
On co-distance hereditary
graphs

Swan, Dubois, Vassilis Giakoumakis,

C.B. Ould El Mounir

MIS, Université d’Amiens, France

Plan

Split decomposition
Distance hereditary graphs : totaly split-
decomposables
Linear recognition of a co-distance
hereditary graph
Clique-width and k-expression of a co-
distance hereditary graph

Notations
All considered graphs are undirected without loop
nor multiple edge.

G=(V,E), V is the vertex set of G and E is its edge
set G.

co-G denote the complementary graph of G

X+ Y+
X- Y-

All edges between X+ and Y+

No other edge between X and Y
X Y

Split of a graph G

Each one of X and Y has at least two vertices

Examples

X+ Y+
X- Y-

Y-Y+X+X-

Decomposition-composition
following splits

X- Y+
X+ Y-

X- X+ Y+ Y-

m m

First Split-component Second Split-component

Example of a split
decomposition of a graph

V1
V2

v v
G1 G2

Split decomposition
Definition : The split decomposition of a graph is
obtained by recursively decomposing the split-
componnents of a graph until obtained prime graphs
(i.e. graphs having no split)

The split decomposition is an extension of
modular decomposition.

X+ Y+
X- Y-

All edges between X+ and Y+

No other edge between X and Y
X Y

Module of a graph G

If X- =∅ or Y- =∅ then X or resp. Y
is a non trivial module of G

The notion of module

Module : Let G=(V,E) be graphe. M ⊆ V is a module of G iff:

for x ∈V-M, x is adjacent to every vertex of M or x is adjacent to
no vertex of M

Trivial modules: ∅, V and
the singletons of G

Prime graph:has only
trivial modules

Example: a decomposable graph

M is a module of G and co-G

Split and modular
decomposition of a graph

The importance of these two decompositions motivated
many researching works and we dispose linear time
algorithms for them.

Distance hereditary graphs
Definition : The distance between two vertices x and y,

denoted by dG(x,y) is the length of a shortest path between x

and y

Definition : A graph G is distance hereditary (DH for
short) iff for every connected subgraph H of G and
every pair (x,y) of vertices dH(x,y)= dG(x,y)

Important characterisation

G is DH iff G is totaly decomposable by split decomposition

Distance hereditary graphs
and forbidden subgraphs

Theorem : A graph G is DH iff G is DHHG-free

Hole

Ck

House Domino Gem

Cographs and DH graphs

A P4 is a chordless path with four vertices

A cograph is a graph which is P4-free.

Hence G is a cograph iff co-G is a cograph

The class of cographs is totaly decomposable by
modular decomposition.

A P4 is self-complemented

Cotree
A cotree is a tree obtained by applying
modular decomposition to a cograph

a

b d

c
e

1

e 0

1 1

a b c d

Other caracterization of DH
graphs

True twins

False twins

z is a pendant
vertex

x

y

G

z

X and y are

Second caracterization of DH
Definition : A pruning sequence is a total ordering

of the vertices [x1,…,xn] and a sequence S=[s1,…,sn-

1] of triples, such that for 1≤ i ≤ n-1, si is the one of
following words :

(xi, P, xj), xi is a pendant vertex in Gi

(xi, F, xj), xi and xj are false twins in Gi

(xi, T, xj), xi and xj are true twins in Gi

Theorem : G is DH iff it has a pruning sequence.

Co-Distance Hereditary graphs

Definition : A graph G is co-DH iff co-G is DH.

We shall give a linear time recognition algorithm for G.

Our algorithm will test if co-G is a DH graph. For this we shall

use the recognition algorithm of Damiand, Habib and Paul. There
are 6 steps in this algorithm and we shall show that we did not need
to compute co-G for all of these steps but we can work on G and
make the necessary transformations in order to remain in linear
time on the size of G

{L1,…Lk} is the set
of vertices of

co-G such that x
belongs to Li if
dco-G(v,x)=i.

STEP 1: Build the distance levels from
a vertex v of co-G

v

L1

L2

L3

STEP 1: distance levels in co-G
We dispose a list L of all vertices of G and an array A such that
A[i]=direct acces to i in L

We compute L1 from G by
-deleting from L every neighboor x of v
-inserting x in a new liste N1
-updating A[x] -> direct acces to x in N1.

