# Improving the gap of Erdős-Pósa property for minor-closed graph classes

Fedor V. Fomin<sup>1</sup> Saket Saurabh<sup>1</sup> Dimitrios M. Thilikos<sup>2\*</sup> <sup>1</sup>Department of Informatics, University of Bergen, Bergen, Norway <sup>2</sup>Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece

Cologne-Twente Workshop on Graphs

and Combinatorial Optimization

Gargnano - Lago di Garda, Italy, May 13, 2008

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

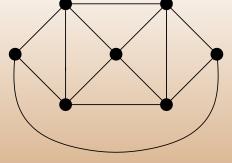
| Definitions          | Results | The proof |
|----------------------|---------|-----------|
| ●00000000            | 00000   | 0000000   |
| Packing and covering |         |           |

Given a graph G,

Cycle packing number: cp(G) = max # of disjoint cycles in G

Feedback vertex set: fvs(G) = min # of vertices covering all cycles in G

| Definitions<br>00000000 | Results<br>00000 | The proof<br>0000000 |
|-------------------------|------------------|----------------------|
| Packing and covering    |                  |                      |
|                         |                  |                      |
|                         |                  |                      |



Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions<br>00000000 | Results<br>00000 | The proof<br>0000000 |
|-------------------------|------------------|----------------------|
| Packing and covering    |                  |                      |
|                         |                  |                      |
|                         |                  |                      |
|                         |                  |                      |
|                         |                  |                      |
|                         |                  |                      |
|                         |                  |                      |

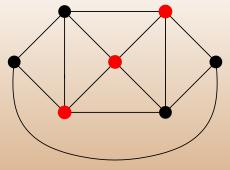
## cp(G) = 2

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

Improving the gap of Erdős-Pósa property for minor-closed graph classes

#### TCW 2008

| Definitions          | Results | The proof |
|----------------------|---------|-----------|
| 0000000              |         |           |
| Packing and covering |         |           |
|                      |         |           |
|                      |         |           |



 $\mathbf{fvs}(G) = \mathbf{3}$ 

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions<br>0000●0000 | Results<br>00000 | The proof<br>0000000 |
|--------------------------|------------------|----------------------|
| Packing and covering     |                  |                      |
|                          |                  |                      |
|                          |                  |                      |
|                          |                  |                      |
|                          |                  |                      |
|                          |                  |                      |

fvs(G) = 3 cp(G) = 2

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

|                         | Results | The proof |
|-------------------------|---------|-----------|
| The Erdős-Pósa property |         |           |
|                         |         |           |

## Theorem (Erdős-Pósa)

There is some function f such that for any graph G,

 $\mathsf{cp}(G) \le \mathsf{vfs}(G) \le f(\mathsf{cp}(G)).$ 

[Paul Erdős and Luis Pósa. On independent circuits contained in a graph.

Canad. J. Math., 17:347-352, 1965.]

| Definitions             | Results | The proof |
|-------------------------|---------|-----------|
| ○○○○●○○○                | 00000   | 00000000  |
| The Erdős-Pósa property |         |           |

## Theorem (Erdős-Pósa)

There is some function f such that for any graph G,

 $\mathsf{cp}(G) \le \mathsf{vfs}(G) \le f(\mathsf{cp}(G)).$ 

[Paul Erdős and Luis Pósa. On independent circuits contained in a graph.

Canad. J. Math., 17:347-352, 1965.]

Here,  $f(k) = O(k \cdot \log k)$ 

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions             | Results<br>00000 | The proof<br>00000000 |
|-------------------------|------------------|-----------------------|
| The Erdős-Pósa property |                  |                       |

Let  $\mathcal{H}$  be a graph class.

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions             | Results<br>00000 | The proof<br>00000000 |
|-------------------------|------------------|-----------------------|
| The Erdős-Pósa property |                  |                       |

Let  $\mathcal{H}$  be a graph class.

