Fault-free Hamiltonian Cycles in Pancake Graphs with Conditional Edge Faults

Ping-Ying Tsai(蔡秉穎), Jung-Sheng Fu(傅榮勝), Gen-Huey Chen(陳健輝)

Outline

- Hamiltonian problems
- Fault tolerant problems
- Pancake graphs
- Problem and previous results
- Main result and proof idea

Hamiltonian Problems

- Ring (or linear array) embedding in networks
- Cycle (or path) embedding in graphs
- A cycle (or path) in a graph G is called a Hamiltonian cycle (or Hamiltonian path) if it contains every vertex of G exactly once.
- *G* is called *Hamiltonian-connected* if every two vertices of *G* are connected by a Hamiltonian path.

Fault Tolerant Problems

- Vertex faults (node faults).
- Edge faults (link faults).
- After some faults occur, does the network still work?

Fault Models

- Random fault model: assumed that the faults might occur everywhere without any restriction.
- Conditional fault model: assumed that the distribution of faults must satisfy some properties.
- It is more difficult to solve problems under the conditional fault model than the random fault model.

Random Fault – Cycle Embedding

Conditional Fault – Cycle Embedding

Each vertex has two healthy edges

• No Hamiltonian cycle.

Pancake Graphs

• A *n*-dimensional pancake graph, denoted by \wp_n , has the vertex set $V(\wp_n) = \{a_1 a_2 ... a_n \mid a_1 a_2 ... a_n \text{ is a permutation of } 1, 2, ..., n\}$, and edge set $E(\wp_n) = (a_1 a_2 ... a_n, b_1 b_2 ... b_n) \mid a_1 a_2 ... a_k = b_k b_{k-1} ... b_1$ and $a_{k+1} a_{k+2} ... a_n = b_{k+1} b_{k+2} ... b_n$ for some $2 \le k \le n$.

Some Properties of \wp_n

- \wp_n is regular of degree n-1.
- \wp_n has n! vertices and (n-1)n!/2 edges.
- The girth of \wp_n is 6, where $n \ge 3$.
- \wp_n belongs to the class of Cayley graphs.
- \wp_n is vertex symmetric, but not edge symmetric.
- \wp_n is Hamiltonian-connected.
- \wp_n is a recursive structure.

A famous problem of \wp_n

- The pancake graph is named from the famous "pancake problem" whose answer is exactly the diameter of the corresponding pancake graph ¹.
- The diameter of \wp_n is bounded above by 3(n+1)/2. It is still an open problem to compute the exact diameter of \wp_n^2 .
- 1 W. H. Gates and C. H. Papadimitriou, "Bounds for sorting by prefix reversal," *Discrete Mathematics*, vol. 27, pp. 47-57, 1979.
- ² M. H. Heydari and I. H. Sudborough, "On the diameter of the pancake network," *Journal of Algorithms*, vol. 25, pp. 67-94, 1997.

Our Problem

- Fault component: edge faults only.
- Fault model: conditional fault model.
- Assumption: each vertex has at least two non-faulty edges.
- How many edge faults can \wp_n tolerate while retaining a fault-free Hamiltonian cycle? $(n \ge 4)$
- This is the first result on the fault tolerance of the pancake graph under the conditional fault model.

Previous results on \wp_n

property	Random fault model	Conditional fault model
<i>k</i> -edge-fault-tolerant Hamiltonian	$k \le n-3$ §	$k \le 2n - 7$
<i>k</i> -edge-fault-tolerant Hamiltonian-connected	$k \le n-4$ §	<i>k</i> ≤ <i>n</i> − 4 *

- C. N. Hung, H. C. Hsu, K. Y. Liang and L. H. Hsu, "Ring embedding in faulty pancake graphs," *Information Processing Letters*, vol. 86, pp. 271-275, 2003.
- * P. Y. Tsai, "Edge-fault-tolerant path/cycle embedding on some Cayley graphs," Ph.D. Thesis, National Taiwan University, Taipei, Taiwan, to appear (2008).

