
Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Exact Graph Coloring via Hybrid Approaches

S.Gualandi, F.Malucelli

Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Milano, Italy

May 13, 2008

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Outline

I Graph Coloring
I Formulations

I Classical Formulation
I Column Generation approach
I Semidefinite Programming
I Constraint Programming

I Exact Hybrid Approaches
I Constraint Programming-based Column Generation
I Exploiting SDP relaxations into Constraint Programming

I Computational results

I Conclusions

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Graph Coloring

Given a graph G = (V ,E) and an integer k, a k-coloring of G
is a mapping c : V → {1, . . . , k}, s.t. c(i) 6= c(j),∀{i , j} ∈ E ;
Min-GCP consists in finding the minimum k such that a
k-coloring exists. Min-GCP is NP-hard.

1

2

4

5

7

3

6

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Graph Coloring

Given a graph G = (V ,E) and an integer k, a k-coloring of G
is a mapping c : V → {1, . . . , k}, s.t. c(i) 6= c(j),∀{i , j} ∈ E ;
Min-GCP consists in finding the minimum k such that a
k-coloring exists. Min-GCP is NP-hard.

1

2

4

5

7

3

6

1

2

4

5

7

3

6

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Graph Coloring

Given a graph G = (V ,E) and an integer k, a k-coloring of G
is a mapping c : V → {1, . . . , k}, s.t. c(i) 6= c(j),∀{i , j} ∈ E ;
Min-GCP consists in finding the minimum k such that a
k-coloring exists. Min-GCP is NP-hard.

1

2

4

5

7

3

6

1

2

4

5

7

3

6

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Classical Integer Programming Formulation

Integer Programming formulation

min
∑

k∈K yk

s.t.
∑

k∈K xik = 1, ∀i ∈ V ,∑
i∈C xik ≤ yk , ∀C ∈ C∗,∀k ∈ K ,

xik ∈ {0, 1}, ∀i ∈ V ,∀k ∈ K

yk ∈ {0, 1}, ∀k ∈ K .

Drawbacks
I It suffers from symmetric issues (permutations over indices k)

I The linear relaxations provides loose lower bounds

Example: x11 = x61 = 1,
x23 = x24 = x33 = x34 = x43 = x44 = x53 = x54 = x73 = x74 = 0.5

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Column Generation Approach

Master Problem

min
∑

S∈S xS

s.t.
∑

S∈S:i∈S xS ≥ 1, ∀i ∈ V ,

xS ∈ {0, 1}, ∀S ∈ S.

Pricing problem

max
∑

i∈V π̄iyi

s.t. yi + yj ≤ 1, ∀{i , j} ∈ E ,

yi ∈ {0, 1}, ∀i ∈ V .

Advantages

I It handles color classes, reducing symmetric issues

I It is the fastest exact method [MT96]

Drawbacks
I Since 1996, little if any improvements on this approach

I Difficult to generalize to other coloring problems

I The linear relaxation still provides poor information

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Semidefinite Programming relaxations

A better relaxation can be derived using SDP

The idea is to assign unit vectors vi ∈ Rn to every vertex i ∈ V ,
such that for any two adjacent vertices vT

i vj ≤ − 1
k−1 . Define

matrix V such that column i is given by vi and let X = V TV .
The graph coloring problem can be posed as:

min k

diag(X) = e,

Xij ≤ − 1
k−1 , ∀{i , j} ∈ E ,

X � 0.

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Semidefinite Programming relaxations

A better relaxation can be derived using SDP

The idea is to assign unit vectors vi ∈ Rn to every vertex i ∈ V ,
such that for any two adjacent vertices vT

i vj ≤ − 1
k−1 . Define

matrix V such that column i is given by vi and let X = V TV .
The graph coloring problem can be posed as:

min k

diag(X) = e,

Xij ≤ − 1
k−1 , ∀{i , j} ∈ E ,

X � 0.

