▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Exact Graph Coloring via Hybrid Approaches

S.Gualandi, F.Malucelli

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

May 13, 2008

Exact	Graph	Coloring
•0		

Formulations

Hybrid Approaches

Computational Results

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Outline

- Graph Coloring
- Formulations
 - Classical Formulation
 - Column Generation approach
 - Semidefinite Programming
 - Constraint Programming
- Exact Hybrid Approaches
 - Constraint Programming-based Column Generation
 - Exploiting SDP relaxations into Constraint Programming
- Computational results
- Conclusions

Formulations

Hybrid Approaches

Computational Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Graph Coloring

Given a graph G = (V, E) and an integer k, a k-coloring of G is a mapping $c : V \rightarrow \{1, ..., k\}$, s.t. $c(i) \neq c(j), \forall \{i, j\} \in E$; Min-GCP consists in finding the minimum k such that a k-coloring exists. Min-GCP is NP-hard.

Formulations

Hybrid Approaches

Computational Results

Graph Coloring

Given a graph G = (V, E) and an integer k, a k-coloring of G is a mapping $c : V \rightarrow \{1, ..., k\}$, s.t. $c(i) \neq c(j), \forall \{i, j\} \in E$; Min-GCP consists in finding the minimum k such that a k-coloring exists. Min-GCP is NP-hard.

◆□▶ ◆□▶ ◆□▶ ◆□▶ = 三 のへで

Formulations

Hybrid Approaches

Computational Results

Graph Coloring

Given a graph G = (V, E) and an integer k, a k-coloring of G is a mapping $c : V \rightarrow \{1, ..., k\}$, s.t. $c(i) \neq c(j), \forall \{i, j\} \in E$; Min-GCP consists in finding the minimum k such that a k-coloring exists. Min-GCP is NP-hard.

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ▲母 ▶ ▲ ● ● ● ●

Exact Graph Coloring Formulations

Hybrid Approaches

Computational Results

Classical Integer Programming Formulation

Integer Programming formulation

$$\begin{array}{ll} \min & \sum_{k \in K} y_k \\ \text{s.t.} & \sum_{k \in K} x_{ik} = 1, \quad \forall i \in V, \\ & \sum_{i \in C} x_{ik} \leq y_k, \quad \forall C \in \mathcal{C}^*, \forall k \in K, \\ & x_{ik} \in \{0, 1\}, \qquad \forall i \in V, \forall k \in K \\ & y_k \in \{0, 1\}, \qquad \forall k \in K. \end{array}$$

Drawbacks

- It suffers from symmetric issues (permutations over indices k)
- The linear relaxations provides loose lower bounds

Example: $x_{11} = x_{61} = 1$, $x_{23} = x_{24} = x_{33} = x_{34} = x_{43} = x_{44} = x_{53} = x_{54} = x_{73} = x_{74} = 0.5$

Formulations

Hybrid Approaches

Computational Results

Column Generation Approach

Master Problem

 $\begin{array}{ll} \min & \sum_{S \in \mathcal{S}} x_S \\ \text{s.t.} & \sum_{S \in \mathcal{S}: i \in S} x_S \ge 1, \, \forall i \in V, \\ & x_S \in \{0, 1\}, \qquad \forall S \in \mathcal{S}. \end{array}$

Pricing problem max $\sum_{i \in V} \overline{\pi}_i y_i$ s.t. $y_i + y_j \leq 1$, $\forall \{i, j\} \in E$, $y_i \in \{0, 1\}$, $\forall i \in V$.

