
Introduction Main Results Conclusion

On the cardinality constrained matroid polytope
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Motivation

Cardinality Constrained Combinatorial Optimization

Combinatorial Optimization Problem (COP): Π = (E ,I,w)

⊲ E finite set
⊲ I ⊆ 2E feasible solutions
⊲ we , e ∈ E , weighting

maxw(I ) :=
∑

e∈I

we s.t. I ∈ I

. . . becomes Cardinality Constrained Combinatorial
Optimization Problem (CCCOP): Πc = (E ,I,w , c)

⊲ cardinality sequence c = (c1, . . . , cm) with
0 ≤ c1 < . . . cm ≤ |E |

maxw(I ) s.t. I ∈ I and |I | = cp for some p
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Motivation

Cardinality Constrained Combinatorial Optimization

Given an IP-formulation for Π = (E ,I,w), we obtain one for
Πc = (E ,I,w , c) by adding

⊲ . . . the cardinality bound c1 ≤ x(E ) ≤ cm

⊲ . . . Grötschel’s cardinality forcing inequalities

(cp+1 − |F |)x(F ) − (|F | − cp)x(E \ F ) ≤ cp(cp+1 − |F |)

for all ∅ 6= F ⊆ E with cp < |F | < cp+1 for some p

(CFI)
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Motivation

Cardinality Forcing Inequalities

Example

c = (3, 4, 9, 10), |F | = 6

≤ 12

counter 03

3 3

3 3

3 -2

-2

-2

-2
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Motivation

Cardinality Forcing Inequalities

Example

c = (3, 4, 9, 10), |F | = 6

≤ 12

counter 33
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3 3
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Motivation

Cardinality Forcing Inequalities

Example

c = (3, 4, 9, 10), |F | = 6

≤ 12

counter 63

3 3

3 3
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Motivation

Cardinality Forcing Inequalities

Example

c = (3, 4, 9, 10), |F | = 6

≤ 12

counter 93

3 3

3 3
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Motivation

Cardinality Forcing Inequalities

Example

c = (3, 4, 9, 10), |F | = 6

≤ 12

counter 123

3 3

3 3
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Motivation

Cardinality Forcing Inequalities

Example

c = (3, 4, 9, 10), |F | = 6

≤ 12

counter 153

3 3

3 3
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Motivation

Cardinality Forcing Inequalities

Example

c = (3, 4, 9, 10), |F | = 6

≤ 12

counter 183

3 3

3 3
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Motivation

Cardinality Forcing Inequalities

Example

c = (3, 4, 9, 10), |F | = 6

≤ 12

counter 163
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Motivation

Cardinality Forcing Inequalities

Example

c = (3, 4, 9, 10), |F | = 6

≤ 12

counter 143
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3 3
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Motivation

Cardinality Forcing Inequalities

Example

c = (3, 4, 9, 10), |F | = 6

≤ 12

counter 123

3 3

3 3
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Rüdiger Stephan Zuse Institute Berlin TU Berlin

On the cardinality constrained matroid polytope



Introduction Main Results Conclusion

Motivation

Cardinality Constrained Combinatorial Optimization

If I = 2E , then . . .

. . . Πc is optimization problem over cardinality homogeneous

set systems CHSc(E ) := {F ⊆ E : |F | = cp for some p}.

. . . associated polytope completely described by

⊲ nonnegativity constraints xe ≥ 0 for all e ∈ E ,
⊲ cardinality bound c1 ≤ x(E ) ≤ cm, and
⊲ cardinality forcing inequalities (CFI).

[M. Grötschel, Cardinality homogeneous set systems, cycles in

matroids, . . ., 2004]
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Motivation

Cardinality Constrained Combinatorial Optimization

+ CF-inequalities can be separated in polynomial time.
− In general: CF inequalities are quite weak inequalities.

Remedy: Study cardinality constrained matroid polytope.
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Definition

Cardinality Constrained Matroid Polytope

From now on:

Π = (E ,I,w) maximum independent set problem over a
matroid I, that is,

(i) ∅ ∈ I,
(ii) I ∈ I, J ⊆ I ⇒ J ∈ I,
(iii) I , J ∈ I, |I | < |J| ⇒ e ∈ J \ I with I ∪ {e} ∈ I.

