Using latin squares to color split graphs

Sheila Morais de Almeida (State University of Campinas)

Célia Picinin de Mello (State University of Campinas)

Aurora Morgana (University of Rome "La Sapienza")

Outline

- Edge-Coloring
- The Classification Problem
- Split Graphs
- Overfull Graphs
- The Edge-Coloring Conjecture for Split Graphs
- Latin Squares
- The Edge-Coloring of Split Graphs Using Latin Squares

Edge-Coloring

A k-edge-coloring of a graph G is an assignment of k colors to the edges of G such that any two edges incident in a common vertex have distinct colors.

The minimum k required to perform a k-edge-coloring of a simple graph G is called *chromatic* index of G and is denoted by $\chi'(G)$.

$$\chi'(Bull)=3$$

$$\chi'(G) \geq \Delta(G),$$

where $\Delta(G)$ is the maximum degree of a graph G.

$$\chi'(Bull)=3$$

There are graphs that have

$$\chi'(G) > \Delta(G)$$
.

In 1964, Vizing showed that every simple graph G has $\chi'(G) \leq \Delta(G)+1$.

$$\Delta(C_3)=2 \quad \chi'(C_3)=3$$

A direct result of the Vizing's Theorem is that any simple graph G has

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1.$$

Vizing restricted the Edge-Coloring Problem to the following problem:

Given a simple graph G, is the chromatic index of G equal to $\Delta(G)$ or $\Delta(G)+1$?

Given a simple graph G, is the chromatic index of G equal to $\Delta(G)$ or $\Delta(G)+1$?

This problem is known as the *Classification Problem*.

If $\chi'(G) = \Delta(G)$, then G is Class 1.

Otherwise, $\chi'(G) = \Delta(G) + 1$ and G is Class 2.

In 1981, Holyer showed that the problem of deciding if a simple graph G is Class 1 is NP-Complete.

Even so, there are efficient algorithms to solve this problem when we are restricted to some classes of graphs.

- bipartite graphs are Class 1.
- a complete graph is Class 1 iff it has an even number of vertices.
- a cycle (without chords) is Class 1 iff it has an even number of vertices.
- split graphs with odd maximum degree are Class 1.

A graph G is a *split graph* if the set of vertices of G admits a partition [Q, S], where Q is a clique and S is a stable set.

Overfull Graphs

Consider a graph G, with n vertices and m edges.

The graph G is **overfull** if n is odd and $m > \Delta(G) \lfloor n/2 \rfloor$.

$$m = 9 > \Delta(G) \lfloor n/2 \rfloor =$$

= $4 \lfloor 5/2 \rfloor = 8$

Subgraph-Overfull Graphs

If G has a subgraph which is overfull and has maximum degree equal to $\Delta(G)$, then G is **subgraph-overfull**.

Subgraph-Overfull Graphs

If G has a subgraph which is overfull and has maximum degree equal to $\Delta(G)$, then G is subgraph-overfull.

$$m = 9 > \Delta(G) \lfloor n/2 \rfloor =$$

= $4 \lfloor 5/2 \rfloor = 8$

Neighborhood-Overfull Graphs

If G has an overfull subgraph induced by a vertex with degree $\Delta(G)$ and its neighbors, then G is *neighborhood-overfull*.

$$m = 9 > \Delta(G) \lfloor n/2 \rfloor =$$

= $4 \lfloor 5/2 \rfloor = 8$

Subgraph-Overfull Graphs

Overfull graphs and neighborhood-overfull graphs are subgraph-overfull graphs.

Every subgraph-overfull graph is Class 2.

Edge-Coloring Conjecture for Split Graphs

Figueiredo, Meidanis and Mello show that every subgraph-overfull split graph is neighborhood-overfull.

They present the following conjecture:

A split graph G is Class 2 if, and only if, G is neighborhood-overfull.

Graphs with Universal Vertices

Planthold presents the following theorem:

Every simple graph G containing a universal vertex is Class 2 iff G is subgraph-overfull.

 K_5 minus one edge is overfull $\rightarrow K_5$ is subgraph-overfull

In 1995, Chen, Fu, and Ko showed that split graphs with odd Δ (G) are Class 1.

 $\Delta(\mathsf{G}) = 7$

Every split graph G with partition [Q, S] has a bipartite subgraph induced by the edges with a vertex in Q and another vertex in S.

Considering the bipartite ubgraph of G, we denote:

$$I(Q) = max\{d(v), v \in Q\}$$
and

$$(S) = \max\{d(v), v \in S\}.$$

Consider the partition [Q, S] of a split graph, where Q is a maximal clique.

Chen, Fu and Ko also showed that every split graph with $d(Q) \ge d(S)$ is Class 1.

