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minor-closed graph classe$
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Abstract

Let H andG be graph classes. We say thdthas the Erds-Pdsa property fog if for

any graphG € G, the minimum vertex covering of al{-subgraphs of is bounded by

a function f of the maximum packing of{-subgraphs inG (by H-subgraph ofG we
mean any subgraph 6f that belongs td7). In his monograph “Graph Theory”, R. Diestel
proves that ifH is the class of all graphs that can be contracted to a fixed planar graph
H, thenH has the Erdds-Pdsa property for the class of all graphs (with an erpah
bounding function). In this note, we give an alternative proof of thislltesith a better

(still exponential) bounding function. Our proof, for the case wbeis some non-trivial
minor-closed graph class, yields a low degree polynomial bounding fungtio particular

(k) = O(k").

Key words: Erdds-Pdésa property, treewidth, graph packing, graph covering

1. Introduction

Given a graplG we denote by (G) andE(G) its vertex and edge set respectively.
A graph clasgj is callednon-trivial if it does not contain all graphs. We use the
notationH C G to denote that{ is a subgraph of;. We say that a grapty' is a
G-subgraph of a graplt’ if G C G’ andG € G.

I This research has been done while the first two authors were visiting thertbreent of
Mathematics of the National and Kapodistrian University of Athens duringlas 2007.

2 Supported by the Research Council of Norway.

3 Supported by the Project “Kapodistrias” [[A736/24.3.2006) of the National and
Kapodistrian University of Athens (project code: 70/4/8757).
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Let H be a class of graphs. Given a gra@ghwe define theovering number ofr
with respect to the clask as

covery(G) = min{k | 35S CV(G) VyenH € G — S}.

In other wordsgcovery(G) < k if there is a set of at mogt vertices meeting any
H-subgraph of. We also define thpacking number ofr with respect to the class
H as

pack,,(G) =max{k | 3 a partitionVy, ..., V; of V(G)
such thatvie{l k}EIHeH H C G[Vn}

.....

Less formallypack,, (G) > k if G containsk vertex-disjointH-subgraphs.

A graph clasgH satisfies the Erdos-Posa property for some graph ¢lasthere
is a functionf (depending only oft{ andg) such that, for any grapfy € G,

pack,,(G) <covery(G) < f(pack,(G)). (1)

We say that a grapty can be contracted té/ if H can be obtained frortr after

a series of edge contractions (tbentractionof an edgec = (u,v) in G results
in a graphG’, in which« andwv are replaced by a new vertex and in which for
every neighbout of u or v in G, there is an edgéw, v.) in G'). We say that{ is

a minor of G if some subgraph off can be contracted t&/. We say that a graph
classg is minor-closedf any minor of a graph irg is again a member @j. We
denote byM(H) the class of graphs that can be contractefi to

Theorem 1 (Corollary 12.3.10 and Exercise 39 in [2])M (H) satisfies the Erdds-
Pdésa property for all graphs if and only i is a connected planar graph.

According to the proof of Theorem 1, the bounding functf@k) of Relation (1) is
exponential ink. Given a connected planar graphand a graph class we denote
by fug : N — N the optimal upper bounding function with the property ttiat,
any graphGG € G, Relation (1) holds whet{ = M(H) (we know thatfy ¢ exists
because of Theorem 1).

For instance, according to the classic result of Erdos asa R if H = K3 and
G contains all the graphs, thefiy (k) = O(k - logk). However, if we restricg to
be a class of planar graphs, théng(k) = O(k) [4]. In this note, we conjecture
that this last fact extends whéhis any planar graph and whéhis any non-trivial
minor-closed graph class.

Conjecture 2 If G is a non-trivial minor-closed graph class, th¢n ¢ is a linear
function for any planar grapt .

The purpose of this short note is to prove that the above canmgholds if we ask
for a polynomial bound forfs ¢, thereby sharpening the result of Diestel in [2].



2. The main result and the proof

Our main result is the following:

Theorem 3 Let H be for some planar graph and I&f be the class of graphs that
are contractible toH . Let alsoG be a non-trivial minor-closed graph class. Then
there is a constantg ; depending only oy and H such that for every graph
G € g, it holds that

pack, (G) < covery(G) < cg.m - (packH(G’))g/Q.

The proof of Theorem 3 will be the immediate consequence aifrbata 1 and 2
below. Before we state and prove them, we need first to definedtiens of tree
decomposition and treewidth.

Let G be a graph. Aree decompositionf G is a pair(7, X = { X },cv () where
the following conditions hold.

e Usev(n) = V(G)
® Veep(q) Jtev(r) i € S Xy
o Voev(ey TI{t | v € X;}] is connected.

