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Motivation and Aim

We consider nations that form alliances to defend themselves or to be able to
attack other countries.
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A graph-theoretic model, according to Hedetniemi et al.

• Nations are represented by vertices.

• Between each pair of nations, there is a bond (either modelling friendship or
hostility).

• Nations can form different types of alliances.
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Our Problem : An example

Regions that have many
friends in the neighbourhood
are less endangered than
regions with few friends.
Conversely, regions that are
surrounded by enemies are
surele in danger.
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Different types of alliances , according to Hedetniemi et al.

Defensive alliance

• Every member has at least as many bonds to other members (including
itself) than to non-members.

• No member can be attacked successfully by non-members.

• Graph-theoretic formulation: DA ⊂ V such that:
for every v ∈ DA: |N [v] ∩DA| ≥ |N [v] \DA|.

Global r-alliances and total domination, CTW 2008 5/23



Different types of alliances , according to Hedetniemi et al.

Offensive alliance

• Characterized by the vertices in their neighborhood outside of the alliance,
written as ∂OA := N [OA] \OA.

• Every such vertex has at least as many bonds to members in the alliance
than to non-members (including itself).

• An offensive alliance can attack every neighbor successfully.

• graph-theoretic notation: OA ⊆ V , such that for every v ∈ ∂OA: |NG[v] ∩
OA| ≥ |NG[v] \OA| (boundary condition).
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Different types of alliances , according to Hedetniemi et al.

• Powerful (or dual) alliances are both: defensive and offensive.

• Alliances are called strong, if the above inequalities are met strictly, leading
to, e.g., strong defensive alliance.

• An Alliance is called global , if it is also a dominating set.
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Examples

a) b) c)

The black vertices form an alliance in each graph: a) a defensive alliance b) an
offensive alliance c) a powerful alliance.
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r-Alliances Notation: δA(v) = |{u ∈ A | u ∈ N(v)}|.

J. A. Rodrı́guez and J. M. Sigarreta generalized the introduced concepts by in-
troducing a slackness condition called strength parameter r.

—S ⊆ V , S 6= ∅, is called a defensive r-alliance if for every v ∈ S, δS(v) ≥
δS̄(v) + r. A defensive (-1)-alliance is a “defensive alliance”.
—S ⊆ V is called an offensive r-alliance if for every v ∈ ∂S, δS(v) ≥ δS̄(v)+r,

where −∆ + 2 < r ≤ ∆.
In particular, an offensive 1-alliance is an “offensive alliance”.
—S ⊆ V is a dual r-alliance if S is both a global defensive r-alliance and an
(r + 2)-offensive alliance.
Graph-theoretic numbers (global!): γd

r , γo
r , γ∗r
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Global r-Alliances will be in the focus of this presentation.
CTW history:
Note 1: ”Global offensive alliances in graphs“ CTW’06 (J.A.R. and J.M.S.)
Note 2: ”On the defensive k-alliance number of a graph“ CTW’07 (J.A.R. and
J.M.S.)
Today’s focus:
(A) ”Global“, i.e., dominance aspects
(B) ”dual“, i.e., both defensive and offensive.
For the sake of simplicity of presentation, we also elaborate on ”defensive“ al-
liances.
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Global defensive r-alliances

Cami et al. [1] showed NP-completeness for r = −1.

Theorem 1 For all fixed r, the following problem is is NP-complete: Given a
graph Γ and a bound `; determine if γd

r(Γ) ≤ `.

Sketch: For r ≤ 3, we can use the fact that any (−r)-GDA is a dominating
set on cubic graphs, and that the dominating set problem is NP-hard on cubic
graphs.
For r = −2, we can modify Cami et al.’s construction.
For r ≥ 0, we can give a different reduction from DOMINATING SET.
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Combinatorial Results

Theorem 2 For any graph Γ,

√
4n + r2 + r

2
≤ γd

r(Γ) ≤ n−
⌈
δn − r

2

⌉
.

Theorem 3 For any graph Γ, γd
r(Γ) ≥


n⌊

δ1−r
2

⌋
+ 1

 .

Corollary 4 For any graph Γ of size m and maximum degrees δ1 ≥ δ2, γd
r(L(Γ)) ≥ m⌊

δ1+δ2−2−r
2

⌋
+1

 , where L(Γ) denotes the line graph of Γ.
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Combinatorial Results: Notes

For any graph Γ,

√
4n + r2 + r

2
≤ γd

r(Γ) ≤ n−
⌈
δn − r

2

⌉
.

The upper bound is attained, for instance, for the complete graph Γ = Kn for
every r ∈ {1− n, . . . , n− 1}.
The lower bound is attained, for instance, for the 3-cube graph Γ = Q3, in the
following cases: 2 ≤ γd

−3(Q3) and 4 ≤ γd
1(Q3) = γd

0(Q3).
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Global offensive r-alliances

Theorem 5 For all fixed r, the following problem is NP-complete: Given a graph
Γ and a bound `; determine if γo

r(Γ) ≤ `.