L1 will be formed by the remaining vertices of L

STEP 1: distance levels in co-G

L2 will be formed by the vertices of N1 which are not
adjacent to all vertices of L1.

v

L1

L2
x

y z

For finding L2 we use an array
Index[1..n], initialized to 0.
We visit every neighboor of every
vertex in L1.
We increase by 1 index[z] for every
neighboor z in N1. If
Index[z]=L1 then we remove z from
N1 and we insert it to a new list N2

L2 will be the set of the remaining
vertices of N1

STEP 1

We proceed in an analogous way for computing the
other distance levels in co-G.

Note that if every vertex of Ni is adjacent to every
vertex of Li then {v} U L1U… U Li is a connected component
of co-G. In this case we re-start the computation of distance
Levels from a new vertex u of Ni

STEP 2

Construct all connected components of
every distance level Li (we know that the
corresponding graph is a cograph).

Each G[Li] is the cograph. iff co-G[Li] is a
cograph

Construct a cotree of G[Li] and change
0-nodes into 1-nodes and 1-nodes in to
0-nodes. We find in this way the
connected components of co-G[Li]

STEP 3
Construct a prunning sequence of co-G[Li]

Using the algorithm of Damiand, Habib and Paul (2001) we can
construct a prunning sequence of a cograph in linear time using
the corresponding cotree. Once the pruning sequence is
constructed, the algorithm contracts each connected component
to the last vertex of this pruning sequence.

STEP 4

Sort the vertices of Li by increasing inner
degree

Sort the vertices Li by decreasing inner degree

STEP5
For every vertex x of Li having exactly one
neighboor y in Li-1: insert (xPy) in pruning
sequence

If x has exactly one neighboor in Li in the graph co-G, x
has |Li-1| neighboors in G.

STEP 6
For every vertex x of Li taken in increasing
degree order, construct a pruning sequence of
the graph induced by [Ni-1(x)].
(We know that it is a cograph)

Once the vertices of Li have been sorted by decreasing inner order,
using the array A we can find the non-neighborhood in Li-1 of each
vertex x in Li with in O(degree(x)) complexity.

We then proceed as described on Steps 2 and 3

K-expression
[Courcelle, Engelfriet, Rozenberg, 93]

k-expression : Expression allowing to construct a graph using
at most k labels and the following operations:

⊕ disjoint union of two graphs

ηi → j Connecting all vertices labeled i with them
labeled j

ρi → j Change labels i into labels j

i(v): label the vertex v by the label i

Clique width
Is the minimum number of labels needed
for defining a graph by a k-expression

: [Courcelle, Makowski, Rotics, 98]
There exists efficient solutions for many optimization
problems for any class of graphs whose clique-width is
bounded by a constant k.

K-expression for DH graphs

Golumbic and Rotics (2000) proposed a 3-expression for
DH graphs.

This expression was obtained by contructing from the
Pruning sequence of a DH graph G a special tree T(G)
the pruning tree.

Constructing the 3-expression
for DH graphs

Let a be an internal node of the pruning tree and a1,…,al its
sons from left to right. We assume that we know the
k-expressions for G(ai) and H={ G(ai+1) U…U G(al)}

for constructing the graph G(ai) U H either
1. We consider the union of these two graphs
2. Or we add edges between G(ai) and H joining
a special kind of descendants of a (twin descendants). These
descendants are labeled 2 and all the other vertices 1.

Constructing the 3-expression
for DH graphs

1

2

1

2 H

We add all edges

For avoiding to add edges between the
vertices labeled
2 in the same graph, we use
the label 3 for renaming
the vertices labeled 2 in H,
Then we add all edges between
vertices labeled 2 and 3 and finaly we
re-change the label of the vertices
labeled 3

a

G(ai)

Constructing the 4-expression
for co-DH graphs

1

2

1

2G(ai) H

Either we will have to add edges
between all vertices of G(ai) and
H or we add all edges except those
Concerning vertices labeled 2.
In any case we need 4 labels, we give
the label 3 to the vertices labeled 1 in
H, the label 4 to the vertices labeled 2
in H before adding the necessary edges
between G(ai) and H.

a

THANKS YOU