 $cover_{\mathcal{H}}(G) = \min\{k \mid \exists S \subseteq V(G) \forall_{H \in \mathcal{H}} H \not\subseteq G \setminus S\}.$  $pack_{\mathcal{H}}(G) = \max\{k \mid \exists \text{ a partition } V_1, \dots, V_k \text{ of } V(G)$ such that  $\forall_{i \in \{1, \dots, k\}} \exists_{H \in \mathcal{H}} H \subseteq G[V_i]\}.$ 

 $\mathcal{H}$  has the Erdős-Pósa property for  $\mathcal{G}$  if there is a function f(depending only on  $\mathcal{H}$  and  $\mathcal{G}$ ) such that, for any graph  $G \in \mathcal{G}$ ,

 $pack_{\mathcal{H}}(G) \leq cover_{\mathcal{H}}(G) \leq f(pack_{\mathcal{H}}(G))$ 

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions             | Results | The proof |
|-------------------------|---------|-----------|
| ○○○○○○●○                | 00000   | 00000000  |
| The Erdős-Pósa property |         |           |

## Some notation:

 $H \leq_{c} G$  (*H* is a contraction *G*) if *H* can be obtained from *G* after a series of edge contractions  $H \leq_{m} G$  (*H* is a minor of *G*) if some subgraph of *G* can be contracted to *H*.

A graph class  $\mathcal{G}$  is *minor-closed* if any minor of a graph in  $\mathcal{G}$  is again a member of  $\mathcal{G}$  (e.g. planar graphs).

| Definitions             | Results | The proof |
|-------------------------|---------|-----------|
| 00000000                |         |           |
| The Erdős-Pósa property |         |           |

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions             | Results | The proof |
|-------------------------|---------|-----------|
| 00000000                | 00000   |           |
| The Erdős-Pósa property |         |           |

e.g.  $\mathcal{M}(K_2)$  is the class of all non-trivial connected graphs

 $pack_{\mathcal{M}(K_2)}(G) = mm(G) \qquad (max matching)$  $cover_{\mathcal{M}(K_2)}(G) = vc(G) \qquad (vertex cover)$ 

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions             | Results | The proof |
|-------------------------|---------|-----------|
| 00000000                | 00000   |           |
| The Erdős-Pósa property |         |           |

e.g.  $\mathcal{M}(K_2)$  is the class of all non-trivial connected graphs

 $pack_{\mathcal{M}(K_2)}(G) = mm(G) \qquad (max matching)$  $cover_{\mathcal{M}(K_2)}(G) = vc(G) \qquad (vertex cover)$ 

e.g.  $\mathcal{M}(K_3)$  is the class of all connected non-forests

 $pack_{\mathcal{M}(K_3)}(G) = cp(G) \qquad (cycle packing)$  $cover_{\mathcal{M}(K_3)}(G) = fvs(G) \qquad (feedback vertex set)$ 

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions             | Results | The proof |
|-------------------------|---------|-----------|
| 00000000                | 00000   |           |
| The Erdős-Pósa property |         |           |

e.g.  $\mathcal{M}(K_2)$  is the class of all non-trivial connected graphs

 $pack_{\mathcal{M}(K_2)}(G) = mm(G) \qquad (max matching)$  $cover_{\mathcal{M}(K_2)}(G) = vc(G) \qquad (vertex cover)$ 

e.g.  $\mathcal{M}(K_3)$  is the class of all connected non-forests

 $pack_{\mathcal{M}(K_3)}(G) = cp(G) \qquad (cycle packing)$  $cover_{\mathcal{M}(K_3)}(G) = fvs(G) \qquad (feedback vertex set)$ 

#### What about other choices of H?

## Proposition (12.4.10 in Diestel's Book on Graph Theory)

Let H be a connected graph. Then  $\mathcal{M}(H)$  satisfies the

Erdős-Pósa property for all graphs if and only if H is planar.

## Proposition (12.4.10 in Diestel's Book on Graph Theory)

Let H be a connected graph. Then  $\mathcal{M}(H)$  satisfies the

Erdős-Pósa property for all graphs if and only if H is planar.

i.e. there is a gap function f such that,

 $\mathsf{pack}_{\mathcal{M}(H)}(G) \leq \mathsf{cover}_{\mathcal{M}(H)}(G) \leq f(\mathsf{pack}_{\mathcal{M}(H)}(G))$ 

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

## Proposition (12.4.10 in Diestel's Book on Graph Theory)

Let H be a connected graph. Then  $\mathcal{M}(H)$  satisfies the

Erdős-Pósa property for all graphs if and only if H is planar.

