Percolation on sparse random graphs with given degree sequence

Nikolaos Fountoulakis School of Mathematics University of Birmingham

7th Cologne-Twente Workshop on Graphs and Combinatorial Optimization 14 May 2008

Motivation

Percolation on finite graphs Random graphs with a given degree sequence Why is it true... Questions for further study The End

Random failures on networks

Random failures on networks

Consider the Internet, viewed as a network between computers and routers.

Random failures on networks

Consider the Internet, viewed as a network between computers and routers.

Any two such devices that are directly linked to each other have a chance of failing to communicate.

Random failures on networks

Consider the Internet, viewed as a network between computers and routers.

Any two such devices that are directly linked to each other have a chance of failing to communicate.

Question: What is the situation after these random failures?

Random failures on networks

Consider the Internet, viewed as a network between computers and routers.

Any two such devices that are directly linked to each other have a chance of failing to communicate.

Question: What is the situation after these random failures?

Question: What if the devices themselves failed?

Percolation on finite (but large) graphs

Percolation on finite (but large) graphs

Example

Percolation on finite (but large) graphs

Example

Consider the graph K_n (the complete graph on n vertices), and

Percolation on finite (but large) graphs

Example

Consider the graph K_n (the complete graph on n vertices), and

edge percolation process with retainment probability p.

Percolation on finite (but large) graphs

Example

Consider the graph K_n (the complete graph on n vertices), and

edge percolation process with retainment probability p.

► This is the classical Erdős-Rényi model of random graphs, a.k.a. G_{n,p}.

Percolation on finite (but large) graphs

The main question is:

Percolation on finite (but large) graphs

The main question is:

Given p = p(n), is there a component with at least ϵn vertices, with probability that tends to 1 as $n \to \infty$?

Percolation on finite (but large) graphs

The main question is:

Given p = p(n), is there a component with at least ϵn vertices, with probability that tends to 1 as $n \to \infty$?

Such a component is a called a *giant component*.

Percolation on finite graphs

Let us return to edge percolation on K_n .

Percolation on finite graphs

Let us return to edge percolation on K_n .

A classical result by Erdős and Rényi:

Percolation on finite graphs

Let us return to edge percolation on K_n .

A classical result by Erdős and Rényi:

▶ If $p > \frac{1+\delta}{n}$, then with probability $\rightarrow 1$, as $n \rightarrow \infty$, the remaining graph has a (unique) giant component;

Percolation on finite graphs

Let us return to edge percolation on K_n .

A classical result by Erdős and Rényi:

- ▶ If $p > \frac{1+\delta}{n}$, then with probability $\rightarrow 1$, as $n \rightarrow \infty$, the remaining graph has a (unique) giant component;
- If p < 1−δ/n, then all the components of the remaining graph have O(log n) vertices, with probability 1 − o(1).</p>

Our setting

For any integer $n \ge 1$, we let $\mathbf{d}_n = (d_1, \ldots, d_n)$ be a vector of non-negative integers such that $\sum_{i=1}^n d_i$ is even.

Our setting

For any integer $n \ge 1$, we let $\mathbf{d}_n = (d_1, \ldots, d_n)$ be a vector of non-negative integers such that $\sum_{i=1}^n d_i$ is even.

This is a *degree sequence*, in the sense that if we consider a set of vertices $\{1, \ldots, n\}$, then

vertex *i* has degree d_i .

Our setting

For any integer $n \ge 1$, we let $\mathbf{d}_n = (d_1, \ldots, d_n)$ be a vector of non-negative integers such that $\sum_{i=1}^n d_i$ is even.

This is a *degree sequence*, in the sense that if we consider a set of vertices $\{1, \ldots, n\}$, then

vertex *i* has degree d_i .

We consider the set of all *simple* graphs on the vertex-set $\{1, \ldots, n\}$ whose degree sequence is \mathbf{d}_n .

Our setting

For any integer $n \ge 1$, we let $\mathbf{d}_n = (d_1, \ldots, d_n)$ be a vector of non-negative integers such that $\sum_{i=1}^n d_i$ is even.

This is a *degree sequence*, in the sense that if we consider a set of vertices $\{1, \ldots, n\}$, then

vertex *i* has degree d_i .

