Exact Graph Coloring via Hybrid Approaches

S.Gualandi, F.Malucelli

Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Milano, Italy

May 13, 2008

Exact Graph Coloring
®0

Outline

v

Graph Coloring
Formulations
» Classical Formulation
» Column Generation approach
» Semidefinite Programming
» Constraint Programming

v

v

Exact Hybrid Approaches

» Constraint Programming-based Column Generation
» Exploiting SDP relaxations into Constraint Programming

v

Computational results

Conclusions

v

Exact Graph Coloring

oe

Graph Coloring

Given a graph G = (V, E) and an integer k, a k-coloring of G
is a mapping ¢ : V — {1,...,k}, sit. c(i) # c(j),Y{i,j} € E;
Min-GCP consists in finding the minimum k such that a
k-coloring exists. Min-GCP is NP-hard.

Exact Graph Coloring

oe

Graph Coloring

Given a graph G = (V, E) and an integer k, a k-coloring of G
is a mapping ¢ : V — {1,...,k}, sit. c(i) # c(j),Y{i,j} € E;
Min-GCP consists in finding the minimum k such that a
k-coloring exists. Min-GCP is NP-hard.

Exact Graph Coloring
oce

Graph Coloring

Given a graph G = (V, E) and an integer k, a k-coloring of G
is a mapping ¢ : V — {1,...,k}, sit. c(i) # c(j),Y{i,j} € E;
Min-GCP consists in finding the minimum k such that a
k-coloring exists. Min-GCP is NP-hard.

Formulations

Classical Integer Programming Formulation

Integer Programming formulation
min - >4k Yk
st. D eexXik =1, VieV,
Yoicc Xik < yk, VCeC VkeK,
xik € {0,1}, Vie V,Yke K
yk € {0,1}, Vk € K.

Drawbacks
» It suffers from symmetric issues (permutations over indices k)

» The linear relaxations provides loose lower bounds

D X1 = Xe1 = 1,

X23 = X4 = X33 = X34 = X43 = X44 = X53 = X54 = X73 = x74 = 0.5

Formulations
°

Column Generation Approach

Master Problem Pricing problem
min - > ses Xs max Y icy TiYi
s.t. ZSGS:iES Xs 2 17 Vi e V7 s.t. yi +yj < 1> V{I,J} € E?
xs € {0,1}, VS € S. yi€{0,1}, Vie V.
Advantages

» It handles color classes, reducing symmetric issues
> It is the fastest exact method [MT96]

Drawbacks
» Since 1996, little if any improvements on this approach

» Difficult to generalize to other coloring problems

» The linear relaxation still provides poor information

Formulations
©000

Semidefinite Programming relaxations

A better relaxation can be derived using SDP

Formulations
©000

Semidefinite Programming relaxations

A better relaxation can be derived using SDP

The idea is to assign unit vectors v; € R"” to every vertex i € V,
such that for any two adjacent vertices v,-TvJ- < —ﬁ. Define
matrix V such that column i is given by v; and let X = VT V.
The graph coloring problem can be posed as:

Formulations
©000

Semidefinite Programming relaxations

A better relaxation can be derived using SDP

The idea is to assign unit vectors v; € R" to every vertex i € V/,
such that for any two adjacent vertices v;" v; < — ;. Define
matrix V such that column i is given by v; and let X = VT V.

The graph coloring problem can be posed as:

min k
diag(X) = e,
Xij < —745.V{i,j} € E,
X = 0.

Formulations
000

Semidefinite Programming relaxations

1 2 3 4 5 6 7
1 | 1.000
2 [-0.531 1.000
3 | 0.064 -0.447 1.000
4 |-0.447 0.064 -0.501 1.000
5 [-0.411 0.696 0.064 -0.447 1.000
6 | 0.696 -0.411 -0.447 0.064 -0.531 1.000
7 |-0.415 -0.415 0.420 0.420 -0.415 -0.415 1.000
min k
diag(X) = e,

XU < _ﬁvv{lv.]} € Eu
X = 0.

Formulations
00®0

Semidefinite Programming relaxations

1 3 5 6 7

1

2

3 | 0.064

0.064
0.064
6 | 0.696 0.064
7 0.420 0.420
5
min k
diag(X) = e,

XU < _ﬁav{lv./} € Eu
X = 0.

Formulations
oooe

Semidefinite Programming relaxations

1 3 4 5 6 7
1
2
3 | 0.064
4 0.064

0.064

6 |0.696 0.064
7 0.420 0.420

REMARK: The value ofX,.;f in the optimal solution can be
interpreted as the likehood that vertices i and j take the same color

Formulations
®000

Constraint Programming approach

k-coloring problem
variables: domain(y;) = [1...k], VieV,
constraints: alldifferent({y; |i € C}), VC e C*.