i.e. there is a gap function f such that,

 $\mathsf{pack}_{\mathcal{M}(H)}(G) \leq \mathsf{cover}_{\mathcal{M}(H)}(G) \leq f(\mathsf{pack}_{\mathcal{M}(H)}(G))$ 

Fact: f is an exponential function

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

## Proposition (12.4.10 in Diestel's Book on Graph Theory)

Let H be a connected graph. Then  $\mathcal{M}(H)$  satisfies the

Erdős-Pósa property for all graphs if and only if H is planar.

i.e. there is a gap function f such that,

 $\mathsf{pack}_{\mathcal{M}(H)}(G) \leq \mathsf{cover}_{\mathcal{M}(H)}(G) \leq f(\mathsf{pack}_{\mathcal{M}(H)}(G))$ 

Fact: f is an exponential function Question: Can we have a simpler f? when?

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

## Proposition (12.4.10 in Diestel's Book on Graph Theory)

Let H be a connected graph. Then  $\mathcal{M}(H)$  satisfies the Erdős-Pósa property for all graphs if and only if H is planar.

i.e. there is a gap function f such that,

 $\mathsf{pack}_{\mathcal{M}(H)}(G) \leq \mathsf{cover}_{\mathcal{M}(H)}(G) \leq f(\mathsf{pack}_{\mathcal{M}(H)}(G))$ 

Fact: f is an exponential function

Question: Can we have a simpler f? when?

Question: What about if G belongs in some sparse graph class?

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions                           | Results | The proof |
|---------------------------------------|---------|-----------|
|                                       | 0000    |           |
| A linear gap for minor-closed classes |         |           |

## Theorem

Let H be a connected planar graph and let  $\mathcal{G}$  be a non-trivial minor closed graph class. Then  $\mathcal{M}(H)$  satisfies the Erdős-Pósa property for  $\mathcal{G}$  with a <u>linear</u> gap function f.

| Definitions                           | Results | The proof |
|---------------------------------------|---------|-----------|
| 00000000                              | ○●○○○   | 0000000   |
| A linear gap for minor-closed classes |         |           |

## Theorem

Let *H* be a connected planar graph and let  $\mathcal{G}$  be a non-trivial minor closed graph class. Then  $\mathcal{M}(H)$  satisfies the Erdős-Pósa property for  $\mathcal{G}$  with a <u>linear</u> gap function *f*.

i.e. there is a constant  $\sigma_{\mathcal{G},H}$  such that, for any  $G \in \mathcal{G}$ ,

 $\mathsf{pack}_{\mathcal{M}(H)}(G) \leq \mathsf{cover}_{\mathcal{M}(H)}(G) \leq \sigma_{\mathcal{G},H} \cdot \mathsf{pack}_{\mathcal{M}(H)}(G)$ 

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions         | Results | The proof |
|---------------------|---------|-----------|
| 00000000            | ○○●○○   | 00000000  |
| Tree Decompositions |         |           |

A tree decomposition of a graph G is a pair  $D = (T, \mathcal{X})$  such that T is a tree and  $\mathcal{X} = \{X_t \mid t \in V(T)\}$  is a collection of subsets of G. (each  $X_t \in \mathcal{X}$  corresponds to a vertex  $t \in V(T)$  – we call  $X_t$  node of D) such that the following conditions are satisfied:

 Any vertex v ∈ V(G) and the endpoints of any edge e ∈ E(G) belong in some node X<sub>t</sub> of D

For any  $v \in V(G)$ , the set  $\{t \in V(T) \mid v \in X_t\}$  is a subtree of T.

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitio | ons<br>0000   | Results<br>○○○●○           |                            | The proof<br>00000000 |
|-----------|---------------|----------------------------|----------------------------|-----------------------|
| Tree De   | ecompositions |                            |                            |                       |
|           |               | b, c<br>b, c, g<br>b, g, a | c, g, e<br>, $e$ $e, d, c$ |                       |

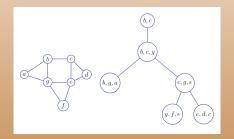
Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

Improving the gap of Erdős-Pósa property for minor-closed graph classes

#### TCW 2008

| Definitions         | Results | The proof |
|---------------------|---------|-----------|
| 00000000            | ○○○○●   | 00000000  |
| Tree Decompositions |         |           |

