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Hamiltonian Problems

e Ring (or linear array) embedding in networks
* Cycle (or path) embedding in graphs

* A cycle (or path) 1n a graph G 1s called a
Hamiltonian cycle (or Hamiltonian path ) 1if 1t
contains every vertex of G exactly once.

* G 1s called Hamiltonian-connected if every
two vertices of G are connected by a

Hamiltonian Eath.



Fault Tolerant Problems

* Vertex faults (node faults).
* Edge faults (link faults).

 After some faults occur,
does the network still work?




Fault Models

* Random fault model: assumed that the faults

might occur everywhere without any
restriction.

* Conditional fault model. assumed that the
distribution of faults must satisfy some
properties.

e It 1s more difficult to solve problems under the
conditional fault model than the random fault
model.




Random Fault — Cycle Embedding

No cycle can pass this vertex

e No Hamiltonian cycle.




Conditional Fault — Cycle Embedding

Each vertex has two healthy edges

e No Hamiltonian cycle.




Pancake Graphs

A n-dimensional pancake graph, denoted by
¢, , has the vertex set V(g ,) = {a,a,...a, |
a,a,...a, 1s a permutation of 1, 2, ..., n}, and
edge set £(p,) = (a,ay-a,, b1by+b,) | a a,ay
= bbby and ayyap,,a, = byyybyyye-b, for
some2<k<n}.
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Some Properties of g,

* g, 1s regular of degree n—1.

* ¢, has n! vertices and (n—1)n!/2 edges.

* The girth of g, 1s 6, where n > 3.

» ¢, belongs to the class of Cayley graphs.

* (,1s vertex symmetric, but not edge symmetric.
* ¢, 1s Hamiltonian-connected.

* (1S arecursive structure.
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A famous problem of ¢,

« The pancake graph i1s named from the famous
“pancake problem” whose answer 1s exactly the
diameter of the corresponding pancake graph .

* The diameter of g, 1s bounded above by 3(n + 1)/2.
It 1s still an open problem to compute the exact
diameter of @, 2.

- I'W. H. Gates and C. H. Papadimitriou, “Bounds for sorting by prefix reversal,”
Discrete Mathematics, vol. 27, pp. 47-57, 1979.

2 M. H. Heydari and I. H. Sudborough, “On the diameter of the pancake




Our Problem

* Fault component: edge faults only.
* Fault model: conditional fault model.

* Assumption: each vertex has at least two non-
faulty edges.

 How many edge faults can ¢ tolerate while
retaining a fault-free Hamiltonian cycle? (n > 4)

 This 1s the first result on the fault tolerance of
the pancake graph under the conditional fault
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Previous results on ¢,

model| Random fault Conditional
k-edge-fault-tolerant k<n-38§ k<2n-—"17
Hamiltonian
k-edge-fault-tolerant k<n—48§ k<n—4"~"
Hamiltonian-connected

§ C. N. Hung, H. C. Hsu, K. Y. Liang and L. H. Hsu, “Ring embedding in faulty
pancake graphs,” Information Processing Letters, vol. 86, pp. 271-275, 2003.

o P. Y. Tsai, “Edge-fault-tolerant path/cycle embedding on some Cayley graphs,”
Ph.D. Thems National Taiwan University, Taipei, Taiwan, to appear (2008).




Lemmas

e Lemma 1: |E, (g )| =(n—2)! forallp, q €{1,2, ...,
n} and p # g, where n > 3.

 Lemma 2: ¢, — F 1s Hamiltonian if |[F| < n — 3, and
Hamiltonian-connected if |F| <n — 4, where n > 4 (F
denotes a set of edge faults in o) .



I emmas

* Lemma 3: Suppose that u, v € V(¢ ,) and (u), # (v),,
where n > 5. For any [/ < {1, 2, ..., n} and |/| > 2,
there exists a Hamiltonian path from u to v in #, — F
provided the following two conditions hold:

(CD|E (g, —F|=23foralli,j € Iand i#;
(C2) p"— F is Hamiltonian-connected for all » € I.

 Lemma 4: Suppose that u, v e V(") and u#v, where
re{l,2,,n}andn=>4.1fd, A <2, then (N"(u)), #
1s the distance between u and v.