Thewidth of a tree decomposition isiax;cy (1) | X | — 1 and thetreewidthof G is
the minimum width over all the tree decompositions’of

Ouir first observation is the following.

Lemma 1l Let H be a connected planar graph and let= M(H). Let alsoG be
a non-trivial minor closed graph class. Then, there is a tantcg 5, depending
only onG and H such that for any grapli, tw(G) < cg.ir - (pack,,(G))Y/2.

Proof. Let k = pack . (G). During this proof, for any positive integeme will
denote byl'; the (¢ x ¢)-grid. Let

cy = min{r | H is a minor of the(r x r)-grid}

and notice that ifn. = [k'/*] +1, thenpack ;) (T'.c,;) > k. We conclude thaf/
does not contait',,..,, as a minor. From the main result in [1], there is a constant
cg depending only oy such thatw (G) < ¢g - m - ¢y and the lemma follows.

For the proof of the next Lemma, we will enhance the definibba tree decom-
position(7, X) as follows:T is a tree rooted on some nodevhereX, = (), each
of its nodes have at most two children and can be one of thexip

(1) Introduce nodea nodet that has only one child whereX; > X, and such
thatt’ is not an introuce node.

(2) Forget nodea nodet that has only one child whereX; C X, and such that
t" is not a forget node.

(3) Join node a nodet with two childrent; andt, such thatX; = X;, = X,,.



(4) Base nodea nodet that is a leaf of, is different than the root and, = (.

Notice that, according the the above definitions, the root 7' is either a forget
or a join node. It is easy to see that any tree decompositinrbedransformed to
one with the above requirements while maintaining the sardghwFrom now one
when we refer to a tree decompositigh, X') we will presume the above require-
ments.

Given a tree decompositiofi’, X') and some node of 7', we define asl; the
subtree ofl" rooted ont. Clearly, ifr is the root ofT’, it holds thatl, = T'. We also
defineG; = G|Usecy (1) Xs] andGy = Gy — X,

Lemma 2 Let H be a connected planar graph and gt = M (H). Then for any
graphG, it holds thatcover;(G) < (tw(G) + 1) - pack,, (G).

Proof. Let (T, X') be a rooted tree decomposition rooted-omith width at most.
We set up a labelling : V(7') — N U {0} such that

p(t) = packy, (G;).

The following observations are direct consequences of ¢fiaitdons.

Observation 1. It € V(T') is an introduce node witH as child, them(t') = p(¢).
This holds because thew, = G; .

Observation 2. It € V(T') is an forget node witht’ as child, therp(t') < p(¢).
This holds because thew, C G, .

Observation 3. If € V(T') is a join node witht; andt, as children, themp(t,) +
p(t2) = p(t). This holds becaus@;, andG;, are disjoint graphs.

Observation 4. It € V(T') is a base node, them(t) = 0. This holds because then
G, is the empty graph.

Observation 5p(r) = pack;,(G). This holds becauseY, = 0 and thusG, =
G, =G.

Lett be a node of” and letty, ..., ¢, be its children (clearly) < p < 2). We say
thatt is acritical node ifp(t,) + --- + p(t,) < p(t). From the Observations 1-4,
only forget nodes of" can be critical. Given a nodeof 7" we defineR(t) as the
set of all critical nodes iff;. We omit the proof of the following claim.

Claim 1. Foranyt € V(T), |R(t)| < p(t).
Given a forget node, we denote its child by(¢). For any node¢ € V(T), we
defineS(t) = U.crq) Xe(z)- The proof of the next claim is technical and is omitted

from this extended abstract.

Claim 2. For anyt € V (T'), the setS(t) intersects all the-subgraphs o, .



Applying Claim 2, forT,. = T" we have thatS(r) meets all{-subgraphs of7, =
G, =G.FromClaim 1|S(r)| < (k+1)-p(r) = (k+1) - pack, (G) (Observation
5) and the lemma follows.
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1. Introduction and notations

Let G be agraphwith thevertex set/(G) and theedge se’(G). Unless otherwise
stated, we follow [12] for definitions and notations. A patin §ycle) in a grapitz
is called aHamiltonian path(or Hamiltonian cycl¢ if it contains every vertex of
G exactly once. A graph is calledamiltonianif it has a Hamiltonian cycle. A
graph is calledHamiltonian connected every two vertices of> are connected by
a Hamiltonian path. We usg () to denote the minimal vertex degree®fand we
used, , to denote the distance between two verticesdv.