The width of a tree decomposition  $(T, \mathcal{X})$  is  $\max_{t \in V(T)} |X_t| - 1$ The tree-width of a graph G (tw(G)) is the minimum width over all tree decompositions of G



#### Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions                    | Results | The proof |
|--------------------------------|---------|-----------|
| 00000000                       | 00000   | ●0000000  |
| Sublinear bounds for treewidth |         |           |

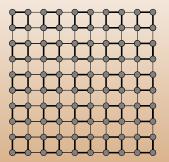
#### Lemma

If H is a planar graph H and  $\mathcal{G}$  is a non-trivial minor-closed graph class, then, there is a constant  $c_{\mathcal{G},H}$ , depending only on  $\mathcal{G}$  and Hsuch that for any graph  $G \in \mathcal{G}$ ,  $\mathsf{tw}(G) \leq c_{\mathcal{G},H} \cdot (\mathbf{pack}_{\mathcal{M}(H)}(G))^{1/2}$ .

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions                    | Results | The proof |
|--------------------------------|---------|-----------|
| 00000000                       | 00000   | 0●000000  |
| Sublinear bounds for treewidth |         |           |

If  $H = K_3$ ,



Then  $\operatorname{pack}_{\mathcal{M}(K_3)}(G) \leq k$ 

implies the exclusion of a  $(O(\sqrt{k}) \times O(\sqrt{k}))$ -grid as a minor

which in turn implies a  $O(\sqrt{k})$  bound for  $\mathbf{tw}(G)$ .

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions                    | Results | The proof |
|--------------------------------|---------|-----------|
| 00000000                       | 00000   | oo●ooooo  |
| Sublinear bounds for treewidth |         |           |

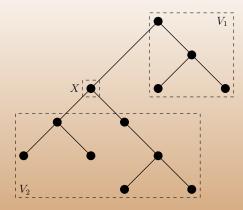
Given a graph G, we call a triple  $(V_1, S, V_2)$  *d-separation triple* of G if  $|S| \leq d$  and  $\{V_1, S, V_2\}$  is a partition of V(G) such that there is no edge in G between a vertex in  $V_1$  and a vertex in  $V_2$ . Using the tree structure of the decomposition we prove the following

#### Lemma

If H be a planar graph H and  $\mathcal{G}$  is a non-trivial minor-closed graph class then for every  $G \in \mathcal{G}$  where  $\operatorname{pack}_{\mathcal{M}(H)}(G) = k$  there is an  $c_{\mathcal{G},H} \cdot \sqrt{k}$ -separation triple  $(V_1, X, V_2)$  of G, where  $k/3 \leq \operatorname{pack}_{\mathcal{M}(H)}(G[V_1]) \leq 2k/3$  and  $\operatorname{pack}_{\mathcal{M}(H)}(G[V_1]) + \operatorname{pack}_{\mathcal{M}(H)}(G[V_2]) \leq \operatorname{pack}_{\mathcal{M}(H)}(G)$ 

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions                                   | Results |  |
|-----------------------------------------------|---------|--|
|                                               |         |  |
| Conceptore that halones the position provides |         |  |



 $k/3 \leq \mathsf{pack}_{\mathcal{M}(H)}(G[V_1]) \leq 2k/3$  and

 $\mathsf{pack}_{\mathcal{M}(H)}(G[V_1]) + \mathsf{pack}_{\mathcal{M}(H)}(G[V_2]) \le \mathsf{pack}_{\mathcal{M}(H)}(G) = k$ 

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions          | Results | The proof |
|----------------------|---------|-----------|
| 00000000             | 00000   | ○○○○○●○○  |
| Building a recusrion |         |           |

## We have that

$$k/3 \leq \mathsf{pack}_{\mathcal{M}(H)}(G[V_1]) \leq 2k/3$$
 and

 $\mathsf{pack}_{\mathcal{M}(H)}(G[V_1]) + \mathsf{pack}_{\mathcal{M}(H)}(G[V_2]) \le \mathsf{pack}_{\mathcal{M}(H)}(G) = \mathbf{k}$ 

| Definitions          | Results | The proof |
|----------------------|---------|-----------|
| 00000000             | 00000   | ○○○○●○○   |
| Building a recusrion |         |           |