Advantages

- It handles color classes, reducing symmetric issues
- It is the fastest exact method [MT96]

Drawbacks

- Since 1996, little if any improvements on this approach
- Difficult to generalize to other coloring problems
- ► The *linear relaxation* still provides *poor information*

Formulations

Hybrid Approaches

Computational Results

Semidefinite Programming relaxations

A better relaxation can be derived using SDP

Formulations

Hybrid Approaches

Computational Results

Semidefinite Programming relaxations

A better relaxation can be derived using SDP

The idea is to assign unit vectors $v_i \in \mathbb{R}^n$ to every vertex $i \in V$, such that for any two adjacent vertices $v_i^T v_j \leq -\frac{1}{k-1}$. Define matrix V such that column i is given by v_i and let $X = V^T V$. The graph coloring problem can be posed as:

Formulations

Hybrid Approaches

Computational Results

Semidefinite Programming relaxations

A better relaxation can be derived using SDP

The idea is to assign unit vectors $v_i \in \mathbb{R}^n$ to every vertex $i \in V$, such that for any two adjacent vertices $v_i^T v_j \leq -\frac{1}{k-1}$. Define matrix V such that column i is given by v_i and let $X = V^T V$. The graph coloring problem can be posed as:

min k diag(X) = e, $X_{ij} \leq -\frac{1}{k-1}, \forall \{i, j\} \in E$, $X \succeq 0$.

Semidefinite Programming relaxations

	1	2	3	4	5	6	7
1	1.000						
2	-0.531	1.000					
3	0.064	-0.447	1.000				
4	-0.447	0.064	-0.501	1.000			
5	-0.411	0.696	0.064	-0.447	1.000		
6	0.696	-0.411	-0.447	0.064	-0.531	1.000	
7	-0.415	-0.415	0.420	0.420	-0.415	-0.415	1.000

min k diag(X) = e, $X_{ij} \leq -\frac{1}{k-1}, \forall \{i, j\} \in E,$ $X \succ 0.$

Semidefinite Programming relaxations

 $egin{aligned} \mathsf{diag}(X) &= e, \ X_{ij} \leq -rac{1}{k-1}, orall \{i,j\} \in E, \ X \succeq 0. \end{aligned}$

min

k

Semidefinite Programming relaxations

REMARK: The value of X_{ij}^* in the optimal solution can be interpreted as the likehood that vertices i and j take the same color

Exact Graph Co	oloring	Formulations	Hybrid Approaches	Computational Results
6				

Constraint Programming approach

k-coloring problem

variables:	$\texttt{domain}(y_i) = [1 \dots k],$	$\forall i \in V$,
------------	---------------------------------------	---------------------

constraints: all different ($\{y_i \mid i \in C\}$), $\forall C \in C^*$.

Advantages

- Simple and *intuitive* model
- Easy to generalize to other coloring problems (like bandwidth and multicoloring)

Drawbacks

- It solves iteratively many k-coloring problems
- Its efficiency depends strongly on the enumeration strategy

Constraint Programming approach

Let us suppose we are looking for a 3-coloring

CP model

variables: constraints: $\begin{array}{l} y_i = \{1, 2, 3\}, & \forall i \in V \\ \texttt{alldifferent}([y_1, y_2, y_7]) \\ \texttt{alldifferent}([y_2, y_3, y_6]) \\ \texttt{alldifferent}([y_1, y_4, y_5]) \\ \texttt{alldifferent}([y_5, y_6, y_7]) \\ \texttt{alldifferent}([y_3, y_4]) \end{array}$

Constraint Programming approach

Let us suppose we are looking for a 3-coloring

CP model

variables: constraints:

 $\begin{array}{l} y_i = \{1, 2, 3\}, \quad \forall i \in V \\ \texttt{alldifferent}([y_1, y_2, y_7]) \\ \texttt{alldifferent}([y_2, y_3, y_6]) \\ \texttt{alldifferent}([y_1, y_4, y_5]) \\ \texttt{alldifferent}([y_5, y_6, y_7]) \\ \texttt{alldifferent}([y_3, y_4]) \end{array}$

<i>y</i> 1	У2	<i>У</i> 3	<i>Y</i> 4	<i>Y</i> 5	У6	У7
{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}
1	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Constraint Programming approach

Let us suppose we are looking for a 3-coloring

CP model

variables: constraints:

