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General concepts

= We work with simple graphs G=(V(G),E(G))
— V(G) is the set of vertices

— E(G) is the set of edges (unordered pairs of
vertices)

m Set of elements of G: S(G)=V(G)UE(G)



General concepts

m Vertices u,ve V(G) are adjacent it uve E(G)

= Edges e,,e,€E(G) are adjacent if they have a
common endvertex

m Vertex ue V(G) and edge e E(G) are incident
If uis endvertex of e



Some notation

Open neighborhood: Adj;(u):={ve V(G)|uve E(G)}
Closed neighborhood: N;(u):= Adjs(u){u}
Degree: degs(u):=|Adj;(u)|

Maximum degree: A(G)



Graph colorings

m Associated to conflict models

= Related elements (incident or adjacent)
receive distinct colors

= Three classical models
— Vertex-coloring
— Edge-coloring
— Total-coloring



Total-coloring

= |s an association of colors to the elements of a graph
= Incident or adjacent elements receive distinct colors
m k-total-coloring: a total-coloring that uses k colors

m Kk-total-colorable graph: it can be colored with k colors

= Total chromatic number y+(G): least number of colors
sufficient for total-coloring G



Example of 5-total-coloring




Some definitions and results

= Observe that y+(G) 2 A(G) + 1
= Total Coloring Conjecture: y+(G) < A(G) + 2
m Classification problem:
— A graph is Type 1 if x1(G) = A(G) + 1
— A graph is Type 2 if y+(G) = A(G) + 2
= It is NP-complete to determine if a graph is
Type 1

— It remais NP-complete even for cubic bipartite
graphs.




Grids

= G, . isagrd if
-V(G,,,) ={1,...m} x{1,...,n}
_ E(Gmxn) = {(l,j)(S,t)ll-S|+|_[-t|=1}
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Total-coloring grids

= P,and C, are Type 2
= All other grids are Type 1
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Partial-grids

= Arbitrary subgraphs of grids
— Recognition: unknown complexity

m Total chromatic number determined for A = 0,
1,2 and 4

= Open problem for A=3.

— All known examples are Type 1
* Trees
« At most three maximum degree vertices
 Maximum induced cycle 4



Our main results

= Development of a decomposition method for
total coloring graphs of maximum degree 3.

m Classification of partial grids with maximum
degree 3 and maximum induced cycle 8 as
Type 1 (using the decomposition method
developed)

= (Some recent results in series-parallel graphs total-coloring)



Decomposition for total-coloring:
the biconnected components

m As a first step we formalize a result that allows
us to focus on biconnected graphs.

= If G is a graph such that all of its biconnected
components have an a-total-coloring (o > A(G)
+ 1), then G itself has an a-total-coloring.



Decomposition for total-coloring:
K,-cut-free components

m A cut of a graph G is a set of vertices whose
exclusion disconnets G.

m If CcV(G) is a cut whose exclusion defines the
components Gy,...,G;, the C-components of G

are G[V(G,)UC]....,G[V(G)UC]

= A K,-cut is a cut {u,v} such that uand v are
adjacent.




Decomposition for total-coloring:
K,-cut-free components

= The K,-cut-free components of G are defined
by the recursive application of K,-cuts in this

graph.
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Decomposition for total-coloring:
frontier-candidates

s The set {u,v} is a frontier-candidate if u and v are
adjacent vertices and both have degree 2.

s Let {u,v} be a frontier candidate and denote u'#v and
v'#U the neighbohrs, respectively, of u and v

= We say that a coloring satisfies the frontier condition
for {u,v} if v'u, u, uv, vand vv’ are colored in one of
the following ways:




Decomposition for total-coloring:
frontier-coloring

= A frontier-coloring is a coloring that satisfies
the frontier condition for all frontier cadidates.
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Why frontier-colorings?
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Decomposition for total-coloring: frontier-
coloring: “invertion” of reference vertices
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The decomposition result

m Consider a biconnected graph G of maximum
degree 3.

Suppose each K,-cut-free component of G has two
frontier-colorings m and =’ such that, for each

frontier-candidate {u,v}, u is reference vertex in r iff
v is reference vertex in «'.

In this case, G is 4-total-colorable.
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Decomposition for total-coloring: intersection
graph of the K,-cut-free components

m If G is a biconnected graph of maximum
degree 3 and 7 is the collection of its K,-cut-

free components, then the intersection graph
J() of [ Is acyclic.

= The above result allows us to 4-total-color G
from 4-total-colorings of its K,-cut-free
components.



The decomposition

m Sketch of proof
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4-total-coloring partial-grids with
bounded maximum induced cycle

= A result: 8-chordal partial-grids with A=3 are
Type 1.

— We just need to show frontier colorings for each
P,-cut-free partial-grid of maximum degree 3.

— There is a finite number of these partial-grids.



The colorings...

M 5:5(G1)—{1,2,3,4}

M1 2.5(G1)—>{1,2,3,4}

Mo 4:5(G2)—>{1,2,3,4}

o S(Go)—>{1,2,3,4}
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Another class: series-parallel graphs

= A graph is a SP-graph if it has no subgraph
homeomorphic to K,.

— There are other possible recursive definitions
= Subclass of planar, the {K;,K; ;}-free graphs

= Superclass of outerplanar, the {K,,K, ;}-free
graphs



Total-coloring SP-graphs

s Every SP-graph of maximum degree A>3 is
Type 1

= The total chromatic number of graphs of
maximum degree A = 1 or 2 is easily determine:

m TheonlyopencaseisA=3

= We can apply our technique for subclasses with
bounded maximum induced cycle.



4-total-coloring SP-graphs with
bounded maximum induced cycle

= A result: 6-chordal partial-grids with A=3 are
Type 1.

— We just need to show frontier colorings for each
P,-cut-free SP-graph of maximum degree 3.

— There is a finite number of these SP-graphs.



The colorings...

1 2:5(G1)—{1,2,3.4} T2a:5(G2)—{1.2,3.4} Ta2:5(Ga)—>{1,2,3,4} T42:5(Ga)—>{1,2,3.4} Ts,a:S5(Gs)—>{1,2,3.4}

s 2:S(G3)—>{1,2,3,4} Mg 2-S(Gz)—{1,2,3,4} Toa S(Ga)—{1.2,3,4} Ti0.a-S(Gz)—{1,2,3.4}




Final considerations

m Our results

— A decomposition for 4-total-coloring graphs of
maximum degree 3.

— Classification of a subset of partial-grids of maximum
degree 3.

— Similar result for SP-graphs

= Future goals

— Writing a computer program for extending our results
for partial-grids/SP-graphs with larger induced cycles.

— Classification of all partial-grids.
— Classification of all SP-graphs.
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