that $R + S_{i-1} < \theta_{i-1}$ and $R + S_i \ge \theta_i$



- Case 3: $R < heta_1$ and $R + s_{\alpha} \le heta 1$
- Sub-case : It does not exist a $i \in \{2, .., \alpha 1\}$ such that $R + S_{i-1} < \theta_{i-1}$ and $R + S_i \ge \theta_i$



Conclusion

• if α is a constant, Deciding if Tree T with large diameter $n - \alpha$ is decomposable is polynomial.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

• if α is a constant, Deciding if Tree T with large diameter $n - \alpha$ is decomposable is polynomial.

• Which class in parametrized complexity ?