 $\begin{array}{l} y_i = \{1, 2, 3\}, \quad \forall i \in V \\ \texttt{alldifferent}([y_1, y_2, y_7]) \\ \texttt{alldifferent}([y_2, y_3, y_6]) \\ \texttt{alldifferent}([y_1, y_4, y_5]) \\ \texttt{alldifferent}([y_5, y_6, y_7]) \\ \texttt{alldifferent}([y_3, y_4]) \end{array}$

<i>y</i> 1	У2	<i>У</i> 3	<i>Y</i> 4	<i>Y</i> 5	У6	<i>У</i> 7
{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}
1	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}
1	{2,3 }	{1,2,3}	{2,3 }	{2,3 }	{1,2,3}	{2,3 }
1	{2,3}	{1,2,3}	{2,3}	{2,3}	{1,2,3}	{2,3}
1	{2,3}	{2,3}	{2,3}	{2,3}	$\{1\}$	{2,3}

▲ロト ▲理ト ▲ヨト ▲ヨト 三里 - のへの

Computational Results

Constraint Programming approach

Let us suppose we are looking for a 3-coloring

CP model

variables: constraints:

 $\begin{array}{l} y_i = \{1, 2, 3\}, \quad \forall i \in V \\ \texttt{alldifferent}([y_1, y_2, y_7]) \\ \texttt{alldifferent}([y_2, y_3, y_6]) \\ \texttt{alldifferent}([y_1, y_4, y_5]) \\ \texttt{alldifferent}([y_5, y_6, y_7]) \\ \texttt{alldifferent}([y_3, y_4]) \end{array}$

<i>y</i> 1	<i>y</i> 2	<i>У</i> 3	<i>Y</i> 4	<i>Y</i> 5	<i>Y</i> 6	<i>У</i> 7
{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}
1	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}
1	{ 2,3 }	{1,2,3}	{2,3 }	{2,3 }	{1,2,3}	{2,3 }
1	{2,3}	{1,2,3}	{2,3}	{2,3}	{1,2,3}	{2,3}
1	{2,3}	{2,3 }	{2,3}	{2,3}	$\{1\}$	{2,3}
1	2	{2,3}	{2,3}	{2,3}	$\{1\}$	{2,3}

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 - のへ⊙

Constraint Programming approach

Let us suppose we are looking for a 3-coloring

CP model

variables: constraints:

 $\begin{array}{l} y_i = \{1, 2, 3\}, \quad \forall i \in V \\ \texttt{alldifferent}([y_1, y_2, y_7]) \\ \texttt{alldifferent}([y_2, y_3, y_6]) \\ \texttt{alldifferent}([y_1, y_4, y_5]) \\ \texttt{alldifferent}([y_5, y_6, y_7]) \\ \texttt{alldifferent}([y_3, y_4]) \end{array}$

<i>y</i> 1	У2	Уз	<i>Y</i> 4	<i>Y</i> 5	<i>У</i> 6	У7
{1,2,3}	{1,2,3}	$\{1,2,3\}$	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}
1	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}
1	{2,3 }	$\{1,2,3\}$	{2,3 }	{2,3 }	{1,2,3}	{2,3 }
1	{2,3}	{1,2,3}	{2,3}	{2,3}	{1,2,3}	{2,3}
1	{2,3}	{2,3 }	{2,3}	{2,3}	$\{1\}$	{2,3}
1	2	{2,3}	{2,3}	{2,3}	$\{1\}$	{2,3}
1	2	3	{2,3}	{2,3}	$\{1\}$	3
1	2	3	2	{}	$\{1\}$	3

Formulations

Hybrid Approaches

Computational Results

Constraint Programming approach

Let us suppose we are looking for a 3-coloring

CP model

variables: constraints:

 $\begin{array}{l} y_i = \{1, 2, 3\}, \quad \forall i \in V \\ \texttt{alldifferent}([y_1, y_2, y_7]) \\ \texttt{alldifferent}([y_2, y_3, y_6]) \\ \texttt{alldifferent}([y_1, y_4, y_5]) \\ \texttt{alldifferent}([y_5, y_6, y_7]) \\ \texttt{alldifferent}([y_3, y_4]) \end{array}$

