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Random failures on networks

Consider the Internet, viewed as a network between computers
and routers.

Any two such devices that are directly linked to each other
have a chance of failing to communicate.

Question: What is the situation after these random failures?

Question: What if the devices themselves failed?
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Percolation on finite (but large) graphs

Example

Consider the graph Kn (the complete graph on n vertices),
and

edge percolation process with retainment probability p.

I This is the classical Erdős-Rényi model of random graphs,
a.k.a. Gn,p.
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a.k.a. Gn,p.

Nikolaos Fountoulakis, University of Birmingham Percolation on sparse random graphs with given degree sequence



Motivation
Percolation on finite graphs

Random graphs with a given degree sequence
Why is it true...

Questions for further study
The End

Percolation on finite (but large) graphs

Example

Consider the graph Kn (the complete graph on n vertices),
and

edge percolation process with retainment probability p.
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Percolation on finite (but large) graphs

The main question is:

Given p = p(n), is there a component with at least εn vertices,
with probability that tends to 1 as n→∞?

Such a component is a called a giant component.

Nikolaos Fountoulakis, University of Birmingham Percolation on sparse random graphs with given degree sequence



Motivation
Percolation on finite graphs

Random graphs with a given degree sequence
Why is it true...

Questions for further study
The End

Percolation on finite (but large) graphs

The main question is:

Given p = p(n), is there a component with at least εn vertices,
with probability that tends to 1 as n→∞?

Such a component is a called a giant component.

Nikolaos Fountoulakis, University of Birmingham Percolation on sparse random graphs with given degree sequence



Motivation
Percolation on finite graphs

Random graphs with a given degree sequence
Why is it true...

Questions for further study
The End

Percolation on finite (but large) graphs

The main question is:

Given p = p(n), is there a component with at least εn vertices,
with probability that tends to 1 as n→∞?

Such a component is a called a giant component.

Nikolaos Fountoulakis, University of Birmingham Percolation on sparse random graphs with given degree sequence



Motivation
Percolation on finite graphs

Random graphs with a given degree sequence
Why is it true...

Questions for further study
The End

Percolation on finite graphs

Let us return to edge percolation on Kn.

A classical result by Erdős and Rényi:

I If p > 1+δ
n , then with probability → 1, as n→∞, the

remaining graph has a (unique) giant component;

I if p < 1−δ
n , then all the components of the remaining graph

have O(log n) vertices, with probability 1− o(1).
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Our setting
For any integer n ≥ 1, we let dn = (d1, . . . , dn) be a vector of
non-negative integers such that

∑n
i=1 di is even.

This is a degree sequence, in the sense that if we consider a
set of vertices {1, . . . , n}, then

vertex i has degree di .

We consider the set of all simple graphs on the vertex-set
{1, . . . , n} whose degree sequence is dn.

We let G (dn) be a random graph uniformly chosen among all
simple graphs whose degree sequence is dn.
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Why do we study such random graphs

Many real random networks/graphs appear to have a certain
degree sequence.

A ubiquitous degree sequence is a

Power-law degree sequence

]vert. of degree i

n
∼ 1

iγ
,

where γ > 0.

Empirical research has revealed that for example the
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Why do we study such random graphs

Many real random networks/graphs appear to have a certain
degree sequence.

A ubiquitous degree sequence is a

Power-law degree sequence

]vert. of degree i

n
∼ 1

iγ
,

where γ > 0.

Empirical research has revealed that for example the Internet,
the World-Wide Web, biological networks and other real-life
networks have such a degree sequence.
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The problem

We will consider both

I edge percolation:

delete randomly and independently each edge of G (dn) with
prob. 1− p.

I vertex percolation:

delete randomly and independently each vertex of G (dn) with
prob. 1− p.

We let G̃ (dn, p) be the remaining graph.

The question we will try to answer is:

Is there a component with at least εn vertices in G̃ (dn, p),
for some ε > 0?
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Assume that for all i > 0 Di (n) := ]{vertices of deg. i in dn}

Di (n)

n
→ λi .

Let us set L(s) :=
∑

i≥0 λi s
i , and assume that

L′′(1) > L′(1).

We set

pc :=
L′(1)

L′′(1)
.
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The main theorem

For each n ≥ 1, we have a degree sequence dn = (d1, . . . , dn),
such that Max .Degree ≤ n1/9 and L′′(1) > L′(1).

Both for edge percolation and vertex percolation, with
probability 1− o(1):

I If p > pc , then G̃ (dn, p) contains a component of order at
least εn, for some ε > 0;

I If p < pc , then no such component exists.