We consider the set of all *simple* graphs on the vertex-set $\{1, \ldots, n\}$ whose degree sequence is \mathbf{d}_n .

We let $G(\mathbf{d}_n)$ be a random graph uniformly chosen among all simple graphs whose degree sequence is \mathbf{d}_n .

Why do we study such random graphs

Why do we study such random graphs

Many real random networks/graphs appear to have a certain degree sequence.

Why do we study such random graphs

Many real random networks/graphs appear to have a certain degree sequence.

A ubiquitous degree sequence is a

Power-law degree sequence

Why do we study such random graphs

Many real random networks/graphs appear to have a certain degree sequence.

A ubiquitous degree sequence is a

Power-law degree sequence

$$\frac{\text{\pm vert. of degree i}}{n} \sim \frac{1}{i^{\gamma}},$$

where $\gamma > 0$.

Why do we study such random graphs

Many real random networks/graphs appear to have a certain degree sequence.

A ubiquitous degree sequence is a

Power-law degree sequence

$$\frac{\text{ $$$$$$$$$$$$$$$$$$$$$$$$$$$$

where $\gamma > 0$.

Empirical research has revealed that for example the Internet,

Why do we study such random graphs

Many real random networks/graphs appear to have a certain degree sequence.

A ubiquitous degree sequence is a

Power-law degree sequence

$$rac{\# ext{vert. of degree i}}{n} \sim rac{1}{i^{\gamma}},$$

where $\gamma > 0$.

Empirical research has revealed that for example the Internet, the World-Wide Web,

Why do we study such random graphs

Many real random networks/graphs appear to have a certain degree sequence.

A ubiquitous degree sequence is a

Power-law degree sequence

$$rac{\# ext{vert. of degree i}}{n} \sim rac{1}{i^{\gamma}},$$

where $\gamma > 0$.

Empirical research has revealed that for example the Internet, the World-Wide Web, biological networks and other real-life networks have such a degree sequence.

The problem

We will consider both

The problem

We will consider both

edge percolation:

delete randomly and independently each *edge* of $G(\mathbf{d}_n)$ with prob. 1 - p.

The problem

We will consider both

edge percolation:

delete randomly and independently each *edge* of $G(\mathbf{d}_n)$ with prob. 1 - p.

vertex percolation:

delete randomly and independently each vertex of $G(\mathbf{d}_n)$ with prob. 1 - p.

The problem

We will consider both

edge percolation:

delete randomly and independently each *edge* of $G(\mathbf{d}_n)$ with prob. 1 - p.

vertex percolation:

delete randomly and independently each vertex of $G(\mathbf{d}_n)$ with prob. 1 - p.

We let $\tilde{G}(\mathbf{d}_n, p)$ be the remaining graph.

The problem

We will consider both

edge percolation:

delete randomly and independently each *edge* of $G(\mathbf{d}_n)$ with prob. 1 - p.

vertex percolation:

delete randomly and independently each vertex of $G(\mathbf{d}_n)$ with prob. 1 - p.

We let $\tilde{G}(\mathbf{d}_n, p)$ be the remaining graph.

The question we will try to answer is:

Is there a component with at least ϵn vertices in $\tilde{G}(\mathbf{d}_n, p)$, for some $\epsilon > 0$?

Assume that for all i > 0 $D_i(n) := \sharp \{ \text{vertices of deg. } i \text{ in } \mathbf{d}_n \}$

$$\frac{D_i(n)}{n}\to \lambda_i.$$

Assume that for all i > 0 $D_i(n) := \sharp \{ \text{vertices of deg. } i \text{ in } \mathbf{d}_n \}$

$$\frac{D_i(n)}{n}\to \lambda_i.$$

Let us set $L(s) := \sum_{i \ge 0} \lambda_i s^i$, and assume that L''(1) > L'(1).
Assume that for all i > 0 $D_i(n) := \sharp \{ \text{vertices of deg. } i \text{ in } \mathbf{d}_n \}$

$$\frac{D_i(n)}{n}\to \lambda_i.$$

Let us set $L(s) := \sum_{i \ge 0} \lambda_i s^i$, and assume that L''(1) > L'(1).