Πc card. constr. maximum independent set problem over a
matroid I

Definition

Pc
MAT(E ) := conv{χI ∈ R

E : I ∈ I ∩ CHSc(E )}
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Definition

Cardinality Constrained Matroid Polytope

r(F ) = rank of F = max{|I | : I ∈ I, I ⊆ F}.

x(F ) ≤ r(F ) for all ∅ 6= F ⊆ E (1)

xe ≥ 0 for all e ∈ E (2)

x(E ) ≥ c1 (3)

x(E ) ≤ cm (4)

(cp+1 − |F |)x(F ) − (|F | − cp)x(E \ F ) ≤ cp(cp+1 − |F |)

for all ∅ 6= F ⊆ E with cp < |F | < cp+1 for some p

(CFI)
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Definition

Cardinality Constrained Matroid Polytope

r(F ) = rank of F = max{|I | : I ∈ I, I ⊆ F}.

x(F ) ≤ r(F ) for all ∅ 6= F ⊆ E (1)

xe ≥ 0 for all e ∈ E (2)

x(E ) ≥ c1 (3)

x(E ) ≤ cm (4)

CFF (x)
︷ ︸︸ ︷

(cp+1 − r(F ))x(F ) − (r(F ) − cp)x(E \ F ) ≤ cp(cp+1 − r(F ))

for all ∅ 6= F ⊆ E with cp < r(F ) < cp+1 for some p

(rCFI)
Rüdiger Stephan Zuse Institute Berlin TU Berlin

On the cardinality constrained matroid polytope



Introduction Main Results Conclusion

Definition

Example: Graphic Matroid

c = (3, 5, 12, 14, 15, 18)
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Definition

Example: Graphic Matroid

|F | = 9c = (3, 5, 12, 14, 15, 18)

≤ 15

3

-4
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Definition

Example: Graphic Matroid

c = (3, 5, 12, 14, 15, 18) |F | = 9. However . . .

weight only 12; that’s the maximum

≤ 15

3

-4
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Definition

Example: Graphic Matroid

c = (3, 5, 12, 14, 15, 18) Better r(F ) = 9 . . .

≤ 15

3

-4
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Definition

Example: Graphic Matroid

c = (3, 5, 12, 14, 15, 18) Better r(F ) = 9 . . .

. . . then there are tight forests

of cardinality cp = 5

≤ 15

3

-4

Rüdiger Stephan Zuse Institute Berlin TU Berlin

On the cardinality constrained matroid polytope



Introduction Main Results Conclusion

Definition

Example: Graphic Matroid

c = (3, 5, 12, 14, 15, 18) Better r(F ) = 9 . . .

. . . then there are tight forests

of cardinality cp = 5 and cp+1 = 12

≤ 15

3

-4
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Cardinality Constrained Matroids

Results

Πc can be solved in polynomial time.

System (1)-(4), (rCFI) provides a complete linear description
of Pc

MAT(E ).

In general: CFF (x) ≤ cp(cp+1 − r(F )) defines a facet if and
only if F is closed.

Separation problem for CF-inequalities (rCFI) can be solved in
poly-time.
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Complexity

Cardinality Constrained Matroids: Complexity

Theorem 1

Let I be a matroid. Then, Πc can be solved in polynomial time.
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Complexity

Cardinality Constrained Matroids: Complexity

Theorem 1

Let I be a matroid. Then, Πc can be solved in polynomial time.

Proof.

k-truncation Ik := {I ∈ I : |I | ≤ k} of I
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Complexity

Cardinality Constrained Matroids: Complexity

Theorem 1

Let I be a matroid. Then, Πc can be solved in polynomial time.

Proof.

k-truncation Ik := {I ∈ I : |I | ≤ k} of I

I matroid ⇒ Ik matroid
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Complexity

Cardinality Constrained Matroids: Complexity

Theorem 1

Let I be a matroid. Then, Πc can be solved in polynomial time.