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Semidefinite Programming relaxations

A better relaxation can be derived using SDP

The idea is to assign unit vectors vi ∈ Rn to every vertex i ∈ V ,
such that for any two adjacent vertices vT

i vj ≤ − 1
k−1 . Define

matrix V such that column i is given by vi and let X = V TV .
The graph coloring problem can be posed as:

min k

diag(X) = e,

Xij ≤ − 1
k−1 , ∀{i , j} ∈ E ,

X � 0.

1

2

4

5

7

3

6

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Semidefinite Programming relaxations

1 2 3 4 5 6 7
1 1.000
2 -0.531 1.000
3 0.064 -0.447 1.000
4 -0.447 0.064 -0.501 1.000
5 -0.411 0.696 0.064 -0.447 1.000
6 0.696 -0.411 -0.447 0.064 -0.531 1.000
7 -0.415 -0.415 0.420 0.420 -0.415 -0.415 1.000

min k

diag(X) = e,

Xij ≤ − 1
k−1 , ∀{i , j} ∈ E ,

X � 0.

1

2

4

5

7

3

6

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Semidefinite Programming relaxations

1 2 3 4 5 6 7
1
2
3 0.064
4 0.064
5 0.696 0.064
6 0.696 0.064
7 0.420 0.420

min k

diag(X) = e,

Xij ≤ − 1
k−1 , ∀{i , j} ∈ E ,

X � 0.

1

2

4

5

7

3

6

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Semidefinite Programming relaxations

1 2 3 4 5 6 7
1
2
3 0.064
4 0.064
5 0.696 0.064
6 0.696 0.064
7 0.420 0.420

REMARK: The value of X ∗
ij in the optimal solution can be

interpreted as the likehood that vertices i and j take the same color

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Constraint Programming approach

k-coloring problem

variables: domain(yi) = [1 . . . k], ∀i ∈ V ,

constraints: alldifferent({yi | i ∈ C}), ∀C ∈ C∗.

Advantages

I Simple and intuitive model

I Easy to generalize to other coloring problems (like bandwidth
and multicoloring)

Drawbacks
I It solves iteratively many k-coloring problems

I Its efficiency depends strongly on the enumeration strategy

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model
variables: yi = {1, 2, 3}, ∀i ∈ V

constraints: alldifferent([y1, y2, y7])

alldifferent([y2, y3, y6])

alldifferent([y1, y4, y5])

alldifferent([y5, y6, y7])

alldifferent([y3, y4])

1

2

4

5

7

3

6

y1 y2 y3 y4 y5 y6 y7

{1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}

1 {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {2,3} {2,3} {2,3} {1} {2,3}
1 2 {2,3} {2,3} {2,3} {1} {2,3}
1 2 3 {2,3} {2,3} {1} 3
1 2 3 2 {} {1} 3

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model
variables: yi = {1, 2, 3}, ∀i ∈ V

constraints: alldifferent([y1, y2, y7])

alldifferent([y2, y3, y6])

alldifferent([y1, y4, y5])

alldifferent([y5, y6, y7])

alldifferent([y3, y4])

1

2

4

5

7

3

6

y1=1 y1!1

y1 y2 y3 y4 y5 y6 y7

{1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
1 {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}

1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {2,3} {2,3} {2,3} {1} {2,3}
1 2 {2,3} {2,3} {2,3} {1} {2,3}
1 2 3 {2,3} {2,3} {1} 3
1 2 3 2 {} {1} 3

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model
variables: yi = {1, 2, 3}, ∀i ∈ V

constraints: alldifferent([y1, y2, y7])

alldifferent([y2, y3, y6])

alldifferent([y1, y4, y5])

alldifferent([y5, y6, y7])

alldifferent([y3, y4])

1

2

4

5

7

3

6

y1=1 y1!1

y1 y2 y3 y4 y5 y6 y7

{1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
1 {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {2,3} {2,3} {2,3} {1} {2,3}

1 2 {2,3} {2,3} {2,3} {1} {2,3}
1 2 3 {2,3} {2,3} {1} 3
1 2 3 2 {} {1} 3

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model
variables: yi = {1, 2, 3}, ∀i ∈ V

constraints: alldifferent([y1, y2, y7])

alldifferent([y2, y3, y6])

alldifferent([y1, y4, y5])

alldifferent([y5, y6, y7])

alldifferent([y3, y4])