We set

$$p_c:=\frac{L'(1)}{L''(1)}.$$

The main theorem

For each $n \ge 1$, we have a degree sequence $\mathbf{d}_n = (d_1, \ldots, d_n)$, such that $Max.Degree \le n^{1/9}$ and L''(1) > L'(1).

The main theorem

For each $n \ge 1$, we have a degree sequence $\mathbf{d}_n = (d_1, \ldots, d_n)$, such that *Max.Degree* $\le n^{1/9}$ and L''(1) > L'(1). Both for edge percolation and vertex percolation, with probability 1 - o(1):

The main theorem

For each $n \ge 1$, we have a degree sequence $\mathbf{d}_n = (d_1, \ldots, d_n)$, such that $Max.Degree \le n^{1/9}$ and L''(1) > L'(1). Both for edge percolation and vertex percolation, with probability 1 - o(1):

 If p > p_c, then G̃(d_n, p) contains a component of order at least *en*, for some *e* > 0;

The main theorem

For each $n \ge 1$, we have a degree sequence $\mathbf{d}_n = (d_1, \ldots, d_n)$, such that $Max.Degree \le n^{1/9}$ and L''(1) > L'(1). Both for edge percolation and vertex percolation, with

- probability 1 o(1):
- If p > p_c, then G̃(d_n, p) contains a component of order at least *en*, for some *e* > 0;
- If $p < p_c$, then no such component exists.

The main theorem

For each $n \ge 1$, we have a degree sequence $\mathbf{d}_n = (d_1, \ldots, d_n)$, such that $Max.Degree \le n^{1/9}$ and L''(1) > L'(1).

Both for edge percolation and vertex percolation, with probability 1 - o(1):

- If p > p_c, then G̃(d_n, p) contains a component of order at least *en*, for some *e* > 0;
- If p < p_c, then no such component exists.
 When d₁ = · · · = d_n = d ≥ 3, then for both types of percolation

$$p_c=\frac{1}{d-1}.$$

(That was known for the case of edge percolation (A. Goerdt))

The fundamental theorem of branching processes

The fundamental theorem of branching processes

Galton-Watson process

We have an individual x that generates a random number of children, say X:

The fundamental theorem of branching processes

Galton-Watson process

We have an individual x that generates a random number of children, say X:

*

The fundamental theorem of branching processes

Galton-Watson process

We have an individual x that generates a random number of children, say X:

The fundamental theorem of branching processes

Galton-Watson process

We have an individual x that generates a random number of children, say X:

each one of its children generates independently a number of children distributed as X.

The fundamental theorem of branching processes

Galton-Watson process

We have an individual x that generates a random number of children, say X:

The fundamental theorem of branching processes

Galton-Watson process

We have an individual x that generates a random number of children, say X:

This continues for as long as there are "newborn" children.

The fundamental theorem of branching processes

The fundamental theorem of branching processes

▶ if E(X) < 1, then with probability 1 the process dies out after a finite number of generations;

The fundamental theorem of branching processes

- ▶ if E(X) < 1, then with probability 1 the process dies out after a finite number of generations;
- ▶ if E(X) > 1, then the process goes on for an infinite number of generations, with positive probability.

Back to $G(\mathbf{d}_n)$

Consider a vertex v and assume that it has degree d(v).

Back to $G(\mathbf{d}_n)$

Consider a vertex v and assume that it has degree d(v).

The d(v) neighbours are chosen proportionally to their degrees.

Back to $G(\mathbf{d}_n)$

Consider a vertex v and assume that it has degree d(v).

The d(v) neighbours are chosen proportionally to their degrees.

Let v_1 be the first neighbour of v

Back to $G(\mathbf{d}_n)$

Consider a vertex v and assume that it has degree d(v).

The d(v) neighbours are chosen proportionally to their degrees.

Let v_1 be the first neighbour of v

The expected number of children of v_1 is (almost equal to)

$$\sum_{i\geq 1}(i-1)\frac{iD_i(n)}{D},$$

where $D = \sum_{i \ge 1} i D_i(n)$.

