On the cardinality constrained matroid polytope

Rüdiger Stephan

Zuse Institute Berlin TU Berlin

May 13, 2008

- Motivation
- Definition
- 2 Main Results
 - Complexity
 - Polyhedral Analysis
 - Separation

3 Conclusion

Cardinality Constrained Combinatorial Optimization

• Combinatorial Optimization Problem (COP): $\Pi = (E, \mathcal{I}, w)$

- \triangleright *E* finite set
- $\triangleright \ \mathcal{I} \subseteq 2^E$ feasible solutions
- $\triangleright w_e, e \in E$, weighting

$$\max w(I) := \sum_{e \in I} w_e$$
 s.t. $I \in \mathcal{I}$

 ... becomes Cardinality Constrained Combinatorial Optimization Problem (CCCOP): Π_c = (E, I, w, c)
 ▷ cardinality sequence c = (c₁,..., c_m) with 0 ≤ c₁ < ... c_m ≤ |E|

 $\max w(I)$ s.t. $I \in \mathcal{I}$ and $|I| = c_p$ for some p

Cardinality Constrained Combinatorial Optimization

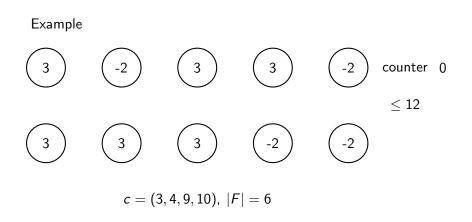
Given an IP-formulation for $\Pi = (E, \mathcal{I}, w)$, we obtain one for $\Pi_c = (E, \mathcal{I}, w, c)$ by adding

- \triangleright ... the cardinality bound $c_1 \leq x(E) \leq c_m$
- ▷ ... Grötschel's cardinality forcing inequalities

$$\begin{aligned} (c_{p+1} - |F|)x(F) - (|F| - c_p)x(E \setminus F) &\leq c_p(c_{p+1} - |F|) \\ \text{for all } \emptyset \neq F \subseteq E \text{ with } c_p < |F| < c_{p+1} \text{ for some } p \end{aligned}$$