Lemmas

• Lemma 1: $|\tilde{E}_{p,q}(\wp_n)| = (n-2)!$ for all $p, q \in \{1, 2, ..., n\}$ and $p \neq q$, where $n \geq 3$.

• Lemma 2: $\wp_n - F$ is Hamiltonian if $|F| \le n - 3$, and Hamiltonian-connected if $|F| \le n - 4$, where $n \ge 4$ (F denotes a set of edge faults in \wp_n).

Lemmas

- Lemma 3: Suppose that $u, v \in V(\wp_n)$ and $\langle u \rangle_n \neq \langle v \rangle_n$, where $n \geq 5$. For any $I \subseteq \{1, 2, ..., n\}$ and $|I| \geq 2$, there exists a Hamiltonian path from u to v in $\wp_n^I F$ provided the following two conditions hold:
 - (C1) $|\tilde{E}_{i,j}(\wp_n) F| \ge 3$ for all $i, j \in I$ and $i \ne j$; (C2) $\wp_n^{(r)} - F$ is Hamiltonian-connected for all $r \in I$.
- Lemma 4: Suppose that $u, v \in V(\wp_n^{(r)})$ and $u \neq v$, where $r \in \{1, 2, \dots, n\}$ and $n \geq 4$. If $d_{u,v} \leq 2$, then $\langle N^{(n)}(u) \rangle_n \neq \langle N^{(n)}(v) \rangle_n$, where $d_{u,v}$ is the distance between u and v.

Lemmas

• Lemma 5: Suppose that e_1 , $e_2 \in E(\wp_4)$ and $e_1 \neq e_2$. There exists a Hamiltonian cycle in $\wp_4 - \{e_2\}$ that contains e_1 .

• Lemma 6: Suppose that $s, t \in V(\wp_n), s \neq t$, and $\langle s \rangle_1 = \langle t \rangle_1$, where $n \geq 4$. For every $(x, y) \in E(\wp_n)$ with $\{x, y\}$ $\cap \{s, t\} = \emptyset$, there exists a Hamiltonian path from s to t in \wp_n that contains (x, y).

Main Result

• Theorem: $\wp_n - F$ is Hamiltonian provided $|F| \le 2n - 7$ and $\delta(\wp_n - F) \ge 2$, where $n \ge 4$ (F denotes a set of edge faults in \wp_n).

Proof idea

- The theorem holds for \wp_4 , which is assured by Lemma 2 (2n-7=n-3 as n=4).
- Prove by induction on *n*.
- Suppose the theorem holds for \wp_k , now we construct a Hamiltonian cycle in $\wp_{k+1} F$, where $k \ge 4$ and $|F| \le 2k 5$.

Proof idea

- Assume that $|E(\wp_{k+1}^{(k+1)}) \cap F| \ge |E(\wp_{k+1}^{(k)}) \cap F| \ge \dots \ge |E(\wp_{k+1}^{(1)}) \cap F|$.
- By Lemma 1, we have $|\tilde{E}_{p,q}(\wp_{k+1})| = (k-1)! \ge 2k-2 \ge |F|+3$, i.e., $|\tilde{E}_{p,q}(\wp_{k+1})-F| \ge 3$ for all $p, q \in \{1, 2, \dots, k+1\}$ and $p \ne q$.
- Four cases are discussed.

Case 1

- $|E(\mathfrak{S}_{k+1}^{(k+1)}) \cap F| \leq k-4.$
- The induction hypothesis assures a Hamiltonian cycle C in $\mathcal{D}_{k+1}^{(k+1)} F$.
- An edge (u_1, v_1) can be determined from C so that there exist (v_1, u_2) , $(u_1, v_{k+1}) \in E^{(k+1)}(\wp_{k+1}) F$ with $u_2, v_{k+1} \in V(\wp_{k+1}^I)$, where $I = \{1, 2, \dots, k\}$.
- Lemma 2 assures that $\mathcal{S}_{k+1}^{(j)} F$ is Hamiltonian-connected for all $1 \le j \le k$.
- By Lemma 3, a Hamiltonian path in $\mathcal{D}_{k+1}^I F$ exists.