Advantages
» Simple and intuitive model

» Easy to generalize to other coloring problems (like bandwidth
and multicoloring)

Drawbacks
> It solves iteratively many k-coloring problems

» lts efficiency depends strongly on the enumeration strategy

Formulations

0®e00

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model

variables: y; ={1,2,3}, VieV
constraints: alldifferent([yi,y2,y71)
alldifferent([ys,y3, y61)
alldifferent (Lyi, ya,ys])
alldifferent([ys, ye, y71)

alldifferent([ys, ys])

Q 1 y2 ¥3 ya ¥s Y6 ¥

{123} {123} {1,23} {1,2,3} {123} {1,23} {1,2,3}

Formulations

0®e00

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model

variables: y; ={1,2,3}, VieV
constraints: alldifferent([yi,y2,y71)
alldifferent([ys,y3, y61)
alldifferent (Lyi, ya,ys])
alldifferent([ys, ye, y71)

alldifferent([ys, ys])

Q " y2 ¥3 ya ¥s Y6 ¥

y,=1 {123} {123} {123} {123} {123} {123} {123}
Q 1 {123} {123} {123} {123} {123} {123}

Formulations

0®e00

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model

variables: y; ={1,2,3}, VieV
constraints: alldifferent([yi,y2,y71)
alldifferent([ys,y3, y61)
alldifferent (Lyi, ya,ys])
alldifferent([ys, ye, y71)

alldifferent([ys, ys])

Q Y1 ¥2 y3

Ya Y5 Y6 yr

y,=1 {1,2,3} {123} {123} {123} {1.2,3} {123} {123}
1 {123} {123} {123} {123} {123} {123}

Q 1 {23} {123} {23} {2,3} {123} {23}
1 {23} {123} {23} {23} {123} {23}

1 {23y {23} {23} {23} {1} {23}

Formulations
000

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model

variables: y; ={1,2,3}, VieV
constraints: alldifferent([yi,y2,y71)
alldifferent([ys,y3, y61)
alldifferent (Lyi, ya,ys])
alldifferent([ys, ye, y71)

alldifferent([ys, ys])

Q %1 y2 ¥3 ya Vs Y6 ¥
{1,23} {1,23} {1,23} {1,23} {123} {123} {123}

y,z}% 1 {1,23} {123} {1,2,3} {1.23} {123} {1,23}
(2,3} {123} {23} {23} {123} {23}

{23} {123} {23} {23} {123} {23}
{23y {23} {23} {23} {1} {23}
2 {23} {23} {23} {1} {23}

Y =

Formulations
000

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model

variables: y; ={1,2,3}, VieV
constraints: alldifferent([y1, y»,y7])
alldifferent ([y», y3,ys1)
alldifferent (Lyi, ya,ys])
alldifferent([ys, ye, y71)

alldifferent([ys, ys])

Q " ¥ ¥3 V4 ¥5 ¥6 %4
[1.23) {1.23] {123} {123} {123} {123} {123}

yﬁ% 1 {123} {123} {123} {123} {123} {123}
1 {23} {123} {23} {23} {123} {23}

Q 1 {23} {123} {23} {23} {123} {23}

1 {23} {23} {23} {23} {1} {23}

J/2=€/ 1 2 {23} {23} {23} {1y {23}
1 2 3 {231 {231 {1} 3

Q 1 2 3 2 o {1 3

Formulations
00®0

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model

variables: y; ={1,2,3}, VieV
constraints: alldifferent([yi,y2,y71)
alldifferent([ys,y3, y61)
alldifferent (Lyi, ya,ys])
alldifferent([ys, ye, y71)

alldifferent([ys, ys])

O i y2 y3 Ya Y5 Y6 yr
1,23} {123} {1,2.3} {1,2.3} {1,2.3} {1,2,3} {1,2,3}

y,iy T {123} {123} {123} {123} {123} {123}
1 {23} {123} {23} {23} {123} {23}

O 1 {23} {123} {23} {23} {123} {23}

1 {23 {23} {23} {23} {1} {23}

Y2=€/ \f’z"z 1 3 {23} {23} {23} {i} {23}

o O

Formulations
00®0

Constraint Programming approach

Let us suppose we are looking for a
3-coloring

CP model

variables: y; ={1,2,3}, VieV
constraints: alldifferent([y1, y»,y7])
alldifferent ([y», y3,ys1)
alldifferent (Lyi, ya,ys])
alldifferent([ys, ye, y71)

alldifferent([ys, ys])