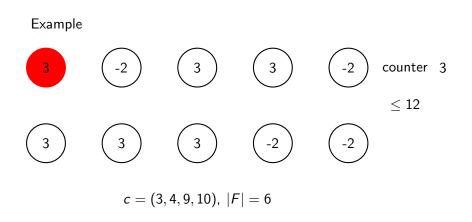
$$(CFI)$$

Cardinality Forcing Inequalities



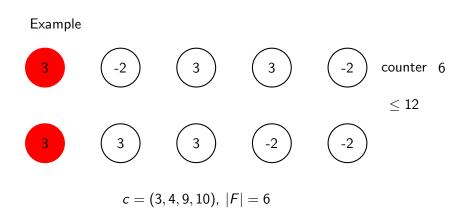
Rüdiger Stephan

Cardinality Forcing Inequalities



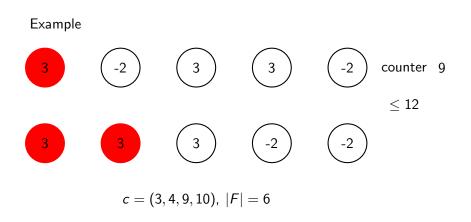
Rüdiger Stephan

Cardinality Forcing Inequalities



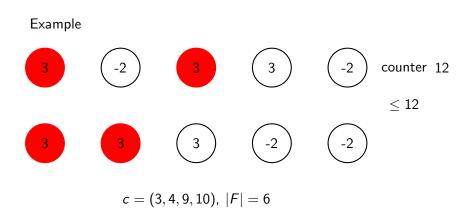
Rüdiger Stephan

Cardinality Forcing Inequalities



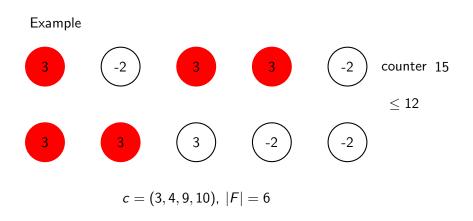
Rüdiger Stephan

Cardinality Forcing Inequalities



Rüdiger Stephan

Cardinality Forcing Inequalities

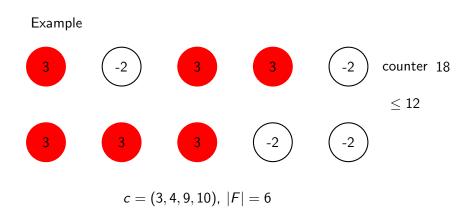


Rüdiger Stephan

Main Results

Conclusion

Cardinality Forcing Inequalities

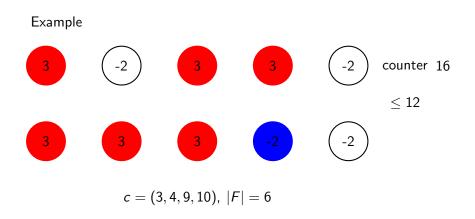


Rüdiger Stephan

Main Results

Conclusion

Cardinality Forcing Inequalities

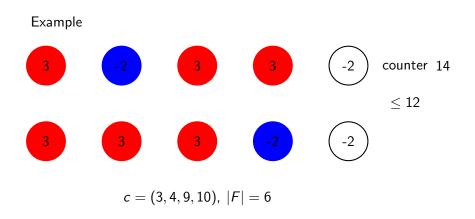


Rüdiger Stephan

Main Results

Conclusion

Cardinality Forcing Inequalities

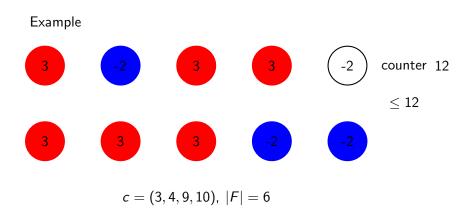


Rüdiger Stephan

Main Results

Conclusion

Cardinality Forcing Inequalities



Rüdiger Stephan

Cardinality Constrained Combinatorial Optimization

- If $\mathcal{I}=2^{\textit{E}}$, then \ldots
 - ... Π_c is optimization problem over *cardinality homogeneous* set systems $CHS^c(E) := \{F \subseteq E : |F| = c_p \text{ for some } p\}.$
 - ... associated polytope completely described by
 - \triangleright nonnegativity constraints $x_e \ge 0$ for all $e \in E$,
 - \triangleright cardinality bound $c_1 \leq x(E) \leq c_m$, and
 - ▷ cardinality forcing inequalities (CFI).

[M. Grötschel, *Cardinality homogeneous set systems, cycles in matroids, ...,* 2004]

Conclusion 0

Cardinality Constrained Combinatorial Optimization

- + CF-inequalities can be separated in polynomial time.
- In general: CF inequalities are quite weak inequalities.

Remedy: Study cardinality constrained matroid polytope.

Definition

Conclusion 0

Cardinality Constrained Matroid Polytope

From now on:

- Π = (E, I, w) maximum independent set problem over a matroid I, that is,
 - (i) $\emptyset \in \mathcal{I}$, (ii) $I \in \mathcal{I}, J \subseteq I \Rightarrow J \in \mathcal{I}$, (iii) $I, J \in \mathcal{I}, |I| < |J| \Rightarrow e \in J \setminus I$ with $I \cup \{e\} \in \mathcal{I}$.
- \blacksquare Π_c card. constr. maximum independent set problem over a matroid $\mathcal I$

Definition

$$P^{c}_{MAT}(E) := \operatorname{conv}\{\chi^{I} \in \mathbb{R}^{E} : I \in \mathcal{I} \cap \operatorname{CHS}^{c}(E)\}$$

Rüdiger Stephan

Definition

Main Results

Conclusion 0

Cardinality Constrained Matroid Polytope

$$r(F) = \text{rank of } F = \max\{|I| : I \in \mathcal{I}, I \subseteq F\}.$$

$$(c_{p+1} - |F|)x(F) - (|F| - c_p)x(E \setminus F) \leq c_p(c_{p+1} - |F|)$$

for all $\emptyset \neq F \subseteq E$ with $c_p < |F| < c_{p+1}$ for some p
(CF)