Case 2

- $k-3 \le |E(\mathfrak{S}_{k+1}^{(k+1)}) \cap F| \le 2k-7$.
- Subcase 1: $|E(\wp_{k+1}^{(k)}) \cap F| \le k-4$.
- If $\delta(\wp_{k+1}^{(k+1)} F) \ge 2$, the Hamiltonian cycle can be obtained by the construction method of Case 1.
- If $\delta(\delta^{(k+1)}_{k+1} F) = 1$, we can construct the Hamiltonian cycle by slightly modifying the construction method of Case 1 (use the same figure).

Case 2(continue)

- Subcase 2: $|E(\mathfrak{S}_{k+1}^{(k)}) \cap F| \ge k-3$.
- We have $|E(\wp_{k+1}^{(k+1)}) \cap F| = k-3$ or k-2, $|E(\wp_{k+1}^{(k)}) \cap F| = k-3$ (hence, $\delta(\wp_{k+1}^{(k)} F) \ge 2$), and $|E^{(k+1)}(\wp_{k+1}) \cap F| \le 1$.
- First we consider the situation of $|E(\mathcal{D}_{k+1}^{(k-1)}) \cap F| = k-3$, which occurs only when k=4.
- We have $|E(\mathfrak{O}_5^{(5)}) \cap F| = |E(\mathfrak{O}_5^{(4)}) \cap F| = |E(\mathfrak{O}_5^{(3)}) \cap F|$ = 1, $|E(\mathfrak{O}_5^{(2)}) \cap F| = |E(\mathfrak{O}_5^{(1)}) \cap F| = 0$, and $|E^{(5)}(\mathfrak{O}_5) \cap F| = 0$.
- Assisted by Lemma 5.

Case 2(continue)

- Now we consider the situation of $|E(\wp_{k+1}^{(k-1)}) \cap F| \le k-4$.
- When $\delta(\mathcal{O}_{k+1}^{(k+1)} F) \ge 2$.
- When $\delta(\wp_{k+1}^{(k+1)} F) = 1$.

Case 3

- $|E(\wp_{k+1}^{(k+1)}) \cap F| = 2k 6.$
- We have $|E^{(k+1)}(\wp_{k+1}) \cap F| \le 1$ and $|E(\wp_{k+1}^{(j)}) \cap F| \le 1$ for all $1 \le j \le k$.
- When $k \ge 5$, the Hamiltonian cycle can be obtained by slightly modifying the construction method of Case 1.
- When k = 4, if $|E(\wp_5^{(j)}) \cap F| = 0$ for all $1 \le j \le 4$, the Hamiltonian cycle can be obtained all the same as the situation of $k \ge 5$. Otherwise, the Hamiltonian cycle can be obtained similar to the construction method of Case 2.

Case 4

- $|E(\wp_{k+1}^{(k+1)}) \cap F| = 2k 5.$
- First, two edges (x, x'), $(y, y') \in E(\wp_{k+1}^{(k+1)}) \cap F$ are determined so that $\{x, x'\} \cap \{y, y'\} = \emptyset$ and $\delta(\wp_{k+1}^{(k+1)} \{F \{(x, x'), (y, y')\}\}) \ge 2$.
- The induction hypothesis assures a Hamiltonian cycle C in $\wp_{k+1}^{(k+1)} (F \{(x, x'), (y, y')\})$.
- If (x, x') or (y, y') is not contained in C, the Hamiltonian cycle can be obtained by the construction method of Case 1.
- Otherwise, five figures are considered.

A distribution of 3n - 9 edge faults over an n-dimensional pancake graph. No fault-free Hamiltonian cycle can be found for this situation.

Open problem

- There is an upper bound of 3n 10 on the greatest number of tolerable edge faults for the problem.
- It is an open problem to narrow down the gap between 2n 7 and 3n 10.