Proof.

k-truncation Ik := {I ∈ I : |I | ≤ k} of I

I matroid ⇒ Ik matroid

. . . ⇒ optimization problem over basis system Bk of Ik

can be solved in poly-time
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Complexity

Cardinality Constrained Matroids: Complexity

Theorem 1

Let I be a matroid. Then, Πc can be solved in polynomial time.

Proof.

k-truncation Ik := {I ∈ I : |I | ≤ k} of I

I matroid ⇒ Ik matroid

. . . ⇒ optimization problem over basis system Bk of Ik

can be solved in poly-time

doing this for all k = cp, p = 1, . . . ,m yields claim
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Polyhedral Analysis

Complete Linear Description

Theorem 2

Pc
MAT(E ) is determined by the inequalities

rank inequalities (1)

nonnegativity constraints (2)

cardinality bounds (3) and (4)

cardinality forcing inequalities (rCFI).
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Polyhedral Analysis

Complete Linear Description

Theorem 2

Pc
MAT(E ) is determined by the inequalities

rank inequalities (1)

nonnegativity constraints (2)

cardinality bounds (3) and (4)

cardinality forcing inequalities (rCFI).

Sketch of proof.

All inequalities are valid ⇒

Pc
MAT(E ) ⊆ P := {x ∈ R

E : x satisfies (1)-(4) and (rCFI)}
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Polyhedral Analysis

Complete Linear Description

To show the converse:

⊲ Consider any valid inequality bx ≤ b0 for Pc
MAT(E ).

⊲ Associate with bx ≤ b0 the following subsets of E :

P := {e ∈ E : be > 0},

Z := {e ∈ E : be = 0},

N := {e ∈ E : be < 0}.

⊲ Show by case by case enumeration on {P ,Z ,N} 6=
= ∅ and

b0 {<,=, >} 0 that the face Fb induced by bx ≤ b0 is
contained in the face induced by some inequality among
(1)-(4), (rCFI).

⊲ By scaling argument, b0 ∈ {−1, 0, 1}.
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Polyhedral Analysis

Illustration: Graphic Matroid, b0 = 0, c1 = 0, P 6= ∅ 6= N

c = (0, 8, 15)

positive

zero

negative

≤ 0

If c2 ≤ r(P ∪ Z ) . . .
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Polyhedral Analysis

Illustration: Graphic Matroid, b0 = 0, c1 = 0, P 6= ∅ 6= N

c = (0, 8, 15)

positive

zero

negative

≤ 0

If c2 ≤ r(P ∪ Z ) . . .

. . . contradiction

⇒ c2 > r(P ∪ Z )
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Polyhedral Analysis

Illustration: Graphic Matroid, b0 = 0, c1 = 0, P 6= ∅ 6= N

c = (0, 8, 15)

positive

zero

negative

≤ 0

If c2 ≤ r(P ∪ Z ) . . .

. . . contradiction

⇒ c2 > r(P ∪ Z )
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Polyhedral Analysis

Illustration: Graphic Matroid, b0 = 0, c1 = 0, P 6= ∅ 6= N

c = (0, 8, 15)

positive

zero

negative

≤ 0

If bχJ = 0, |J| = cp, p ≥ 3
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Polyhedral Analysis

Illustration: Graphic Matroid, b0 = 0, c1 = 0, P 6= ∅ 6= N

c = (0, 8, 15)

If bχJ = 0, |J| = cp, p ≥ 3,

⇒ ∃ I ⊂ J, |I | = c2 : bχI > 0

positive

zero

negative

≤ 0
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Polyhedral Analysis

Illustration: Graphic Matroid, b0 = 0, c1 = 0, P 6= ∅ 6= N

c = (0, 8, 15)

Thus, ∀ I : bχI = 0 ⇒ |I | = 0 or |I | = c2

Assume bχI = 0, |I | = c2, but |I ∩ (P ∪ Z )| < r(P ∪ Z )

positive

zero

negative

≤ 0
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Polyhedral Analysis

Illustration: Graphic Matroid, b0 = 0, c1 = 0, P 6= ∅ 6= N

c = (0, 8, 15)

Thus, ∀ I : bχI = 0 ⇒ |I | = 0 or |I | = c2

Assume bχI = 0, |I | = c2, but |I ∩ (P ∪ Z )| < r(P ∪ Z )