<i>y</i> 1	<i>y</i> 2	Уз	<i>Y</i> 4	<i>Y</i> 5	<i>Y</i> 6	У7
{1,2,3}	{1,2,3}	{1,2,3}	$\{1,2,3\}$	{1,2,3}	{1,2,3}	{1,2,3}
1	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}
1	{2,3 }	{1,2,3}	{2,3 }	{2,3 }	{1,2,3}	{2,3 }
1	{2,3}	{1,2,3}	{2,3}	{2,3}	{1,2,3}	{2,3}
1	{2,3}	{2,3}	{2,3}	{2,3}	$\{1\}$	{2,3}
1	3	{2,3}	{2,3}	{2,3}	$\{1\}$	{2,3}
	-	(/- J	(/·)	(/·)	()	(/··)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Formulations

Hybrid Approaches

Computational Results

Constraint Programming approach

Let us suppose we are looking for a 3-coloring

CP model

variables: constraints:

 $\begin{array}{l} y_i = \{1, 2, 3\}, \quad \forall i \in V \\ \texttt{alldifferent}([y_1, y_2, y_7]) \\ \texttt{alldifferent}([y_2, y_3, y_6]) \\ \texttt{alldifferent}([y_1, y_4, y_5]) \\ \texttt{alldifferent}([y_5, y_6, y_7]) \\ \texttt{alldifferent}([y_3, y_4]) \end{array}$

<i>y</i> 1	<i>y</i> 2	Уз	<i>Y</i> 4	<i>Y</i> 5	<i>У</i> 6	У7
{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	$\{1,2,3\}$	{1,2,3}
1	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}
1	{2,3 }	{1,2,3}	{ 2,3 }	{ 2,3 }	{1,2,3}	{2,3 }
1	{2,3}	{1,2,3}	{2,3}	{2,3}	{1,2,3}	{2,3}
1	{2,3}	{2,3 }	{2,3}	{2,3}	$\{1\}$	{2,3}
1	3	{2,3}	{2,3}	{2,3}	$\{1\}$	{2,3}
1	3	2	{2,3}	{2,3}	$\{1\}$	2
1	3	2	3	{}	$\{1\}$	2

Exact	Graph	Coloring

Formulations

Hybrid Approaches

Computational Results

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Outline

- Graph Coloring
- Formulations
 - Classical Formulation
 - Column Generation approach
 - Semidefinite Programming
 - Constraint Programming
- Exact Hybrid Approaches
 - Constraint Programming-based Column Generation
 - Exploiting SDP relaxations into Constraint Programming
- Computational results
- Conclusions

Exact Graph Coloring Hybrid Approaches Formulations **Computational Results** 000000

Constraint Programming-based Column Generation

Exact Graph Coloring Formulations Occose Occose Computational Results Constraint Programming based Column Constraint

Constraint Programming-based Column Generation

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 のへぐ

1. Adaptive thresholds in the pricing

Constraint Programming is used to find a maximal independet set of weight greater than or equal to a threshold τ . The value of this thresholds changes at each iteration of the Column Generation algorithm.

2. Augmented pricing problem

Once a negative reduced cost solution is found, we solve the *augmented pricing problem* that encodes *knowledge* from the integer master problem and generates *structured* columns. The augmented pricing problem is:

```
\begin{array}{ll} \textit{variables:} & z_i \subseteq V, \forall i \in \{1, \dots, k\} \\ \textit{constraints:} & z_1 \equiv a_p \\ & \texttt{independentSet}(z_i, G) \in F, \quad \forall i \in \{1, \dots, k\} \\ & \texttt{partition}([z_1, \dots, z_k], V]) \\ & \texttt{cardinality}(z_i) \geq \texttt{cardinality}(z_{i+1}), \forall i = 2, \dots, |V| - 1 \end{array}
```

Exact Graph Coloring	Formulations	Hybrid Approaches ○○●○○○	Computational Results
Enhancing the r	egular CP-base	ed Column Gene	ration

1. Adaptive thresholds in the pricing

Constraint Programming is used to find a maximal independet set of weight greater than or equal to a threshold τ . The value of this thresholds changes at each iteration of the Column Generation algorithm.