1

2

4

5

7

3

6

y1=1

y2=2

y1!1

y1 y2 y3 y4 y5 y6 y7

{1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
1 {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {2,3} {2,3} {2,3} {1} {2,3}
1 2 {2,3} {2,3} {2,3} {1} {2,3}

1 2 3 {2,3} {2,3} {1} 3
1 2 3 2 {} {1} 3

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model
variables: yi = {1, 2, 3}, ∀i ∈ V

constraints: alldifferent([y1, y2, y7])

alldifferent([y2, y3, y6])

alldifferent([y1, y4, y5])

alldifferent([y5, y6, y7])

alldifferent([y3, y4])

1

2

4

5

7

3

6

y1=1

y2=2

y1!1

y1 y2 y3 y4 y5 y6 y7

{1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
1 {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {2,3} {2,3} {2,3} {1} {2,3}
1 2 {2,3} {2,3} {2,3} {1} {2,3}
1 2 3 {2,3} {2,3} {1} 3
1 2 3 2 {} {1} 3

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model
variables: yi = {1, 2, 3}, ∀i ∈ V

constraints: alldifferent([y1, y2, y7])

alldifferent([y2, y3, y6])

alldifferent([y1, y4, y5])

alldifferent([y5, y6, y7])

alldifferent([y3, y4])

1

2

4

5

7

3

6

y1=1

y2=2

y1!1

y2!2

y1 y2 y3 y4 y5 y6 y7

{1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
1 {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {2,3} {2,3} {2,3} {1} {2,3}
1 3 {2,3} {2,3} {2,3} {1} {2,3}

1 3 2 {2,3} {2,3} {1} 2
1 3 2 3 {} {1} 2

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model
variables: yi = {1, 2, 3}, ∀i ∈ V

constraints: alldifferent([y1, y2, y7])

alldifferent([y2, y3, y6])

alldifferent([y1, y4, y5])

alldifferent([y5, y6, y7])

alldifferent([y3, y4])

1

2

4

5

7

3

6

y1=1

y2=2

y1!1

y2!2

y1 y2 y3 y4 y5 y6 y7

{1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
1 {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3}
1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {1,2,3} {2,3} {2,3} {1,2,3} {2,3}
1 {2,3} {2,3} {2,3} {2,3} {1} {2,3}
1 3 {2,3} {2,3} {2,3} {1} {2,3}
1 3 2 {2,3} {2,3} {1} 2
1 3 2 3 {} {1} 2

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Outline

I Graph Coloring
I Formulations

I Classical Formulation
I Column Generation approach
I Semidefinite Programming
I Constraint Programming

I Exact Hybrid Approaches
I Constraint Programming-based Column Generation
I Exploiting SDP relaxations into Constraint Programming

I Computational results

I Conclusions

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Constraint Programming-based Column Generation

zMP=min{cx:Ax!b,x!Z}

A=

zRMP=min{cx:Ax!b}

A=
"* c* ! 0 ?

Solve the original integer

problem either over the

generetad columns (RIP)

or by Branch&Price

 yes

no

relaxation

 (c*,y*=)

 (c*,y*=)

c*= min "*y,

s.t. yi+yj#1,${i,j}!E,

 yi !{0,1}, $i!V.

Pricing problem

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Constraint Programming-based Column Generation

zMP=min{cx:Ax!b,x!Z}

A=

zRMP=min{cx:Ax!b}

A=
"* c* ! 0 ?

 yes

 Ap=

no

CSP = {y ! F,

 c* = "*y,

 c*< # < 0 }

CP-pricing problem

Augmented

CP-pricing

("*, c*, y*)

relaxation

 (c*,y*=)

 (c*,y*=)

Solve the original integer

problem either over the

generetad columns (RIP)

or by Branch&Price

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Enhancing the regular CP-based Column Generation

1. Adaptive thresholds in the pricing
Constraint Programming is used to find a maximal independet set of weight
greater than or equal to a threshold τ . The value of this thresholds changes at
each iteration of the Column Generation algorithm.