O i y2 y3 Ya Y5 Y6 yr
123} {123} {123} {123} {123} {123} {123}

YF.V T {123} {123} {123} {123} {123} {1.2.3]
1 {23} {123} {23} {23} {123} {23}

O 1 {23} {123} {23} {23} {123} {23}

1 {23 {23} {23} {23} {1} {23}

¥,=2 Yo=2 1 3 {23} {23} {23} {1} {23}
/ \ 1 3 2 {23} {23} {1} 2
o O TS S S S

Formulations
oooe

Outline

v

Graph Coloring
Formulations
» Classical Formulation
» Column Generation approach
» Semidefinite Programming
» Constraint Programming

v

v

Exact Hybrid Approaches

» Constraint Programming-based Column Generation
» Exploiting SDP relaxations into Constraint Programming

v

Computational results

Conclusions

v

Hybrid Approaches
€000

Constraint Programming-based Column Generation

zyp=min{cx:Ax=b,xEZ}

A=

relaxation

Zpyp=min{cx:Ax=b}

Solve the original integer

problem either over the

generetad columns (RIP)
or by Branch&Price

Pricing problem ﬁes

¢*=min 7y,
s.t.y+ysl, Vi jEE,
Y, §0.1}, ViEV.

Hybrid Approaches
000

Constraint Programming-based Column Generation

Zyp=min{cx:Ax=b,xEZ} Solve the original integer
problem either over the
A= generetad columns (RIP)
or by Branch&Price
relaxation
CP-pricing problem yes

Zpyp=min{cx:Ax=b} CSP={yEF,
¢ =q'y,

Augmented
CP-pricing
(@, ¢’ y)

Hybrid Approaches
00®0

Enhancing the regular CP-based Column Generation

1. Adaptive thresholds in the pricing

Constraint Programming is used to find a maximal independet set of weight
greater than or equal to a threshold 7. The value of this thresholds changes at
each iteration of the Column Generation algorithm.

2. Augmented pricing problem

Once a negative reduced cost solution is found, we solve the augmented pricing
problem that encodes knowledge from the integer master problem and
generates structured columns. The augmented pricing problem is:

variables: z; C V Vi€ {1,...,k}
constraints: z; = ap
independentSet(z;, G) € F, Vie{l,..., k}
partition([zi, ..., z], V])
cardinality(z) > cardinality(zi1),Vi=2,...,|V| -1

Hybrid Approaches
00®0

Enhancing the regular CP-based Column Generation

1. Adaptive thresholds in the pricing

Constraint Programming is used to find a maximal independet set of weight
greater than or equal to a threshold 7. The value of this thresholds changes at
each iteration of the Column Generation algorithm.

2. Augmented pricing problem

Once a negative reduced cost solution is found, we solve the augmented pricing
problem that encodes knowledge from the integer master problem and
generates structured columns. The augmented pricing problem is:

variables: z C V. ,Vie {1,...,k}
constraints: z; = ap
independentSet(z, G) € F, Vie{l,..., k}
partition([z,...,z], V])
cardinality(z) > cardinality(zi1),Vi=2,...,|V| -1

S.Gualandi. Enhacing CP-based Column Generation for Integer
Programs. PhD Thesis. Forthcoming...

Hybrid Approaches
oooe

Outline

v

Graph Coloring
Formulations
» Classical Formulation
» Column Generation approach
» Semidefinite Programming
» Constraint Programming

v

v

Exact Hybrid Approaches

» Constraint Programming-based Column Generation
» Exploiting SDP relaxations into Constraint Programming

v

Computational results

Conclusions

v

Exact Graph Coloring ions id Approaches itational Results
s 0 .

Exploiting SDP relaxations into CP

The efficiency of the Constraint Programming approach
depends on the variable and value selection heuristics.
The best results for a regular CP approach are obtained with:

1. Variable selection: look for the vertex with the smallest ratio
domain size against vertex degree. Then break ties using the
vertex with the biggest number of suspensions

2. Value selection: pick the smallest color left in its domain

Exact Graph Coloring ions id Approaches itational Results
o [Ye) 0

Exploiting SDP relaxations into CP

The efficiency of the Constraint Programming approach
depends on the variable and value selection heuristics.
The best results for a regular CP approach are obtained with:

1. Variable selection: look for the vertex with the smallest ratio
domain size against vertex degree. Then break ties using the
vertex with the biggest number of suspensions

2. Value selection: pick the smallest color left in its domain

The optimal solution X of a SDP relaxation gives the
likehood that the two vertices / and j takes the same color

Hybrid Approaches
oe

Exploiting SDP relaxations into CP

The hybridization consists in using the SDP relaxation X* to
derive effective variable and value selection heuristics:

Optimistic Variable selection

look for the vertex i with the
smallest ratio domain size against
vertex degree. Then, break ties
by looking for the vertex with the
largest X,-j value

Pessimistic Variable selection

look for the vertex i with the
smallest ratio domain size against
vertex degree. Then, break ties
by looking for the vertex with the
smallest X; value