Rüdiger Stephan

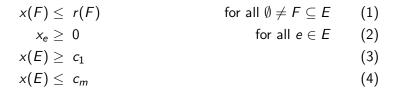
Definition

Main Results

Conclusion 0

Cardinality Constrained Matroid Polytope

$$r(F) = \text{rank of } F = \max\{|I| : I \in \mathcal{I}, I \subseteq F\}.$$



$(c_{p+1} - |F|)x(F) - (|F| - c_p)x(E \setminus F) \leq c_p(c_{p+1} - |F|)$ for all $\emptyset \neq F \subseteq E$ with $c_p < |F| < c_{p+1}$ for some p(CF)

Rüdiger Stephan

Definition

Main Results

Conclusion

Cardinality Constrained Matroid Polytope

$$r(F) = \text{rank of } F = \max\{|I| : I \in \mathcal{I}, I \subseteq F\}.$$

 $x(F) \le r(F)$ for all $\emptyset \ne F \subseteq E$ (1) $x_e \ge 0$ for all $e \in E$ (2) $x(E) \ge c_1$ (3) $x(E) \le c_m$ (4)

$$\begin{aligned} (c_{p+1} - |F|)x(F) - (|F| - c_p)x(E \setminus F) &\leq c_p(c_{p+1} - |F|) \\ \text{for all } \emptyset \neq F \subseteq E \text{ with } c_p < |F| < c_{p+1} \text{ for some } p \end{aligned}$$

$$(CFI)$$

Rüdiger Stephan

Main Results

Conclusion

Definition

Cardinality Constrained Matroid Polytope

$$r(F) = \text{rank of } F = \max\{|I| : I \in \mathcal{I}, I \subseteq F\}.$$

 $x(F) \le r(F)$ for all $\emptyset \ne F \subseteq E$ (1) $x_e \ge 0$ for all $e \in E$ (2) $x(E) \ge c_1$ (3) $x(E) \le c_m$ (4)

$$\overbrace{(c_{p+1} - r(F))x(F) - (r(F) - c_p)x(E \setminus F)}^{\mathsf{CF}_F(x)} \leq c_p(c_{p+1} - r(F))$$

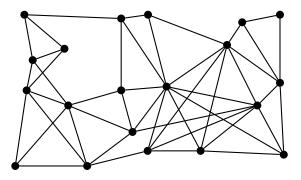
for all $\emptyset \neq F \subseteq E$ with $c_p < r(F) < c_{p+1}$ for some p
(rCFI)

Rüdiger Stephan

Definition

Example: Graphic Matroid

c = (3, 5, 12, 14, 15, 18)



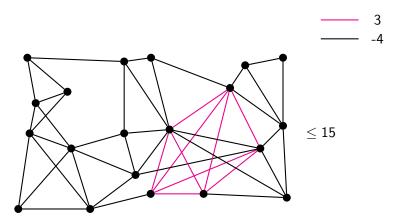
Definition

Main Results

Conclusion 0

Example: Graphic Matroid

$$c = (3, 5, 12, 14, 15, 18)$$
 $|F| = 9$



Rüdiger Stephan

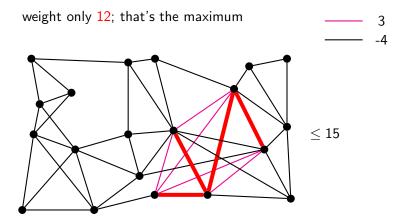
Definition

Main Results

Conclusion

Example: Graphic Matroid

c = (3, 5, 12, 14, 15, 18) |F| = 9. However ...



Definition

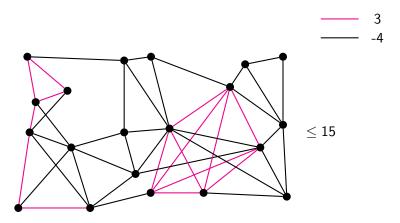
Main Results

Conclusion 0

Example: Graphic Matroid

$$c = (3, 5, 12, 14, 15, 18)$$

Better $r(F) = 9 \dots$



Introduction	
000000000000000000000000000000000000000	

Definition

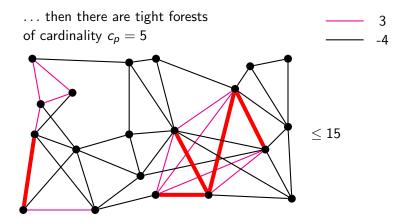
Main Results

Conclusion

Example: Graphic Matroid

c = (3, 5, 12, 14, 15, 18)