When d1 = · · · = dn = d ≥ 3, then for both types of
percolation

pc =
1

d − 1
.

(That was known for the case of edge percolation
(A. Goerdt))
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The fundamental theorem of branching processes

Galton-Watson process
We have an individual x that generates a random number of
children, say X :

This continues for as long as there are “newborn” children.
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The fundamental theorem of branching processes

Galton-Watson process
We have an individual x that generates a random number of
children, say X :

each one of its children generates independently a number of
children distributed as X .

This continues for as long as there are “newborn” children.
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The fundamental theorem of branching processes

I if E (X ) < 1, then with probability 1 the process dies out after
a finite number of generations;

I if E (X ) > 1, then the process goes on for an infinite number
of generations, with positive probability.
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Back to G (dn)

Consider a vertex v and assume that it has degree d(v).

The d(v) neighbours are chosen proportionally to their
degrees.

Let v1 be the first neighbour of v

The expected number of children of v1 is (almost equal to)∑
i≥1

(i − 1)
iDi (n)

D
,

where D =
∑

i≥1 iDi (n).
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Back to G (dn)

Consider a vertex v and assume that it has degree d(v).

The d(v) neighbours are chosen proportionally to their
degrees.

Let v1 be the first neighbour of v

The expected number of children of v1 is (almost equal to)∑
i≥1

(i − 1)
iDi (n)

D
n→∞→

∑
i≥1

i(i − 1)
λi∑

j≥1 jλj
=

L′′(1)

L′(1)
,

where D =
∑

i≥1 iDi (n).
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Sketch of the proof

In fact, for all d(v) neighbours of v this is true:

E (]children)→
∑
i≥1

i(i − 1)
λi∑

j≥1 jλj
=

L′′(1)

L′(1)
.
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Sketch of the proof

If we look at G (dn) around vertex v at some distance, say at
most log log n, we will see

a random tree where the expected number of children is
approximately equal to

L′′(1)

L′(1)
.

Nikolaos Fountoulakis, University of Birmingham Percolation on sparse random graphs with given degree sequence



Motivation
Percolation on finite graphs

Random graphs with a given degree sequence
Why is it true...

Questions for further study
The End

Sketch of the proof

If we look at G (dn) around vertex v at some distance, say at
most log log n, we will see

a random tree where the expected number of children is
approximately equal to

L′′(1)

L′(1)
.

Nikolaos Fountoulakis, University of Birmingham Percolation on sparse random graphs with given degree sequence



Motivation
Percolation on finite graphs

Random graphs with a given degree sequence
Why is it true...

Questions for further study
The End

Sketch of the proof

So, locally G̃ (dn, p) will look like a random tree,
where the expected number of children is approximately

p
L′′(1)

L′(1)
.

So,

I if p < pc = L′(1)
L′′(1) , then p L′′(1)

L′(1) < 1

I if p > pc = L′(1)
L′′(1) , then p L′′(1)

L′(1) > 1
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Sketch of the proof

So, locally G̃ (dn, p) will look like a random tree,
where the expected number of children is approximately

p
L′′(1)

L′(1)
.

So,

I if p < pc = L′(1)
L′′(1) , then p L′′(1)

L′(1) < 1

(subcritical branching process);

I if p > pc = L′(1)
L′′(1) , then p L′′(1)

L′(1) > 1

(supercritical branching process).
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Power-law degree sequences

Recall that in this case

λi ∼
1

iγ
,

for some γ > 0.

If γ < 3, then L′′(1) is divergent.

Question:
Is pc = 0 in this case?
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More open questions:

1. Look inside the phase transition: p → pc .

2. What is the rate of decrease of the giant component as
p ↓ pc?

Nikolaos Fountoulakis, University of Birmingham Percolation on sparse random graphs with given degree sequence



Motivation
Percolation on finite graphs

Random graphs with a given degree sequence
Why is it true...

Questions for further study
The End

More open questions:

1. Look inside the phase transition: p → pc .

2. What is the rate of decrease of the giant component as
p ↓ pc?

Nikolaos Fountoulakis, University of Birmingham Percolation on sparse random graphs with given degree sequence



Motivation
Percolation on finite graphs

Random graphs with a given degree sequence
Why is it true...

Questions for further study
The End

More open questions:

1. Look inside the phase transition: p → pc .

2. What is the rate of decrease of the giant component as
p ↓ pc?

Nikolaos Fountoulakis, University of Birmingham Percolation on sparse random graphs with given degree sequence



Motivation
Percolation on finite graphs

Random graphs with a given degree sequence
Why is it true...

Questions for further study
The End

Thank you!
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