Value selection

pick the smallest color left in the intersection: dom(y;) N dom(y;)

Computational Results
[1]

CP-based Column Generation vs. Column Generation

RIP-Heuristic: solve the restricted integer problem (RIP) over the generated columns
Strong Aug.: CP-based column generation with strong augmented pricing

RIP-Heuristic Strong Aug.

l Problem [‘N| |E| [|—Xf] X LB-UB trvp trRIP LB-UB tyg time
myciel4 23 71 4 5 4-5 0.1 0.1 4-5 0.1 0.1
myciel5 47 236 4 6 4-6 0.1 0.3 4-6 0.1 0.1
queen8_8 64 1456 9 9 9-10 06 1.2 9 249 254
queen9_9 91 2112 910 9-11 39 16 9-10 29 32.6
queenl0_10 100 1470 10 10 10-12 14 463 10-12 0.53 3600
will199GPIA | 701 6772 77 7-8 1314 1336 7 3.8 448
le450_5d 450 9757 5 - 5-10 3600 - 5-6 20 3600
le450_15c¢ 450 16680 12 - 15-24 3600 - 15-22 1191 3600
le450_15d 450 16750 15 - 15-25 3600 - 15-23 4.3 3600
DSJC125.1 125 736 55 5-6 132 136 5-6 0.5 1202
DSJC125.5 125 3891 ? 16-19 8.5 1274 16-20 0.69 3600
DSJC125.9 125 6961 43-44 0.8 1.6 43-49 0.22 3600
DSJC250.1 250 3218 ? 6-10 3600 - 6-9 1.42 3600
DSJC250.5 250 15668 ? 26-43 253 3600 26-36 3.66 3600
DSJC250.9 250 27897 71-73 19 178 71-87 2.67 3600

SDP-CP vs. CP

Computational Results

oe

DSATUR CP CP-SDP
Problem | |[N| |E| | w | x | back-tr. time back-tr. time back-tr. time
myciel4 23 71| 2|5 848 0,0 52 0,0 35 01
myciel5 47 236 | 2 | 6 | 378.311 0,6 4816 0,1 808 0,5
myciel6 95 755 | 2 | 7 timeout 21.605.762 692 | 1.722.975 65,1
myciel7 1912360 | 2 | 8 timeout timeout timeout
Table: Mycielisky instances.

Computational Results
oe

SDP-CP vs. CP

DSATUR CcpP CP-SDP
Problem | |N| |E| | w | x | back-tr. time back-tr. time back-tr. time
myciel4 23 71 2|5 848 0,0 52 0,0 35 0,1
myciel5 47 236 | 2 | 6 | 378311 06 4816 0,1 808 0,5
myciel6 95 755 2 7 timeout 21.605.762 692 | 1.722.975 65,1
myciel7 191 2360 2 8 timeout timeout timeout
Table: Mycielisky instances.

Using Branch&Price, even instances myciel5 was not solved
within the timeout of 3600 sec.

Exact Graph Coloring S Hybrid Approaches Computational Results
s 000000 00®00

Conclusions

1. Using the CP-based Column Generation within a
Branch&Price, we close two open DIMACS instances
(DSJC125.9, DSJC250.9) and improve the lower bounds of
four hard DIMACS instances (DSJC125.5, DSJC250.5,
DSJC500.9, DSJC1000.9)

2. The Hybrid CP-SDP approach is very effective in proving
optimality for small-medium instances having a gap between

xr(G) and x(G)

Computational Results
oe0

Thanks for your attention

Computational Results

ooe

Branch&Price

» The column generation algorithm gives the fractional
chromatic number x¢(G), that is a lower bound on x(G)

> In order to get x(G), we have implemented a
branch-and-price, using the following branching rule:

1. select a pair of vertices i
and j being not adjacent
and having the most
negative reduced costs

2. either merge node i and j
into a new node ij

Computational Results

ooe

Branch&Price

» The column generation algorithm gives the fractional
chromatic number x¢(G), that is a lower bound on x(G)

> In order to get x(G), we have implemented a
branch-and-price, using the following branching rule:

1. select a pair of vertices i
and j being not adjacent
and having the most
negative reduced costs

2. either merge node i and j
into a new node ij

3. or add a new edge {i,j}

Computational Results
ooe

[4 A. Mehrotra and M. A. Trick.
A column generation approach for graph coloring.
INFORMS Journal on Computing, 8:344-354, 1996.

	Exact Graph Coloring
	Graph Coloring

	Formulations
	Column Generation Approach
	Semidefinite Programming (SDP) relaxations
	Constraint Programming approach

	Hybrid Approaches
	Constraint Programming-based Column Generation
	SDP-CP

	Computational Results
	CP-based Column Generation vs. Column Generation
	Conclusions