Better $r(F) = 9 \dots$



Introduction	
000000000000000000000000000000000000000	

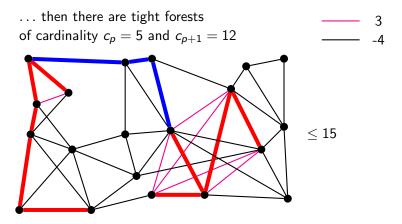
Definition

Main Results

Conclusion

Example: Graphic Matroid

$$c = (3, 5, 12, 14, 15, 18)$$
 Better $r(F) = 9 \dots$



Cardinality Constrained Matroids

Results

- **•** Π_c can be solved in polynomial time.
- System (1)-(4), (rCFI) provides a complete linear description of P^c_{MAT}(E).
- In general: CF_F(x) ≤ c_p(c_{p+1} − r(F)) defines a facet if and only if F is closed.
- Separation problem for CF-inequalities (rCFI) can be solved in poly-time.

Cardinality Constrained Matroids: Complexity

Theorem 1

Let \mathcal{I} be a matroid. Then, Π_c can be solved in polynomial time.

Cardinality Constrained Matroids: Complexity

Theorem 1

Let \mathcal{I} be a matroid. Then, Π_c can be solved in polynomial time.

• *k*-truncation
$$\mathcal{I}^k := \{I \in \mathcal{I} : |I| \le k\}$$
 of \mathcal{I}

Cardinality Constrained Matroids: Complexity

Theorem 1

Let \mathcal{I} be a matroid. Then, Π_c can be solved in polynomial time.

- *k*-truncation $\mathcal{I}^k := \{I \in \mathcal{I} : |I| \le k\}$ of \mathcal{I}
- $\blacksquare \mathcal{I} \text{ matroid } \Rightarrow \mathcal{I}^k \text{ matroid}$

Cardinality Constrained Matroids: Complexity

Theorem 1

Let \mathcal{I} be a matroid. Then, Π_c can be solved in polynomial time.

- *k*-truncation $\mathcal{I}^k := \{I \in \mathcal{I} : |I| \le k\}$ of \mathcal{I}
- $\blacksquare \mathcal{I} \text{ matroid } \Rightarrow \mathcal{I}^k \text{ matroid}$
- ... \Rightarrow optimization problem over basis system \mathcal{B}^k of \mathcal{I}^k can be solved in poly-time

Cardinality Constrained Matroids: Complexity

Theorem 1

Let \mathcal{I} be a matroid. Then, Π_c can be solved in polynomial time.

- *k*-truncation $\mathcal{I}^k := \{I \in \mathcal{I} : |I| \le k\}$ of \mathcal{I}
- $\blacksquare \mathcal{I} \text{ matroid } \Rightarrow \mathcal{I}^k \text{ matroid}$
- ... \Rightarrow optimization problem over basis system \mathcal{B}^k of \mathcal{I}^k can be solved in poly-time
- doing this for all $k = c_p$, $p = 1, \ldots, m$ yields claim

Polyhedral Analysis

Complete Linear Description

Theorem 2

- $P^{c}_{MAT}(E)$ is determined by the inequalities
 - rank inequalities (1)
 - nonnegativity constraints (2)
 - cardinality bounds (3) and (4)
 - cardinality forcing inequalities (rCFI).

Polyhedral Analysis

Complete Linear Description

Theorem 2

 $P^{c}_{MAT}(E)$ is determined by the inequalities

- rank inequalities (1)
- nonnegativity constraints (2)
- cardinality bounds (3) and (4)
- cardinality forcing inequalities (rCFI).

Sketch of proof.

All inequalities are valid \Rightarrow

$$P_{MAT}^{c}(E) \subseteq P := \{x \in \mathbb{R}^{E} : x \text{ satisfies (1)-(4) and (rCFI)}\}$$

Polyhedral Analysis

Complete Linear Description

To show the converse:

- ▷ Consider any valid inequality $bx \le b_0$ for $P_{MAT}^c(E)$.
- ▷ Associate with $bx \le b_0$ the following subsets of *E*:

$$\begin{array}{rcl} P & := & \{e \in E : b_e > 0\}, \\ Z & := & \{e \in E : b_e = 0\}, \\ N & := & \{e \in E : b_e < 0\}. \end{array}$$

- ▷ Show by case by case enumeration on $\{P, Z, N\} \neq \emptyset$ and $b_0 \{<, =, >\}$ 0 that the face F_b induced by $bx \leq b_0$ is contained in the face induced by some inequality among (1)-(4), (rCFI).
- \triangleright By scaling argument, $b_0 \in \{-1, 0, 1\}$.