2. Augmented pricing problem
Once a negative reduced cost solution is found, we solve the augmented pricing
problem that encodes knowledge from the integer master problem and
generates structured columns. The augmented pricing problem is:

variables: zi ⊆ V ,∀i ∈ {1, . . . , k}
constraints: z1 ≡ ap

independentSet(zi , G) ∈ F , ∀i ∈ {1, . . . , k}
partition([z1, . . . , zk], V])
cardinality(zi) ≥ cardinality(zi+1),∀i = 2, . . . , |V | − 1

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Enhancing the regular CP-based Column Generation

1. Adaptive thresholds in the pricing
Constraint Programming is used to find a maximal independet set of weight
greater than or equal to a threshold τ . The value of this thresholds changes at
each iteration of the Column Generation algorithm.

2. Augmented pricing problem
Once a negative reduced cost solution is found, we solve the augmented pricing
problem that encodes knowledge from the integer master problem and
generates structured columns. The augmented pricing problem is:

variables: zi ⊆ V ,∀i ∈ {1, . . . , k}
constraints: z1 ≡ ap

independentSet(zi , G) ∈ F , ∀i ∈ {1, . . . , k}
partition([z1, . . . , zk], V])
cardinality(zi) ≥ cardinality(zi+1),∀i = 2, . . . , |V | − 1

S.Gualandi. Enhacing CP-based Column Generation for Integer
Programs. PhD Thesis. Forthcoming...

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Outline

I Graph Coloring
I Formulations

I Classical Formulation
I Column Generation approach
I Semidefinite Programming
I Constraint Programming

I Exact Hybrid Approaches
I Constraint Programming-based Column Generation
I Exploiting SDP relaxations into Constraint Programming

I Computational results

I Conclusions

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Exploiting SDP relaxations into CP

The efficiency of the Constraint Programming approach
depends on the variable and value selection heuristics.
The best results for a regular CP approach are obtained with:

1. Variable selection: look for the vertex with the smallest ratio
domain size against vertex degree. Then break ties using the
vertex with the biggest number of suspensions

2. Value selection: pick the smallest color left in its domain

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Exploiting SDP relaxations into CP

The efficiency of the Constraint Programming approach
depends on the variable and value selection heuristics.
The best results for a regular CP approach are obtained with:

1. Variable selection: look for the vertex with the smallest ratio
domain size against vertex degree. Then break ties using the
vertex with the biggest number of suspensions

2. Value selection: pick the smallest color left in its domain

The optimal solution X ∗
ij of a SDP relaxation gives the

likehood that the two vertices i and j takes the same color

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Exploiting SDP relaxations into CP

The hybridization consists in using the SDP relaxation X ∗ to
derive effective variable and value selection heuristics:

Optimistic Variable selection

look for the vertex i with the
smallest ratio domain size against
vertex degree. Then, break ties
by looking for the vertex with the
largest X ∗

ij value

Pessimistic Variable selection

look for the vertex i with the
smallest ratio domain size against
vertex degree. Then, break ties
by looking for the vertex with the
smallest X ∗

ij value

Value selection

pick the smallest color left in the intersection: dom(yi) ∩ dom(yj)

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

CP-based Column Generation vs. Column Generation

RIP-Heuristic: solve the restricted integer problem (RIP) over the generated columns
Strong Aug.: CP-based column generation with strong augmented pricing

