Maximum Profit Wavelength Assignment in WDM Rings

E. Bampas, A. Pagourtzis, K. Potika

{ebamp,pagour,epotik}@cs.ntua.gr

National Technical University of Athens

Transparent WDM networks

- Wavelength Division Multiplexing (WDM)
 - several "channels" per fiber
- Transparent routing
- Restrictions:
 - requests using the same edge have different frequencies (colors)
 - wavelength continuity
- Requests may have different profits

Maximum profit path coloring

Def. MAXPR-PC problem:

- input: graph G, path set P, # colors k, profits $w: P \to \mathbb{Q}$
- **solution**: a k-colorable subset of paths $P' \subseteq P$
- **goal**: maximize $w(P') = \sum_{p \in P'} w(p)$

Maximum profit path coloring

Def. MAXPR-PC problem:

- input: graph G, path set P, # colors k, profits $w: P \to \mathbb{Q}$
- **solution**: a k-colorable subset of paths $P' \subseteq P$
- goal: maximize $w(P') = \sum_{p \in P'} w(p)$

Remarks:

- NP-hard in rings and trees
- polynomial-time solvable in chains [CL95]

Related work

On the cardinality version (MAXPC):

- Iterative algorithm [WL98], $\rho \approx 1.58$
- "Combine" [NPZ03], $\rho = 3/2$
- Iterative + local search [Car07], $\rho = 4/3$

On MaxPR-PC:

- MAXPR-PC with routing [LLWZ05], $\rho = 2$
- Adaptation of iterative algorithm, $\rho \approx 1.58$
- LP + randomized rounding [Car07], $\rho \approx 1.49$

In the rest of this talk...

- Match and replace
 - a fast, combinatorial 2-approximation algorithm for MAXPR-PC in rings
- Tradeoffs between running time and approximation guarantee
 - some experimental results
- Further work

Match and replace

- 1. pick an edge e, and partition P into P_e and P_c
- 2. color $\langle G, P_c, k, w \rangle$ optimally (chain subinstance)
- 3. construct a weighted complete bipartite graph H with nodes $\{1,\ldots,k\}\cup K$ (K: set of k heaviest paths in P_e)
 - $w'(i,q) = w(q) w([P_c(i)]^q)$ (gain by picking $q \in P_e$ instead of $[P_c(i)]^q$)
- 4. compute a maximum weight matching M in H
- 5. for each $(i,q) \in M$
- uncolor all paths in $[P_c(i)]^q$ and color q with i

- \bullet OPT \leq OPT_e + OPT_c
- We need to show that
 - OPT $_c \leq SOL$ (easy!)
 - $OPT_e \leq SOL$
- These imply $OPT \le 2SOL$
- Remains to prove:

$$OPT_e = w(K) \leq SOL$$

The solution returned has total profit

$$SOL = SOL_c + w'(M) ,$$

which can be written as

$$SOL = \sum_{i \text{ not matched}} w(P_c(i)) + w(K_M) + \sum_{(i,q) \in M} w([P_c(i)]^{\neg q})$$

$$\geq \sum_{i \text{ not matched}} w(P_c(i)) - \sum_{q \text{ not matched}} w(q) + w(K) \geq \mathrm{OPT}_e \ .$$

Alternatives for MaxPR-PC in rings

Algorithm	Running time	Appr. guarantee
[Car07]	LP	1.49
Iterative	$O(k^2m^2\log m)$	1.58
M&R	$O(m^2(k + \log m))$	2
Greedy	$O(nmk + m\log m)$?
"Best"	$O(km\log m)$	2

profit vs. # paths (n=100, k=80)

Further work ([BPPP08])

- Switch model to:
 - non-profit version
 - multifiber setting
 - goal: minimize maximum color multiplicity over all edges
 - paths are non-cooperative, selfish players
- **Questions:**
 - convergence to Nash Equilibrium (NE)?
 - price of anarchy?
 - price of stability?

Overview of results in selfish model

- Convergence to Nash Equilibrium in at most $4^{|P|}$ steps
- Efficient computation of NE:
 - optimal NE in a subclass of tree games
 - $\frac{1}{2}$ -approximate NE in stars
- Upper and lower bounds for the PoA:
 - # colors
 - minimum length of any path that contributes to the cost of some worst-case NE
 - matching lower bounds for graphs with $\Delta \geq 3$
 - constant for a large subclass of ring games

Directions for future work

- Purely combinatorial algorithm with ρ < 1.49 ?
- PTAS for MaxPR-PC ?

In the non-cooperative setting:

- Investigate the case of weighted paths
- Allow players to also choose their routing, and compare with existing models

[CL95] M.C. Carlisle, E.L. Lloyd: On the K-coloring of Intervals. Discrete Applied Mathematics 59(3): 225-235 (1995)

[WL98] P.J. Wan, L. Liu: Maximal throughput in wavelength-routed optical networks. Multi-channel Optical Networks: Theory and Practice. Volume 46 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, AMS (1998) 15-26

[NPZ03] C. Nomikos, A. Pagourtzis, S. Zachos: Satisfying a maximum number of pre-routed requests in all-optical rings. Computer Networks 42(1): 55-63 (2003)

[Car07] I. Caragiannis: Wavelength Management in WDM Rings to Maximize the Number of Connections. STACS 2007: 61-72

[LLWZ05] J. Li, K. Li, L. Wang, H. Zhao: Maximizing Profits of Routing in WDM Networks. J. Comb. Optim. 10(2): 99-111 (2005)

[BPPP08] E. Bampas, A. Pagourtzis, G. Pierrakos, K. Potika: Selfish wavelength assignment in multifiber optical networks (abstract). Proceedings of the 1st annual meeting of the Asian Association for Algorithms and Computation (AAAC 2008)