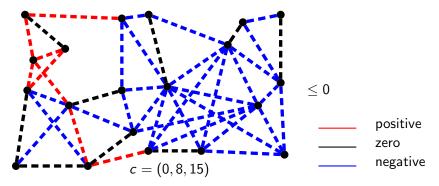
Main Results

Conclusion 0

Polyhedral Analysis

Illustration: Graphic Matroid, $b_0 = 0, c_1 = 0, P \neq \emptyset \neq N$

If $c_2 \leq r(P \cup Z) \ldots$



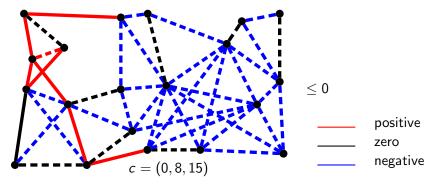
Main Results

Conclusion

Polyhedral Analysis

Illustration: Graphic Matroid, $b_0 = 0, c_1 = 0, P \neq \emptyset \neq N$

- If $c_2 \leq r(P \cup Z) \ldots$
- ... contradiction
- $\Rightarrow c_2 > r(P \cup Z)$



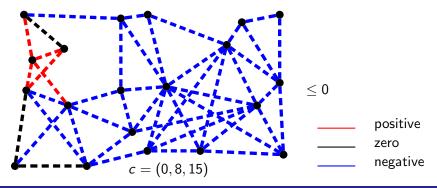
Main Results

Conclusion

Polyhedral Analysis

Illustration: Graphic Matroid, $b_0 = 0, c_1 = 0, P \neq \emptyset \neq N$

- If $c_2 \leq r(P \cup Z) \ldots$
- ... contradiction
- $\Rightarrow c_2 > r(P \cup Z)$

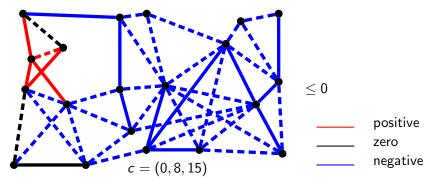


Conclusion

Polyhedral Analysis

Illustration: Graphic Matroid, $b_0 = 0, c_1 = 0, P \neq \emptyset \neq N$

If
$$b\chi^J = 0$$
, $|J| = c_p$, $p \ge 3$



Rüdiger Stephan

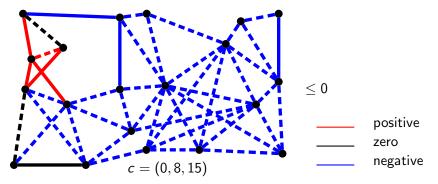
Zuse Institute Berlin TU Berlin

Conclusion 0

Polyhedral Analysis

Illustration: Graphic Matroid, $b_0 = 0, c_1 = 0, P \neq \emptyset \neq N$

If
$$b\chi^J = 0$$
, $|J| = c_p$, $p \ge 3$,
 $\Rightarrow \exists I \subset J$, $|I| = c_2 : b\chi^I > 0$



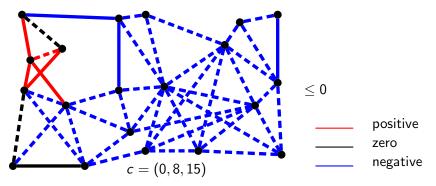
Rüdiger Stephan

Polyhedral Analysis

Illustration: Graphic Matroid, $b_0 = 0, c_1 = 0, P \neq \emptyset \neq N$

Thus,
$$\forall I: b\chi^I = 0 \Rightarrow |I| = 0 \text{ or } |I| = c_2$$

Assume $b\chi^I = 0$, $|I| = c_2$, but $|I \cap (P \cup Z)| < r(P \cup Z)$



Rüdiger Stephan

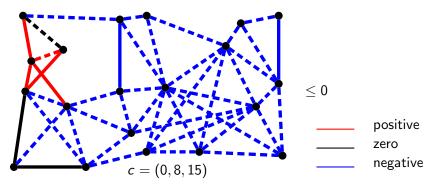
Conclusion 0

Polyhedral Analysis

Illustration: Graphic Matroid, $b_0 = 0, c_1 = 0, P \neq \emptyset \neq N$

Thus,
$$\forall I: b\chi^I = 0 \Rightarrow |I| = 0 \text{ or } |I| = c_2$$

Assume $b\chi^I = 0$, $|I| = c_2$, but $|I \cap (P \cup Z)| < r(P \cup Z)$
... contradiction