Combinatorial properties have been presented at the previous CTW.
In addition, one can find interrelations with the concepts of r-domination (yielding
the number γr) and the Laplacian spectral radius µ∗:

Theorem 6 For any simple graph Γ of order n, minimum degree δ, and Lapla-

cian spectral radius µ∗,
⌈

n
µ∗

⌈
δ+r
2

⌉⌉
≤ γo

r(Γ) ≤
⌊
γr(Γ) + n

2

⌋
.
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Global dual r-alliances; Some known examples

• γ∗−1(Kn) =
⌈
n
2

⌉
.

• γ∗−1(Pn) = n−
⌈
n
3

⌉
.

• γ∗−1(Cn) = n−
⌊
n
3

⌋
.

• p ≤ s, γ∗−1(Kp,s) = min
{⌈

p+1
2

⌉
+

⌈
s+1
2

⌉
, p +

⌊
s
2

⌋}
.

• γ∗−1(Wn) =
⌈
n+1
2

⌉
.
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Global dual r-alliances

Theorem 7 For all fixed r, the following problem is NP-complete: Given a graph
Γ and a bound `; determine if γ∗r(Γ) ≤ `.
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Theorem 8 For any graph Γ of order n, size m and minimum degree δ,
√

8m + 4n(r + 2) + (r + 1)2 + r + 1

4

 ≤ γ∗r(Γ) ≤ n−
⌈
δ − r

2

⌉
.

Proof. If S is a global offensive (r + 2)-alliance, then∑
v∈S̄

δS(v) ≥
∑
v∈S̄

δS̄(v) + (n− |S|)(r + 2). (1)

Hence, as
∑
v∈S

δS̄(v) =
∑
v∈S̄

δS(v),

∑
v∈S̄

δS(v) ≥

2m−
∑
v∈S

δS(v)− 2
∑
v∈S̄

δS(v)

 + (n− |S|)(r + 2). (2)

Thus,

3
∑
v∈S̄

δS(v) +
∑
v∈S

δS(v) ≥ 2m + (n− |S|)(r + 2). (3)
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On the other hand, if S is a global defensive r-alliance in Γ,∑
v∈S

δS(v) ≥
∑
v∈S

δS̄(v) + r|S|. (4)

Therefore, by (3) and (4) we have

4
∑
v∈S

δS(v) ≥ 2m + n(r + 2) + 2s(r − 1). (5)

Thus, by |S|(|S| − 1) ≥
∑
v∈S

δS(v) and (5), the result follows.

The lower bound is attained for r = −1 and
r = 0 in the case of the graph on the right hand
side.



Total domination

We consider the following decidability problem total r-domination (r-TD) for each
fixed integer r ≥ 1:
Given Γ = (V, E) and an integer parameter `, is there a vertex set D with
|D| ≤ ` such that δD(v) ≥ r for all v ∈ V ?
The smallest ` such that Γ together with ` forms a YES-instance of r-TD is
denoted γrt(Γ).

Theorem 9 ∀r ≥ 1: r-TD is NP-complete.

Reduction idea: Use the known result for r = 1, adding r new vertices to a 1-TD
instance.
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Total domination and global dual alliances

Theorem 10 Every total k-dominating set is a global defensive (offensive) r-
alliance, where −∆ < r ≤ 2k − ∆. Moreover, every global dual r-alliance,
r ≥ 1, is a total r-dominating set.

Proof.

1. If S ⊂ V is a total k-dominating set in Γ and r ≤ 2k −∆, then

δS(v) ≥ k ≥ r + ∆− k ≥ r + δ(v)− k ≥ r + δS̄(v), ∀v ∈ V.

Therefore, S is both defensive r-alliance and offensive r-alliance in Γ.

2. If S ⊂ V is a global defensive r-alliance, then δS(v) ≥ δS̄(v) + r ≥ r, ∀v ∈ S. Moreover,
if S ⊂ V is a global offensive (r + 2)-alliance, then δS(v) ≥ δS̄(v) + r + 2 ≥ r, ∀v ∈ S̄.
Therefore, δS(v) ≥ r, ∀v ∈ V .
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Total domination and global dual alliances

Corollary 11 Each total k-dominating set is a global dual r-alliance, where−∆ <
r ≤ 2(k − 1)−∆.

Corollary 12

• For −∆ < r ≤ 2k −∆, γkt(Γ) ≥ γd
r(Γ) and γkt(Γ) ≥ γo

r(Γ).

• For −∆ < r ≤ 2(k − 1)−∆, γkt(Γ) ≥ γ∗r(Γ).

• For k ≥ 1, γ∗k(Γ) ≥ γkt(Γ).

By Corollary 12 we have that lower bounds for γd
r(Γ), γo

r(Γ) and γ∗r(Γ) lead
to lower bounds for γkt(Γ). Moreover, upper bounds for γkt(Γ) lead to upper
bounds for γd

r(Γ), γo
r(Γ) and γ∗r(Γ).
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Concluding Remarks

—The complexity results (NP-completeness) shown for various types of global
alliances hold in the non-global case, as well.
—One can show fixed parameter tractability for all mentioned alliance problems.
—However, the seemingly related problems of r-(total)-domination are W[2]-
hard.
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Thanks for your attention !
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