## We have that

 $k/3 \leq \mathsf{pack}_{\mathcal{M}(H)}(G[V_1]) \leq 2k/3$  and

 $\mathsf{pack}_{\mathcal{M}(H)}(G[V_1]) + \mathsf{pack}_{\mathcal{M}(H)}(G[V_2]) \leq \mathsf{pack}_{\mathcal{M}(H)}(G) = \textit{k}$ 

Using now the fact that

 $\operatorname{cover}_{\mathcal{M}(H)}(G) \leq \operatorname{cover}_{\mathcal{M}(H)}(G[V_1]) + \operatorname{cover}_{\mathcal{M}(H)}(G[V_2]) + c_{\mathcal{G},H} \cdot \sqrt{k}$ 

| Definitions          | Results | <b>The proof</b> |
|----------------------|---------|------------------|
| 00000000             | 00000   | ○○○○○●○○         |
| Building a recusrion |         |                  |

## We have that

 $k/3 \leq \operatorname{pack}_{\mathcal{M}(H)}(G[V_1]) \leq 2k/3$  and  $\operatorname{pack}_{\mathcal{M}(H)}(G[V_1]) + \operatorname{pack}_{\mathcal{M}(H)}(G[V_2]) \leq \operatorname{pack}_{\mathcal{M}(H)}(G) = k$ Using now the fact that  $\operatorname{cover}_{\mathcal{M}(H)}(G) \leq \operatorname{cover}_{\mathcal{M}(H)}(G[V_1]) + \operatorname{cover}_{\mathcal{M}(H)}(G[V_2]) + c_{\mathcal{G},H} \cdot \sqrt{k}$ We can build an inductive argument that yields

 $\operatorname{cover}_{\mathcal{M}(H)}(G) = O(\operatorname{pack}_{\mathcal{M}(H)}(G)).$ 

Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos

| Definitions    | Results | The proof |
|----------------|---------|-----------|
| 00000000       | 00000   | ○○○○○●○   |
| Open questions |         |           |

 $\mathsf{pack}_{\mathcal{M}(H)}(G) \leq \mathsf{cover}_{\mathcal{M}(H)}(G) \leq \sigma_{\mathcal{G},H} \cdot \mathsf{pack}_{\mathcal{M}(H)}(G)$ 

| Definitions    | Results | The proof |
|----------------|---------|-----------|
| 00000000       | 00000   | ○○○○○●○   |
| Open questions |         |           |

 $\mathsf{pack}_{\mathcal{M}(H)}(G) \leq \mathsf{cover}_{\mathcal{M}(H)}(G) \leq \sigma_{\mathcal{G},H} \cdot \mathsf{pack}_{\mathcal{M}(H)}(G)$ 

Are there other, more wide, graph classes where a linear (or at least polynomial) gap can be detected?

| Definitions    | Results | The proof |
|----------------|---------|-----------|
| 00000000       | 00000   | ○○○○○○●○  |
| Open questions |         |           |

 $\mathsf{pack}_{\mathcal{M}(H)}(G) \leq \mathsf{cover}_{\mathcal{M}(H)}(G) \leq \sigma_{\mathcal{G},H} \cdot \mathsf{pack}_{\mathcal{M}(H)}(G)$ 

Are there other, more wide, graph classes where a linear (or at least polynomial) gap can be detected?

Are there algorithmic consequences of the linear gap?

| Definitions    | Results | The proof |
|----------------|---------|-----------|
| 00000000       | 00000   | ○○○○○○●○  |
| Open questions |         |           |

 $\mathsf{pack}_{\mathcal{M}(H)}(G) \leq \mathsf{cover}_{\mathcal{M}(H)}(G) \leq \sigma_{\mathcal{G},H} \cdot \mathsf{pack}_{\mathcal{M}(H)}(G)$ 

Are there other, more wide, graph classes where a linear (or at least polynomial) gap can be detected?

- Are there algorithmic consequences of the linear gap?
- ▶ What about the constants  $\sigma_{\mathcal{G},H}$  in the linear gap?

Cena in Emmaus, Michelangelo Merisi da Caravaggio, 1602, olio su tela, 141 imes 196,2 cm. Londra, National Gallery