Back to $G(\mathbf{d}_n)$

Consider a vertex v and assume that it has degree d(v).

The d(v) neighbours are chosen proportionally to their degrees.

Let v_1 be the first neighbour of v

The expected number of children of v_1 is (almost equal to)

$$\sum_{i\geq 1} (i-1) \frac{iD_i(n)}{D} \stackrel{n\to\infty}{\to} \sum_{i\geq 1} i(i-1) \frac{\lambda_i}{\sum_{j\geq 1} j\lambda_j} = \frac{L''(1)}{L'(1)},$$

where $D = \sum_{i \ge 1} i D_i(n)$.

Sketch of the proof

In fact, for all d(v) neighbours of v this is true:

$$E\left({
m \sharp children}
ight)
ightarrow \sum_{i\geq 1} i(i-1) rac{\lambda_i}{\sum_{j\geq 1} j\lambda_j} = rac{L''(1)}{L'(1)}.$$

Nikolaos Fountoulakis, University of Birmingham Percolation on sparse random graphs with given degree sequence

Sketch of the proof

If we look at $G(\mathbf{d}_n)$ around vertex v at some distance, say at most log log n, we will see

Sketch of the proof

If we look at $G(\mathbf{d}_n)$ around vertex v at some distance, say at most log log n, we will see

a random tree where the expected number of children is approximately equal to

$$\frac{L''(1)}{L'(1)}.$$

Sketch of the proof

$$p\frac{L''(1)}{L'(1)}.$$

Sketch of the proof

So, locally $\tilde{G}(\mathbf{d}_n, p)$ will look like a random tree, where the expected number of children is approximately

$$p\frac{L''(1)}{L'(1)}.$$

So,

Sketch of the proof

$$p\frac{L''(1)}{L'(1)}.$$

So,
• if
$$p < p_c = \frac{L'(1)}{L''(1)}$$
, then $p \frac{L''(1)}{L'(1)} < 1$

Sketch of the proof

$$p\frac{L''(1)}{L'(1)}.$$

So,
if
$$p < p_c = \frac{L'(1)}{L''(1)}$$
, then $p\frac{L''(1)}{L'(1)} < 1$
(subcritical branching process);

Sketch of the proof

$$p\frac{L''(1)}{L'(1)}.$$

So,
if
$$p < p_c = \frac{L'(1)}{L''(1)}$$
, then $p\frac{L''(1)}{L'(1)} < 1$
(subcritical branching process);
if $p > p_c = \frac{L'(1)}{L''(1)}$, then $p\frac{L''(1)}{L'(1)} > 1$

Sketch of the proof

So, locally $\tilde{G}(\mathbf{d}_n, p)$ will look like a random tree, where the expected number of children is approximately

$$p\frac{L''(1)}{L'(1)}$$

So,

• if
$$p < p_c = \frac{L'(1)}{L''(1)}$$
, then $p\frac{L''(1)}{L'(1)} < 1$ (subcritical branching process);

Power-law degree sequences

Recall that in this case

$$\lambda_i \sim \frac{1}{i^{\gamma}},$$

for some $\gamma > 0$.

Power-law degree sequences

Recall that in this case

$$\lambda_i \sim \frac{1}{i^{\gamma}}$$

for some $\gamma > 0$. If $\gamma < 3$, then L''(1) is divergent.

Power-law degree sequences

Recall that in this case

$$\lambda_i \sim \frac{1}{i^{\gamma}}$$

for some $\gamma > 0$. If $\gamma < 3$, then L''(1) is divergent. Question: Is $p_c = 0$ in this case?

More open questions:

More open questions:

1. Look inside the phase transition: $p \rightarrow p_c$.
Motivation Percolation on finite graphs Random graphs with a given degree sequence Why is it true... Questions for further study The End

More open questions:

- 1. Look inside the phase transition: $p \rightarrow p_c$.
- 2. What is the rate of decrease of the giant component as $p \downarrow p_c$?

Motivation Percolation on finite graphs Random graphs with a given degree sequence Why is it true... Questions for further study **The End**

Thank you!

Nikolaos Fountoulakis, University of Birmingham Percolation on sparse random graphs with given degree sequence