RIP-Heuristic Strong Aug.
Problem |N| |E | dχf e χ LB-UB tRMP tRIP LB-UB tUB time

myciel4 23 71 4 5 4-5 0.1 0.1 4-5 0.1 0.1
myciel5 47 236 4 6 4-6 0.1 0.3 4-6 0.1 0.1
queen8 8 64 1456 9 9 9-10 0.6 1.2 9 24.9 25.4
queen9 9 91 2112 9 10 9-11 3.9 16 9-10 29 32.6
queen10 10 100 1470 10 10 10-12 14 463 10-12 0.53 3600
will199GPIA 701 6772 7 7 7-8 1314 1336 7 3.8 448
le450 5d 450 9757 5 - 5-10 3600 - 5-6 20 3600
le450 15c 450 16680 12 - 15-24 3600 - 15-22 1191 3600
le450 15d 450 16750 15 - 15-25 3600 - 15-23 4.3 3600

DSJC125.1 125 736 5 5 5-6 132 136 5-6 0.5 1202
DSJC125.5 125 3891 16 ? 16-19 8.5 1274 16-20 0.69 3600
DSJC125.9 125 6961 43 44 43-44 0.8 1.6 43-49 0.22 3600
DSJC250.1 250 3218 6 ? 6-10 3600 - 6-9 1.42 3600
DSJC250.5 250 15668 26 ? 26-43 253 3600 26-36 3.66 3600
DSJC250.9 250 27897 71 73 71-73 19 178 71-87 2.67 3600

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

SDP-CP vs. CP

DSATUR CP CP-SDP
Problem |N| |E | ω χ back-tr. time back-tr. time back-tr. time
myciel4 23 71 2 5 848 0,0 52 0,0 35 0,1
myciel5 47 236 2 6 378.311 0,6 4.816 0,1 808 0,5
myciel6 95 755 2 7 timeout 21.605.762 692 1.722.975 65,1
myciel7 191 2360 2 8 timeout timeout timeout

Table: Mycielisky instances.

Using Branch&Price, even instances myciel5 was not solved
within the timeout of 3600 sec.

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

SDP-CP vs. CP

DSATUR CP CP-SDP
Problem |N| |E | ω χ back-tr. time back-tr. time back-tr. time
myciel4 23 71 2 5 848 0,0 52 0,0 35 0,1
myciel5 47 236 2 6 378.311 0,6 4.816 0,1 808 0,5
myciel6 95 755 2 7 timeout 21.605.762 692 1.722.975 65,1
myciel7 191 2360 2 8 timeout timeout timeout

Table: Mycielisky instances.

Using Branch&Price, even instances myciel5 was not solved
within the timeout of 3600 sec.

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Conclusions

1. Using the CP-based Column Generation within a
Branch&Price, we close two open DIMACS instances
(DSJC125.9, DSJC250.9) and improve the lower bounds of
four hard DIMACS instances (DSJC125.5, DSJC250.5,
DSJC500.9, DSJC1000.9)

2. The Hybrid CP-SDP approach is very effective in proving
optimality for small-medium instances having a gap between
χf (G) and χ(G)

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Thanks for your attention

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Branch&Price

I The column generation algorithm gives the fractional
chromatic number χf (G), that is a lower bound on χ(G)

I In order to get χ(G), we have implemented a
branch-and-price, using the following branching rule:

1. select a pair of vertices i
and j being not adjacent
and having the most
negative reduced costs

2. either merge node i and j
into a new node ij

3. or add a new edge {i , j}

i j

ij

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

Branch&Price

I The column generation algorithm gives the fractional
chromatic number χf (G), that is a lower bound on χ(G)

I In order to get χ(G), we have implemented a
branch-and-price, using the following branching rule:

1. select a pair of vertices i
and j being not adjacent
and having the most
negative reduced costs

2. either merge node i and j
into a new node ij

3. or add a new edge {i , j}

i j

ij

i j

Exact Graph Coloring Formulations Hybrid Approaches Computational Results

A. Mehrotra and M. A. Trick.
A column generation approach for graph coloring.
INFORMS Journal on Computing, 8:344–354, 1996.

	Exact Graph Coloring
	Graph Coloring

	Formulations
	Column Generation Approach
	Semidefinite Programming (SDP) relaxations
	Constraint Programming approach

	Hybrid Approaches
	Constraint Programming-based Column Generation
	SDP-CP

	Computational Results
	CP-based Column Generation vs. Column Generation
	Conclusions