Rüdiger Stephan

Conclusion 0

Polyhedral Analysis

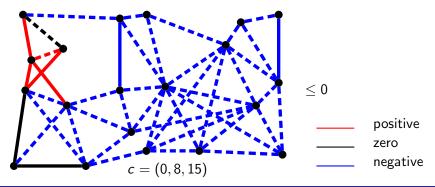
Illustration: Graphic Matroid, $b_0 = 0, c_1 = 0, P \neq \emptyset \neq N$

Thus,
$$\forall I: b\chi^I = 0 \Rightarrow |I| = 0 \text{ or } |I| = c_2$$

Assume $b\chi^I = 0, |I| = c_2, \text{ but } |I \cap (P \cup Z)| < r(P \cup Z)$

... contradiction

 \Rightarrow F_b contained in the face induced by $CF_{P\cup Z}(x) \leq 0$.



Polyhedral Analysis

Facets

Definition

$F \subseteq E$ is said to be *closed* if $r(F \cup \{e\}) > r(F)$ for all $e \in E \setminus F$.

Rüdiger Stephan On the cardinality constrained matroid polytope

Facets

Definition

 $F \subseteq E$ is said to be *closed* if $r(F \cup \{e\}) > r(F)$ for all $e \in E \setminus F$.

Theorem 3

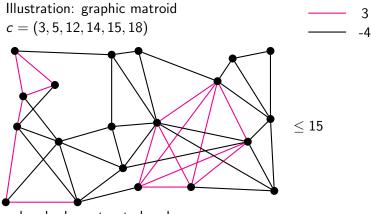
Let $F \subseteq E$ with $c_p < r(F) < c_{p+1}$ for some p. Moreover, let $c_p > 0$ and $c_{p+1} < r(E)$. Then, $CF_F(x) \le c_p(c_{p+1} - r(F))$ defines a facet of $P_{MAT}^c(E)$ if and only if F is closed.

Rüdiger Stephan

Polyhedral Analysis

Main Results

Facets

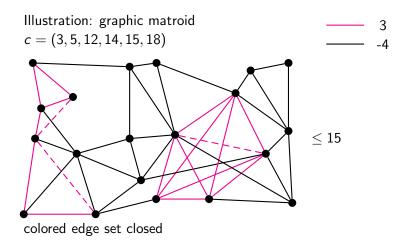


colored edge set not closed

Polyhedral Analysis

Main Results

Facets



Main Results

Separation Problem for $P_{MAT}^{c}(E)$

Given $x^* \in \mathbb{R}^E$, find valid inequality for $P_{MAT}^c(E)$ which is violated by x^* , or assert that $x^* \in P_{MAT}^c(E)$.

Separation Problem for $P_{MAT}^{c}(E)$

Given $x^* \in \mathbb{R}^E$, find valid inequality for $P_{MAT}^c(E)$ which is violated by x^* , or assert that $x^* \in P_{MAT}^c(E)$.

• max $w^T x$, $x \in P^c_{MAT}(E)$ can be solved in poly-time

⇒ Separation problem for $P_{MAT}^{c}(E)$ can be solved in poly-time (polynomial time equivalence of separation and optimization, see Grötschel, Lovász, Schrijver, 1988)

Separation Problem for $P_{MAT}^{c}(E)$

Given $x^* \in \mathbb{R}^E$, find valid inequality for $P_{MAT}^c(E)$ which is violated by x^* , or assert that $x^* \in P_{MAT}^c(E)$.

• max $w^T x$, $x \in P^c_{MAT}(E)$ can be solved in poly-time

⇒ Separation problem for $P_{MAT}^{c}(E)$ can be solved in poly-time (polynomial time equivalence of separation and optimization, see Grötschel, Lovász, Schrijver, 1988)

What can we do in practice?

Separation Problem for Rank Inequalities

Given $x^* \in \mathbb{R}^E$, $x^* \ge 0$, find rank inequality $x(F) \le r(F)$ violated by x^* .