2. Augmented pricing problem

Once a negative reduced cost solution is found, we solve the *augmented pricing problem* that encodes *knowledge* from the integer master problem and generates *structured* columns. The augmented pricing problem is:

 $\begin{array}{ll} \textit{variables:} & z_i \subseteq V, \forall i \in \{1, \dots, k\} \\ \textit{constraints:} & z_1 \equiv a_p \\ & \texttt{independentSet}(z_i, G) \in F, \quad \forall i \in \{1, \dots, k\} \\ & \texttt{partition}([z_1, \dots, z_k], V]) \\ & \texttt{cardinality}(z_i) \geq \texttt{cardinality}(z_{i+1}), \forall i = 2, \dots, |V| - 1 \end{array}$

S.Gualandi. Enhacing CP-based Column Generation for Integer Programs. PhD Thesis. Forthcoming...

Exact	Graph	Coloring

Formulations

Hybrid Approaches

Computational Results

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Outline

- Graph Coloring
- Formulations
 - Classical Formulation
 - Column Generation approach
 - Semidefinite Programming
 - Constraint Programming
- Exact Hybrid Approaches
 - Constraint Programming-based Column Generation
 - Exploiting SDP relaxations into Constraint Programming
- Computational results
- Conclusions

Formulations

Hybrid Approaches

Computational Results

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Exploiting SDP relaxations into CP

The efficiency of the Constraint Programming approach depends on the *variable and value selection heuristics*. The best results for a regular CP approach are obtained with:

- 1. **Variable selection**: look for the vertex with the smallest ratio domain size against vertex degree. Then *break ties* using the vertex with the biggest number of suspensions
- 2. Value selection: pick the smallest color left in its domain

Formulations

Hybrid Approaches

Computational Results

Exploiting SDP relaxations into CP

The efficiency of the Constraint Programming approach depends on the *variable and value selection heuristics*. The best results for a regular CP approach are obtained with:

- 1. **Variable selection**: look for the vertex with the smallest ratio domain size against vertex degree. Then *break ties* using the vertex with the biggest number of suspensions
- 2. Value selection: pick the smallest color left in its domain

The optimal solution X_{ij}^* of a SDP relaxation gives the *likehood* that the two vertices *i* and *j* takes the same color

Formulations

Hybrid Approaches

Computational Results

Exploiting SDP relaxations into CP

The hybridization consists in using the SDP relaxation X^* to derive effective variable and value selection heuristics:

Optimistic Variable selection

look for the vertex *i* with the smallest ratio domain size against vertex degree. Then, break ties by looking for the vertex with the *largest* X_{ij}^* value

Pessimistic Variable selection

look for the vertex i with the smallest ratio domain size against vertex degree. Then, break ties by looking for the vertex with the *smallest* X_{ij}^* value

Value selection

pick the smallest color left in the *intersection*: $dom(y_i) \cap dom(y_i)$

Exact Graph Col	xact Graph Coloring Formula			Hybrid Approaches		Computational Results ●○○○○	
		6	. •		6		

CP-based Column Generation vs. Column Generation

RIP-Heuristic: solve the restricted integer problem (RIP) over the generated columns *Strong Aug*.: CP-based column generation with strong augmented pricing

