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Design of large interconnection networks
Usual constraints:

• each processor can be connected to a limited number of
other processors

• the delays in communication must not be too long

Extensively studied network topologies in this context include
graph products and bundles.

• an interconnection network should be fault-tolerant (some
nodes or links are faulty)

The (edge) fault-diameter has been determined for many important
networks.
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Definition 2. Let G1 and G2 be graphs. The Cartesian product of
graphs G1 and G2, G = G1�G2, is defined on the vertex set
V (G1) × V (G2). Vertices (u1, v1) and (u2, v2) are adjacent if
either u1u2 ∈ E(G1) and v1 = v2 or v1v2 ∈ E(G2) and u1 = u2.
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Definition 3. Let B and F be graphs. A graph G is a Cartesian
graph bundle with fibre F over the base graph B if there is a graph
map p : G → B such that for each vertex v ∈ V (B), p−1({v}) is
isomorphic to F , and for each edge e = uv ∈ E(B), p−1({e}) is
isomorphic to F�K2.

• The mapping p is also called the projection (of the bundle G

to its base B).
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Definition 3. Let B and F be graphs. A graph G is a Cartesian
graph bundle with fibre F over the base graph B if there is a graph
map p : G → B such that for each vertex v ∈ V (B), p−1({v}) is
isomorphic to F , and for each edge e = uv ∈ E(B), p−1({e}) is
isomorphic to F�K2.

• The mapping p is also called the projection (of the bundle G

to its base B).

• We say an edge e ∈ E(G) is degenerate if p(e) is a vertex.
Otherwise we call it nondegenerate.

• Note that each edge e = uv ∈ E(B) naturally induces an
isomorphism ϕe : p−1({u}) → p−1({v}) between two
fibres.
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Figure 1: Nonisomorphic bundles

Let F = K2 and B = C3. On Figure 1 we see two nonisomorphic
bundles with fibre F over the base graph B.
Informally, one can say that bundles are "twisted products".
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Figure 2: Twisted torus: Cartesian graph bundle with fibre C4 over
base C4.

It is less known that graph bundles also appear as computer
topologies. A well known example is the twisted torus on Figure 2.
Cartesian graph bundle with fibre C4 over base C4 is the ILIAC IV
architecture.
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Definition 4. The edge-connectivity of a graph G, λ(G), is the
minimum cardinality over all edge-separating sets in G. A graph G

is said to be k-edge connected, if λ(G) ≥ k.
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Definition 4. The edge-connectivity of a graph G, λ(G), is the
minimum cardinality over all edge-separating sets in G. A graph G

is said to be k-edge connected, if λ(G) ≥ k.

Definition 5. Let G be a k-edge connected graph and 0 ≤ a < k.
Then we define the a-edge fault-diameter of G as

D̄a(G) = max {d(G \ X) | X ⊆ E(G), |X| = a}.

• Note that D̄a(G) is the largest diameter among subgraphs of
G with a edges deleted, hence D̄0(G) is just the diameter of
G, d(G).
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Theorem 1. Let F and B be kF -edge connected and kB-edge
connected graphs respectively, and G a Cartesian graph bundle
with fibre F over the base graph B. Let λ(G) be the
edge-connectivity of G. Then λ(G) ≥ kF + kB.
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Theorem 1. Let F and B be kF -edge connected and kB-edge
connected graphs respectively, and G a Cartesian graph bundle
with fibre F over the base graph B. Let λ(G) be the
edge-connectivity of G. Then λ(G) ≥ kF + kB.

Corollary 2. Let G1 and G2 be k1 and k2-edge connected graphs,
respectively. Then the Cartesian product G1�G2 is at least
(k1 + k2)-edge connected.
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Theorem 3. Let F and B be kF -edge connected and kB-edge
connected graphs respectively, 0 ≤ a < kF , 0 ≤ b < kB , and G

a Cartesian bundle with fibre F over the base graph B. Then

D̄a+b+1(G) ≤ D̄a(F ) + D̄b(B) + 1.
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Let G = K2�K2, see Figure 3. G is a graph bundle with fiber
F = K2 over the base graph B = K2. Then for a = b = 0 we
have

D̄a+b+1(G) = 3,

D̄b(B) + D̄a(F ) + 1 = 1 + 1 + 1 = 3.

Figure 3: G = K2�K2 with one faulty link.
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• Let G be a k connected graph and 0 < a < k. Then

D̄a(G) ≤ Da(G) + 1

• Mixed fault-diameter of G, D(m,n)(G).

Let G be a k connected graph and 0 < a < k, m + n = a.
Then

D(m,n)(G) ≤ D(m−l,n+l)(G), l < m

and

D̄a(G) ≤ D(m,n)(G) ≤ Da(G) + 1, m 6= 0
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