. . . contradiction

positive

zero

negative

≤ 0
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Polyhedral Analysis

Illustration: Graphic Matroid, b0 = 0, c1 = 0, P 6= ∅ 6= N

c = (0, 8, 15)

Thus, ∀ I : bχI = 0 ⇒ |I | = 0 or |I | = c2

Assume bχI = 0, |I | = c2, but |I ∩ (P ∪ Z )| < r(P ∪ Z )

. . . contradiction

⇒ Fb contained in the face induced by CFP∪Z (x) ≤ 0.

positive

zero

negative

≤ 0
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Polyhedral Analysis

Facets

Definition

F ⊆ E is said to be closed if r(F ∪ {e}) > r(F ) for all e ∈ E \ F .
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Polyhedral Analysis

Facets

Definition

F ⊆ E is said to be closed if r(F ∪ {e}) > r(F ) for all e ∈ E \ F .

Theorem 3

Let F ⊆ E with cp < r(F ) < cp+1.for some p. Moreover, let
cp > 0 and cp+1 < r(E ). Then, CFF (x) ≤ cp(cp+1 − r(F )) defines
a facet of Pc

MAT(E ) if and only if F is closed.
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Polyhedral Analysis

Facets

Illustration: graphic matroid

c = (3, 5, 12, 14, 15, 18)

colored edge set not closed

≤ 15

3

-4
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Polyhedral Analysis

Facets

Illustration: graphic matroid

c = (3, 5, 12, 14, 15, 18)

colored edge set closed

≤ 15

3

-4
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Separation

Separation Problem for P
c
MAT

(E )

Given x∗ ∈ R
E , find valid inequality for Pc

MAT(E ) which is violated
by x∗, or assert that x∗ ∈ Pc

MAT(E ).
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Separation

Separation Problem for P
c
MAT

(E )

Given x∗ ∈ R
E , find valid inequality for Pc

MAT(E ) which is violated
by x∗, or assert that x∗ ∈ Pc

MAT(E ).

max wT x , x ∈ Pc
MAT(E ) can be solved in poly-time

⇒ Separation problem for Pc
MAT(E ) can be solved in poly-time

(polynomial time equivalence of separation and optimization,
see Grötschel, Lovász, Schrijver, 1988)
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Separation

Separation Problem for P
c
MAT

(E )

Given x∗ ∈ R
E , find valid inequality for Pc

MAT(E ) which is violated
by x∗, or assert that x∗ ∈ Pc

MAT(E ).

max wT x , x ∈ Pc
MAT(E ) can be solved in poly-time

⇒ Separation problem for Pc
MAT(E ) can be solved in poly-time

(polynomial time equivalence of separation and optimization,
see Grötschel, Lovász, Schrijver, 1988)

What can we do in practice?
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Separation

Separation Problem for Rank Inequalities

Given x∗ ∈ R
E , x∗ ≥ 0, find rank inequality x(F ) ≤ r(F ) violated

by x∗.

Can be solved in poly-time with an algorithm of Cunningham
that maximizes x(F ) − r(F ), F ⊆ E .
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Separation

Separation Problem for Cardinality Forcing Inequalities

Trace back the separation problem for CF-inequalities to that
for the rank inequalities!

Theorem 4

For any x∗ ∈ R
E
+ satisfying all rank inequalities (1), the separation

problem for x∗ and the cardinality forcing inequalities (rCFI) can
be solved in polynomial time.
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Separation

Separation Problem for Cardinality Forcing Inequalities

Proof idea. Compute x∗(E ).

If x∗(E ) = cp for some p, then

x∗ ∈ P
(cp)
MAT (E ) ⇒ x∗ ∈ Pc

MAT(E ).

If cp < x∗(E ) < cp+1 for some p, then set k := cp, ℓ := cp+1.

Set δ := x∗(E)−k

ℓ−k
⇒ 0 < δ < 1 and ℓ−x∗(E)

ℓ−k
= 1 − δ.

Set x ′ := 1
δ
x∗.

⇒ ∀ F ⊆ E :

x ′(F ) − r(F ) > k
(1−δ)

δ

⇔ (ℓ − k)x∗(F ) − (r(F ) − k)x∗(E ) > k(ℓ − r(F )).