			RIP-	Heuristic	Stror	ng Aug.
Problem	N E	$\left[\chi_{f}\right] \chi$	LB-UB	t _{RMP} t _{RIP}	LB-UB	t _{UB} time
myciel4	23 71	4 5	4- <mark>5</mark>	0.1 0.1	4- <u>5</u>	0.1 0.1
myciel5	47 236	4 6	4- <mark>6</mark>	0.1 0.3	4- <mark>6</mark>	0.1 0.1
queen8_8	64 1456	99	9-10	0.6 1.2	9	24.9 25.4
queen9_9	91 2112	9 10	9-11	3.9 16	9- <u>10</u>	29 32.6
queen10_10	100 1470	10 10	10-12	14 463	10-12	0.53 3600
will199GPIA	701 6772	77	7-8	1314 1336	7	3.8 448
le450_5d	450 9757	5 -	5-10	3600 -	5-6	20 3600
le450_15c	450 16680	12 -	15-24	3600 -	15-22	1191 3600
le450_15d	450 16750	15 -	15-25	3600 -	15-23	4.3 3600
DSJC125.1	125 736	55	5-6	132 136	5-6	0.5 1202
DSJC125.5	125 3891	16 ?	16-19	8.5 1274	16-20	0.69 3600
DSJC125.9	125 6961	43 44	43- 44	0.8 1.6	43-49	0.22 3600
DSJC250.1	250 3218	6?	6-10	3600 -	6-9	1.42 3600
DSJC250.5	250 15668	26 ?	26-43	253 3600	26-36	3.66 3600
DSJC250.9	250 27897	71 73	71- 73	19 178	71-87	2.67 3600

Formulations

Hybrid Approaches

Computational Results ○●○○○

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

SDP-CP vs. CP

ĺ			DSATUR	СР	CP-SDP	
Problem	N E	ω	χ	back-tr. time	back-tr. time	back-tr. time
myciel4	23 71	2	5	848 0,0	52 0,0	35 0,1
myciel5	47 236	2	6	378.311 0,6	4.816 0,1	808 0,5
myciel6	95 755	2	7	timeout	21.605.762 692	1.722.975 65,1
myciel7	191 2360	2	8	timeout	timeout	timeout

Table: Mycielisky instances.

SDP-CP vs. CP

Formulations

Hybrid Approaches

Computational Results

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

			DSATUR	СР	CP-SDP	
Problem	N E	ω	χ	back-tr. time	back-tr. time	back-tr. time
myciel4	23 71	2	5	848 0,0	52 0,0	35 0,1
myciel5	47 236	2	6	378.311 0,6	4.816 0,1	808 0,5
myciel6	95 755	2	7	timeout	21.605.762 692	1.722.975 65,1
myciel7	191 2360	2	8	timeout	timeout	timeout

Table: Mycielisky instances.

Using Branch&Price, even instances myciel5 was not solved within the timeout of 3600 sec.

Exact	Graph	Coloring

Formulations

Hybrid Approaches

Computational Results

Conclusions

1. Using the CP-based Column Generation within a Branch&Price, we close two open DIMACS instances (DSJC125.9, DSJC250.9) and improve the lower bounds of four *hard* DIMACS instances (DSJC125.5, DSJC250.5, DSJC500.9, DSJC1000.9)

2. The Hybrid CP-SDP approach is very effective in proving optimality for small-medium instances having a gap between $\chi_f(G)$ and $\chi(G)$

Exact Graph Coloring	Formulations	Hybrid Approaches	Computational Results
			00000

Thanks for your attention

Exact Graph Coloring	Formulations	Hybrid Approaches	Computational Results ○○○○●
Branch&Price			

- ► The column generation algorithm gives the fractional chromatic number \(\chi_f(G)\), that is a lower bound on \(\chi(G)\)
- In order to get \u03c7(G), we have implemented a branch-and-price, using the following branching rule:

- select a pair of vertices *i* and *j* being not adjacent and having the most negative reduced costs
- 2. *either* merge node *i* and *j* into a new node *ij*

Exact Graph Coloring	Formulations	Hybrid Approaches	Computational Results ○○○○●
Branch&Price			

- ► The column generation algorithm gives the fractional chromatic number \(\chi_f(G)\), that is a lower bound on \(\chi(G)\)
- In order to get \u03c7(G), we have implemented a branch-and-price, using the following branching rule:

- select a pair of vertices *i* and *j* being not adjacent and having the most negative reduced costs
- 2. *either* merge node *i* and *j* into a new node *ij*
- 3. or add a new edge $\{i, j\}$

Hybrid Approaches

Computational Results ○○○○●

A. Mehrotra and M. A. Trick.

A column generation approach for graph coloring. *INFORMS Journal on Computing*, 8:344–354, 1996.