■ Can be solved in poly-time with an algorithm of Cunningham that maximizes x(F) - r(F), $F \subseteq E$.

Separation Problem for Cardinality Forcing Inequalities

Trace back the separation problem for CF-inequalities to that for the rank inequalities!

Theorem 4

For any $x^* \in \mathbb{R}^E_+$ satisfying all rank inequalities (1), the separation problem for x^* and the cardinality forcing inequalities (rCFI) can be solved in polynomial time.

Conclusion 0

Separation

Separation Problem for Cardinality Forcing Inequalities

Proof idea. Compute $x^*(E)$.

- If $x^*(E) = c_p$ for some p, then $x^* \in P^{(c_p)}_{MAT}(E) \Rightarrow x^* \in P^c_{MAT}(E).$
- If $c_p < x^*(E) < c_{p+1}$ for some p, then set $k := c_p$, $\ell := c_{p+1}$. Set $\delta := \frac{x^*(E) - k}{\ell - k} \qquad \Rightarrow 0 < \delta < 1$ and $\frac{\ell - x^*(E)}{\ell - k} = 1 - \delta$. Set $x' := \frac{1}{\delta}x^*$. $\Rightarrow \forall E \subseteq E$.

$\begin{array}{rcl} x'(F)-r(F) &> k\frac{(1-\delta)}{\delta}\\ \Leftrightarrow & (\ell-k)x^*(F)-(r(F)-k)x^*(E) &> k(\ell-r(F)). \end{array}$

Conclusion 0

Separation

Separation Problem for Cardinality Forcing Inequalities

Proof idea. Compute $x^*(E)$. If $x^*(E) = c_p$ for some p, then

$$x^* \in P^{(c_p)}_{\text{MAT}}(E) \Rightarrow x^* \in P^c_{\text{MAT}}(E).$$

If $c_p < x^*(E) < c_{p+1}$ for some p, then set $k := c_p$, $\ell := c_{p+1}$. Set $\delta := \frac{x^*(E) - k}{\ell - k} \qquad \Rightarrow 0 < \delta < 1$ and $\frac{\ell - x^*(E)}{\ell - k} = 1 - \delta$. Set $x' := \frac{1}{\delta}x^*$. $\Rightarrow \forall F \subseteq E$:

$$\begin{array}{rcl} x'(F)-r(F) &>& k\frac{(1-\delta)}{\delta}\\ \Leftrightarrow & (\ell-k)x^*(F)-(r(F)-k)x^*(E) &>& k(\ell-r(F)). \end{array}$$

Main Results

Conclusion

Separation

Separation Problem for Cardinality Forcing Inequalities

Proof idea. Compute $x^*(E)$.

If
$$x^*(E) = c_p$$
 for some p , then
$$x^* \in P^{(c_p)}_{MAT}(E) \implies x^* \in P^c_{MAT}(E).$$
If $c_p < x^*(E) < c_{p+1}$ for some p , then set $k := c_p, \ \ell := c_{p+1}.$
Set $\delta := \frac{x^*(E) - k}{\ell - k} \implies 0 < \delta < 1$ and $\frac{\ell - x^*(E)}{\ell - k} = 1 - \delta.$
Set $x' := \frac{1}{\delta}x^*.$

$$\Rightarrow \forall F \subseteq E:$$

$$\begin{array}{rcl} x'(F)-r(F) &>& k\frac{(1-\delta)}{\delta}\\ \Leftrightarrow & (\ell-k)x^*(F)-(r(F)-k)x^*(E) &>& k(\ell-r(F)). \end{array}$$

Main Results

Conclusion

Separation

Separation Problem for Cardinality Forcing Inequalities

Proof idea. Compute $x^*(E)$.

If
$$x^*(E) = c_p$$
 for some p , then
$$x^* \in P^{(c_p)}_{MAT}(E) \implies x^* \in P^c_{MAT}(E).$$
If $c_p < x^*(E) < c_{p+1}$ for some p , then set $k := c_p, \ \ell := c_{p+1}.$
Set $\delta := \frac{x^*(E) - k}{\ell - k} \implies 0 < \delta < 1$ and $\frac{\ell - x^*(E)}{\ell - k} = 1 - \delta.$
Set $x' := \frac{1}{\delta}x^*.$

$$\Rightarrow \forall F \subseteq E:$$

$$\begin{array}{rcl} x'(F)-r(F) &>& k\frac{(1-\delta)}{\delta}\\ \Leftrightarrow & (\ell-k)x^*(F)-(r(F)-k)x^*(E) &>& k(\ell-r(F)). \end{array}$$

Main Results

Conclusion

Separation

Separation Problem for Cardinality Forcing Inequalities

Proof idea. Compute $x^*(E)$.