Lemmas

 Lemma 5: Suppose that e, e, € E(g,) and e, # e,.
There exists a Hamiltonian cycle in ¢, — {e,} that
contains e;.

 Lemma 6: Suppose that s, 1€ V(g ), s#t, and (s),; =
(t);, where n = 4. For every (x, y) € E( g ,) with {x, y}
N {s, t} =, there exists a Hamiltonian path from s
to #1n g, that contains (x, y).
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Main Result

* Theorem: ¢, 6 — F 1s Hamiltonian provided
F|<2n—-"7and o(gp,— F)=2,wheren >4
(I denotes a set of edge faults in ) .



Proof i1dea

* The theorem holds for g ,, which 1s assured by
Lemma?2 (2n—"7=n—-3asn=4).
* Prove by induction on #.

* Suppose the theorem holds for ¢ ,, now we

construct a Hamiltonian cycle in ¢,., — F,
where £ > 4 and |F| <2k - 5.
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Proof i1dea

« Assume that |E(p{S)NF| > |E( )N F| > >
E(90h )N F]

* By Lemma 1, we have |[E (%, )= (- 1)!2
2k=22|F|+3,1e,|E, ($4)—F] 23 torall
p,ge {l, 2, k+1}and p#gq.

e Four cases are discussed.



Case 1

e E(pYNF<k—4.
k

e The ind}]}cl)tion hypothesis assures a Hamiltonian cycle

Cin k+1 — F.

* An edge (u,, v;) can be determined from C so that
there exist (v, u,), (uy, viyy) € E€D(g0,.,) — F with
Uy, Vir1 € V(Soiﬂ )9 where [ = {19 29 ) k}

e Lemma 2 assures that 805531 — F 1s Hamiltonian-
connected for all 1 <j < k.

By Lemma 3, a Hamiltonian path in (.., — F exists.
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OF: T

e f—3< |E(50(k“)) NF|<2k-1.

* Subcase 1: |[E(p ) N F|<k—4.

e If A p) — F) =2, the Hamiltonian cycle can be
obtained by the construction method of Case 1.

e If X" — F)=1, we can construct the Hamiltonian
cycle by slightly modifying the construction method
of Case 1 (use the same figure).
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Case 2(continue)

o Subcase 2: |[E($5)) N F| > k- 3.

« We have |[E(p"""NFl=k-3 or k=2, |[E( £\)NF|=
k—3 (hence, X\ —F)>2), and [ECD(g,. )N F|<]1.

» First we consider the situation of |E( 9\.,") N F|=k-3,
which occurs only when k=4.

» We have |E(95") N FI=|E(957) N F] = |E(95) N F]
= L |E(©S") N F| = [E(95) N F] =0, and [E®)(g5) N
Fl=0.
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Case 2(continue)

« Now we consider the situation of |[E( @\, )N F|<k—4.
« When &))" — F)>2.
* When &))" - F)=1.
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Case 3

o |E(p*0) N F| =2k — 6.
« We have [E¥D( o, )N F|<1 and |E(p\)) N F]<1
forall 1 <<k

 When k> 5, the Hamiltonian cycle can be obtained by
slightly modifying the construction method of Case 1.
 When k=4, if |[E(pY’) N F|=0 for all 1 <j<4, the
Hamiltonian cycle can be obtained all the same as the

situation of k> 5. Otherwise, the Hamiltonian cycle
can be obtained similar to the construction method of

Case 2.
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Case 4

o |[E(p*V) N F|=2k-5.

 First, two edges (x, x), (v, ) € E(p\""" ) N F are
determined so that {x, x} N {y, y} = and & £}, —
(F = 106, %7, (0, Y1) 2 2.

e The induction hypothesis assures a Hamiltonian cycle
Cin Sg(kﬂ) (F_ {(X, xr), (y: yl)})

e If (x, x") or (y, ") 1s not contained 1n C, the Hamil-
tonian cycle can be obtained by the construction
method of Case 1.
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A distribution of 3n — 9 edge faults over an n-dimensional
pancake graph. No fault-free Hamiltonian cycle can be found
for this situation.

n — 3 edge faults

N \ eee / 7

n—3

edge faults edge faults




Open problem

e There 1s an upper bound of 3n — 10 on the greatest
number of tolerable edge faults for the problem.

It 1S an open problem to narrow down the gap
between 2n — 7 and 3n — 10.