Edge-Coloring of Split Graphs

- Split Graphs that are neighborhood-overfull are Class 2.
- Split Graphs with odd maximum degree are Class 1.
- Split Graphs with even maximum degree that are not neighborhood-overfull and contain a universal vertex are Class 1.
- Split-Graphs with partition [Q, S], where Q is a maximal clique and such that $d(Q) \ge d(S)$ are Class 1.

How about split graphs with even maximum degree and d(S) > d(Q), that are not neighborhood-overfull and do not contain universal vertices? Are these graphs Class 1?

Latin Square

A *latin square of order k* is

- a kxk-matrix
- filled with entries from {0, 1, ..., k-1}
- each element appears exactly once in each row
- each element appears exactly once in each column.

A latin square $M=[m_{i,i}]$ is **commutative** if

$$m_{i,j} = m_{j,i}$$
 for $0 \le i,j \le k-1$.

A latin square $M=[m_{i,j}]$ is **commutative** if

$$m_{i,j} = m_{j,i}$$
 for $0 \le i,j \le k-1$.

0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

A latin square $M=[m_{i,j}]$ is **commutative** if

$$m_{i,j} = m_{i,i}$$
 for $0 \le i,j \le k-1$.

0	1	2	3	4
4	0	1	2	3
3	4	0	1	2
2	3	4	0	1
1	2	3	4	0

A latin square $M=[m_{i,j}]$ is **commutative** if

$$m_{i,j} = m_{j,i}$$
 for $0 \le i,j \le k-1$.

0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

Idempotente Latin Square

A latin square $M=[m_{i,j}]$ is *idempotente* if

$$m_{i,i} = i$$
 for $0 \le i \le k-1$.

0	3	1	4	2
3	1	4	2	0
1	4	2	0	3
4	2	0	3	1
2	0	3	1	4

Idempotente Latin Square

A latin square $M=[m_{i,i}]$ is *idempotente* if

$$m_{i,i} = i$$
 for $0 \le i \le k-1$.

0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

Idempotente Latin Square

A latin square $M=[m_{i,j}]$ is *idempotente* if

$$m_{i,i} = i$$
 for $0 \le i \le k-1$.

0	3	1	4	2
3	1	4	2	0
1	4	2	0	3
4	2	0	3	1
2	0	3	1	4

Chen, Fu and Ko use idempotente commutative **latin squares** to prove that split graphs with odd maximum degree are Class 1.

Let d_i be the number of elements in an array C_i.

Let c_{i,j,} be the jth entrie of the array C_{i.}

A set of arrays $\{C_0, ..., C_k\}$ is a **monotonic color diagram** if $c_{i,j,}$ occurs at most d_{i} -j times in the arrays $\{C_0, C_1, ..., C_{i-1}\}$.

It is always possible to color a bipartite graph [Q,S] with a monotonic color diagram $\{C_0, C_1, ..., C_{|Q|}\}$ if C_i has size at least $d(v_i)$.

It is not possible to construct an idempotente commutative latin square of even order.

Let G be a split graph with even maximum degree.

$$\Delta(G)=10$$

Construct a commutative latin square of order $\Delta(G)$ -1, where $m_{i,i} = i+j \pmod{\Delta(G)}$ -1)

Let's use this commutative latin square to construct: a matrix A (that we use to color G[Q]) and a monotonic color diagram D (that we use to color a bipartite graph B=[Q,S]).

|Q|=7

Necessary condition:

there is a vertex in S with degree at least |Q|/2

Number of times that the color (\triangle (G)-1) can appears in the monotonic color diagram is at most d(Q)-1, so:

$$|Q|-(\Delta-|Q|+2(\Delta-|Q|-2)+(\Delta-|Q|-4)+ \dots + (\Delta-|Q|-(\Delta-|Q|-2)) =$$

$$|Q|-(d(Q)-1+2(d(Q)-3+ \dots +d(Q)-(d(Q)-2))) =$$

$$|Q|-(d(Q)-1+((d(Q)-1)(d(Q)-3))/2 = |Q|-((d(Q)-1)^2)/2$$

$$|Q|-((d(Q)-1)^2)/2 \le d(Q)-1 \rightarrow 2|Q|-(d(Q)-1)^2 \le 2d(Q)-2$$

$$\Rightarrow 2|Q| \le 2d(Q)-2+(d(Q)-1)^2 \Rightarrow |Q| \le (d(Q))^2-1 \Rightarrow (d(Q))^2 \ge 2|Q|+1$$

Necessary condition:

 $(d(Q))^2 \ge 2|Q|+1$

The Classification Problem for Split Graphs with even maximum degree

Let G be a split graph with even maximum degree. If G has a vertex in S with degree at least |Q|/2 and $d(Q)^2 \ge 2|Q|+1$, then G is Class 1.

Thank you