If
$$x^*(E) = c_p$$
 for some p , then
$$x^* \in P^{(c_p)}_{MAT}(E) \implies x^* \in P^c_{MAT}(E).$$
If $c_p < x^*(E) < c_{p+1}$ for some p , then set $k := c_p, \ \ell := c_{p+1}.$
Set $\delta := \frac{x^*(E) - k}{\ell - k} \implies 0 < \delta < 1$ and $\frac{\ell - x^*(E)}{\ell - k} = 1 - \delta.$
Set $x' := \frac{1}{\delta}x^*.$

$$\Rightarrow \forall F \subseteq E:$$

$$\begin{array}{rcl} x'(F)-r(F) &>& k\frac{(1-\delta)}{\delta}\\ \Leftrightarrow & (\ell-k)x^*(F)-(r(F)-k)x^*(E) &>& k(\ell-r(F)). \end{array}$$

Apply Cunningham's algorithm to find some F ⊆ E that maximizes x'(F) − r(F).

Rüdiger Stephan

I 1

Conclusion

Conclusion and Questions

$$\begin{aligned} (c_{p+1} - |F|)x(F) - (|F| - c_p)x(E \setminus F) &\leq c_p(c_{p+1} - |F|) \\ \text{for all } \emptyset \neq F \subseteq E \text{ with } c_p < |F| < c_{p+1} \text{ for some } p \end{aligned}$$

$$(CFI)$$

Conclusion

Conclusion and Questions

$$\begin{aligned} (c_{p+1} - |F|)x(F) - (|F| - c_p)x(E \setminus F) &\leq c_p(c_{p+1} - |F|) \\ \text{for all } \emptyset \neq F \subseteq E \text{ with } c_p < |F| < c_{p+1} \text{ for some } p \end{aligned}$$
(CFI)

 Strengthen inequalities (CFI) for your CCCOP in this manner (as for matroids).

Conclusion

Conclusion and Questions

$$\begin{aligned} (c_{p+1} - |F|)x(F) - (|F| - c_p)x(E \setminus F) &\leq c_p(c_{p+1} - |F|) \\ \text{for all } \emptyset \neq F \subseteq E \text{ with } c_p < |F| < c_{p+1} \text{ for some } p \end{aligned}$$

$$(CFI)$$

- Strengthen inequalities (CFI) for your CCCOP in this manner (as for matroids).
- If you are interested in cardinality specific inequalities for your CCCOP, then find "good" matroidal relaxations.

Conclusion

Conclusion and Questions

$$\begin{aligned} (c_{p+1} - |F|)x(F) - (|F| - c_p)x(E \setminus F) &\leq c_p(c_{p+1} - |F|) \\ \text{for all } \emptyset \neq F \subseteq E \text{ with } c_p < |F| < c_{p+1} \text{ for some } p \end{aligned}$$

$$(CFI)$$

- Strengthen inequalities (CFI) for your CCCOP in this manner (as for matroids).
- If you are interested in cardinality specific inequalities for your CCCOP, then find "good" matroidal relaxations.
- A CCCOP is not necessarily harder than its non-cardinality restricted version.

Conclusion

Conclusion and Questions

$$\begin{aligned} (c_{p+1} - |F|)x(F) - (|F| - c_p)x(E \setminus F) &\leq c_p(c_{p+1} - |F|) \\ \text{for all } \emptyset \neq F \subseteq E \text{ with } c_p < |F| < c_{p+1} \text{ for some } p \end{aligned}$$

$$(CFI)$$

- Strengthen inequalities (CFI) for your CCCOP in this manner (as for matroids).
- If you are interested in cardinality specific inequalities for your CCCOP, then find "good" matroidal relaxations.
- A CCCOP is not necessarily harder than its non-cardinality restricted version.
- Sometimes good: Trace back CCCOP's to COP's.

Rüdiger Stephan