On co-distance hereditary graphs

Swan, Dubois, Vassilis Giakoumakis, C.B. Ould El Mounir

MIS, Université d'Amiens, France

Plan

- Split decomposition
- Distance hereditary graphs : totaly splitdecomposables
- Linear recognition of a co-distance hereditary graph
- Clique-width and k-expression of a codistance hereditary graph

- All considered graphs are undirected without loop nor multiple edge.
- G=(V,E), V is the vertex set of G and E is its edge set G.
- co-G denote the complementary graph of G

Each one of X and Y has at least two vertices

Examples

Decomposition-composition following splits

First Split-component

Second Split-component

Y-

m

 \mathbf{Y}^+

Split decomposition

Definition The split decomposition of a graph is obtained by recursively decomposing the splitcomponnents of a graph until obtained prime graphs (i.e. graphs having no split)

The split decomposition is an extension of modular decomposition.

If $X^- = \emptyset$ or $Y^- = \emptyset$ then X or resp. Y is a non trivial module of G

The notion of module

Module : Let G=(V,E) be graphe. $M \subseteq V$ is a module of G iff: for $x \in V$ -M, x is adjacent to every vertex of M or x is adjacent to no vertex of M

Example: a decomposable graph

Trivial modules: \emptyset , V and the singletons of G

Prime graph:has only trivial modules

M is a module of G and co-

Split and modular decomposition of a graph

The importance of these two decompositions motivated many researching works and we dispose linear time algorithms for them.

Distance hereditary graphs

Definition: The distance between two vertices x and y, denoted by $d_G(x,y)$ is the length of a shortest path between x and y

Definition : A graph G is distance hereditary (DH for short) iff for every connected subgraph H of G and every pair (x,y) of vertices $d_H(x,y) = d_G(x,y)$

Important characterisation

G is DH iff G is totaly decomposable by split decomposition

Distance hereditary graphs and forbidden subgraphs

Theorem : A graph G is DH iff G is DHHG-free

Cographs and DH graphs

A P₄ is a chordless path with four vertices

A P₄ is self-complemented

A **cograph** is a graph which is P_4 -free.

Hence G is a cograph iff co-G is a cograph

The class of cographs is totaly decomposable by modular decomposition.

A **cotree** is a tree obtained by applying modular decomposition to a cograph

Other caracterization of DH graphs

Second caracterization of DH

- **Definition** : A **pruning sequence** is a total ordering of the vertices $[x_1,...,x_n]$ and a sequence $S=[s_1,...,s_{n-1}]$ of triples, such that for $1 \le i \le n-1$, s_i is the one of following words :
- (x_i, P, x_j), x_i is a pendant vertex in G_i
- > $(x_i, F, x_j), x_i$ and x_j are false twins in G_i
- > $(x_i, T, x_j), x_i$ and x_j are true twins in G_i

Theorem : G is DH iff it has a pruning sequence.

Co-Distance Hereditary graphs

Definition : A graph G is co-DH iff co-G is DH.

We shall give a linear time recognition algorithm for G.

Our algorithm will test if co-G is a DH graph. For this we shall

use the recognition algorithm of Damiand, Habib and Paul. There are **6 steps** in this algorithm and we shall show that we did not need to compute co-G for all of these steps but we can work on G and make the necessary transformations in order to remain in linear time on the size of G

STEP 1: Build the distance levels from a vertex v of co-G

{L₁,...L_k} is the set of vertices of co-G such that x belongs to L_i if d_{co-G}(v,x)=i.

STEP 1: distance levels in co-G

We dispose a list L of all vertices of G and an array A such that A[i]=direct acces to i in L

We compute L_1 from G by -deleting from L every neighboor x of v -inserting x in a new liste N_1 -updating A[x] -> direct acces to x in N_1 .

L₁ will be formed by the remaining vertices of L

STEP 1: distance levels in co-G

 L_2 will be formed by the vertices of N_1 which are not adjacent to all vertices of L_1 .

$\rm L_2$ will be the set of the remaining vertices of $\rm N_1$

STEP 1

We proceed in an analogous way for computing the other distance levels in co-G.

Note that if every vertex of N_i is adjacent to every vertex of L_i then $\{v\} \cup L_1 \cup \dots \cup L_i$ is a connected component of co-G. In this case we re-start the computation of distance Levels from a new vertex u of N_i

STEP 2

Construct all connected components of every distance level L_i (we know that the corresponding graph is a cograph).

Each $G[L_i]$ is the cograph. iff co- $G[L_i]$ is a cograph

Construct a cotree of $G[L_i]$ and change 0-nodes into 1-nodes and 1-nodes in to 0-nodes. We find in this way the connected components of $co-G[L_i]$

Construct a prunning sequence of co-G[L_i]

Using the algorithm of Damiand, Habib and Paul (2001) we can construct a prunning sequence of a cograph in linear time using the corresponding cotree. Once the pruning sequence is constructed, the algorithm contracts each connected component to the last vertex of this pruning sequence.

Sort the vertices of Li by increasing inner degree

Sort the vertices L_i by decreasing inner degree

STEP5

For every vertex x of L_i having exactly one neighboor y in L_{i-1} : insert (xPy) in pruning sequence

If x has exactly one neighboor in L_i in the graph co-G, x has $|L_{i-1}|$ neighboors in G.

STEP 6

For every vertex x of L_i taken in increasing degree order, construct a pruning sequence of the graph induced by $[N_{i-1}(x)]$. (*We know that it is a cograph*)

Once the vertices of L_i have been sorted by decreasing inner order, using the array A we can find the non-neighborhood in L_{i-1} of each vertex x in L_i with in O(degree(x)) complexity.

We then proceed as described on Steps 2 and 3

[Courcelle, Engelfriet, Rozenberg, 93]

- k-expression : Expression allowing to construct a graph using at most k labels and the following operations:
 - i(v): label the vertex v by the label i
 - \oplus disjoint union of two graphs
 - $\eta_{i \rightarrow j}$ Connecting all vertices labeled i with them labeled j
 - $\rho_{i\,\rightarrow\,j}$ Change labels i into labels j

Clique width

Is the minimum number of labels needed for defining a graph by a k-expression

: [Courcelle, Makowski, Rotics, 98] There exists efficient solutions for many optimization

problems for any class of graphs whose clique-width is bounded by a constant k.

K-expression for DH graphs

Golumbic and Rotics (2000) proposed a 3-expression for DH graphs.

This expression was obtained by contructing from the Pruning sequence of a DH graph G a special tree T(G) the **pruning tree**.

Constructing the 3-expression for DH graphs

Let a be an internal node of the pruning tree and $a_1,...,a_l$ its sons from left to right. We assume that we know the k-expressions for G(a_i) and H={ G(a_{i+1}) **U**...**U** G(a_l)}

for constructing the graph G(a_i) U H either
1. We consider the union of these two graphs
2. Or we add edges between G(a_i) and H joining
a special kind of descendants of a (twin descendants). These descendants are labeled 2 and all the other vertices 1.

Constructing the 3-expression for DH graphs

We add all edges

For avoiding to add edges between the vertices labeled 2 in the same graph, we use the label 3 for renaming the vertices labeled 2 in H, Then we add all edges between vertices labeled 2 and 3 and finaly we re-change the label of the vertices labeled 3

Constructing the 4-expression for co-DH graphs

Either we will have to add edges between all vertices of $G(a_i)$ and H or we add all edges except those Concerning vertices labeled 2. In any case we need 4 labels, we give the label 3 to the vertices labeled 1 in H, the label 4 to the vertices labeled 2 in H before adding the necessary edge between $G(a_i)$ and H.

THANKS YOU