Apply Cunningham’s algorithm to find some F ⊆ E that
maximizes x ′(F ) − r(F ). �
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Rüdiger Stephan Zuse Institute Berlin TU Berlin

On the cardinality constrained matroid polytope



Introduction Main Results Conclusion

Separation

Separation Problem for Cardinality Forcing Inequalities

Proof idea. Compute x∗(E ).

If x∗(E ) = cp for some p, then

x∗ ∈ P
(cp)
MAT (E ) ⇒ x∗ ∈ Pc

MAT(E ).

If cp < x∗(E ) < cp+1 for some p, then set k := cp, ℓ := cp+1.

Set δ := x∗(E)−k

ℓ−k
⇒ 0 < δ < 1 and ℓ−x∗(E)

ℓ−k
= 1 − δ.

Set x ′ := 1
δ
x∗.

⇒ ∀ F ⊆ E :

x ′(F ) − r(F ) > k
(1−δ)

δ

⇔ (ℓ − k)x∗(F ) − (r(F ) − k)x∗(E ) > k(ℓ − r(F )).

Apply Cunningham’s algorithm to find some F ⊆ E that
maximizes x ′(F ) − r(F ). �
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If x∗(E ) = cp for some p, then

x∗ ∈ P
(cp)
MAT (E ) ⇒ x∗ ∈ Pc

MAT(E ).

If cp < x∗(E ) < cp+1 for some p, then set k := cp, ℓ := cp+1.

Set δ := x∗(E)−k

ℓ−k
⇒ 0 < δ < 1 and ℓ−x∗(E)

ℓ−k
= 1 − δ.

Set x ′ := 1
δ
x∗.

⇒ ∀ F ⊆ E :

x ′(F ) − r(F ) > k
(1−δ)

δ

⇔ (ℓ − k)x∗(F ) − (r(F ) − k)x∗(E ) > k(ℓ − r(F )).

Apply Cunningham’s algorithm to find some F ⊆ E that
maximizes x ′(F ) − r(F ). �
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Conclusion and Questions

(cp+1 − |F |)x(F ) − (|F | − cp)x(E \ F ) ≤ cp(cp+1 − |F |)

for all ∅ 6= F ⊆ E with cp < |F | < cp+1 for some p

(CFI)

Rüdiger Stephan Zuse Institute Berlin TU Berlin

On the cardinality constrained matroid polytope



Introduction Main Results Conclusion

Conclusion and Questions

(cp+1 − |F |)x(F ) − (|F | − cp)x(E \ F ) ≤ cp(cp+1 − |F |)

for all ∅ 6= F ⊆ E with cp < |F | < cp+1 for some p

(CFI)

Strengthen inequalities (CFI) for your CCCOP in this manner
(as for matroids).
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for all ∅ 6= F ⊆ E with cp < |F | < cp+1 for some p

(CFI)

Strengthen inequalities (CFI) for your CCCOP in this manner
(as for matroids).

If you are interested in cardinality specific inequalities for your
CCCOP, then find “good” matroidal relaxations.
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(cp+1 − |F |)x(F ) − (|F | − cp)x(E \ F ) ≤ cp(cp+1 − |F |)

for all ∅ 6= F ⊆ E with cp < |F | < cp+1 for some p

(CFI)

Strengthen inequalities (CFI) for your CCCOP in this manner
(as for matroids).

If you are interested in cardinality specific inequalities for your
CCCOP, then find “good” matroidal relaxations.

A CCCOP is not necessarily harder than its non-cardinality
restricted version.
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Conclusion and Questions

(cp+1 − |F |)x(F ) − (|F | − cp)x(E \ F ) ≤ cp(cp+1 − |F |)

for all ∅ 6= F ⊆ E with cp < |F | < cp+1 for some p

(CFI)

Strengthen inequalities (CFI) for your CCCOP in this manner
(as for matroids).

If you are interested in cardinality specific inequalities for your
CCCOP, then find “good” matroidal relaxations.

A CCCOP is not necessarily harder than its non-cardinality
restricted version.

Sometimes good: Trace back CCCOP’s to COP’s.
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