The n-dimensional pancake graph, denotedgby, is a graph with the ver-
tex setV(£,) = {amaz---aylaias---a, is a permutation of,2,...,n}, and
the edge seb/(§0,,) = {(a1a2---a; - ap,b1ba---b;---by)|arag - - - Gy, b1y - - - by
€ V(n),2 <i < n,whereb; = a,_j1 if 1 < j <iandb; =a;ifi <j <n}.
The pancake graph is an instance of Cayley graphgjiJand ¢, are illustrated
in Fig. 1. It is easy to see thgb, is an(n — 1)-regular graph with! vertices.
The pancake graph was introduced (and named) from the falpansake prob-
lem" whose answer is exactly the diameter of the correspgancake graph [5].
The diameter ofD,, is bounded above b%%l) [6]. It is still an open problem to
compute the exact diameter of the pancake graph. The pagcaieis vertex sym-
metric [1], but not edge symmetric [9]. Some other propertépancake graphs
can be found in [9-11].

For convenience, we usg), to denote theth leftmost digit of a vertex,
e, (u), = a; if v = ajay---a,, wherel < i < n. The edge(aas - - - ay,
arag_1 -~ 2010541042 - - - Q) IS referred to as &-dimensional edgevhere2 <
k < n. We useN®(u) to denote the neighbor of a vertexe V(¢2,,) which is
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Fig. 1. Topologies of pancake graphs. &} and (b){J,.

connected ta: by ak-dimensional edge, an8®(,,) to denote the set of ak-
dimensional edges ig,,. It can be observed from Fig. 1 th@t, consists of four
embeddedps's, denoted by, ©\7, 0, andp . In general g, comprises
n embeddedp,,_;’s: ) for 1 < r < n, whereg") is the subgraph ofo,, in-
duced by those verticeswith (u), = r. For! C {1,2,...,n}, we let(d’, denote
the subgraph ofo,, induced byU,; V ().

An interconnection networknetworkfor short) is usually represented by a
graph where vertices represent processors and edgesaeqesimunication links
between processors. Study of the topological propertiesofterconnection net-
work is an important part of the study of any parallel or dtted system. The
pancake graph is suitable to serve as a network, becauseschiability and other
favorable properties, e.g., regularity, recursivenegsinsetry, sublogarithmic de-
gree and diameter, and maximal fault tolerance [1]. Sinalfamay occur to net-
works, it is significant to consider faulty networks. Manynflamental problems
such as diameter, routing, broadcasting, gossiping, afmeeding were solved on
various faulty networks. Two fault models were adopted ®=f@ne is theandom
fault model4, 7], which assumes that the faults may occur everywhetteont any
restriction. The other is theonditional fault mode|2, 3], which assumes that the
fault distribution is subject to some constraints, e.gq tw more non-faulty links
incident to each node. It is more difficult to solve problemsler the conditional
fault model than the random fault model. No previous worklom pancake graph
considered the conditional fault model. If the random faodtdel is adopted,,
can tolerate at most— 3 edge faults, while retaining a fault-free Hamiltonian eycl
[8]. We useF(C E(£,)) to denote the set of edge faults §n,. Forp # ¢, we
usek, ,(§.) to denote the set of-dimensional edges igp,, that connec”) and



(9. Some known results @b, are listed as follows.
Lemma 1([8]) |E,,({.)] = (n —2)! forall 1 < p # ¢ < n, wheren > 3.

Lemma 2([8]) £, — F is Hamiltonian a$F'| < n— 3, and Hamiltonian connected
as|F| <n — 4, wheren > 4.

Lemma 3([8]) Suppose that, v € V(§,) and(u), # (v),, wheren > 5. For
any! C {1,2,...,n} and|l| > 2, if () — F is Hamiltonian connected for all
r € Iand|E;;(,) — F| > 3foralli,j € I andi # j, there exists a Hamiltonian
path between andv in Q! — F'.

Lemma 4([8]) Suppose that, v € V(")) andu # v, wherel < r < n and
n >4 dy, <2, then(N™(u)) # (N () .

2. Results

First, we show two properties fgp,,.

Lemma 5. Suppose that,,e; € E(§,) ande; # e,. There exists a Hamiltonian
cycle ing, — {e} that containg;.

Lemma 6. Suppose that,t € V(£,), (s); = (t);, ands # t, wheren > 4. For
every(z,y) € E(§,) with {z,y} N {s,t} = ¢, there exists a Hamiltonian path
betweens andt in £, that containgz, ).

As a consequence of these lemmas, we obtain our main theltrisrthe first
result on the fault tolerance of the pancake graph underahdittonal fault model.
Assuming that there were two or more non-faulty edges imtitke each vertex,
we show thatD,, contained a fault-free Hamiltonian cycle, even if thereauap to
2n — 7 edge faults, where > 4.

Theorem 1., — F'is Hamiltonian if| F'| < 2n — 7 ando(§,, — F') > 2, where
n > 4.
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abstract An upward embedding of a digraph (directed graph) on the plane oifacsus
an embedding of its underlying graph so that all directed edges are manatahpoint
to a fixed direction. Such embedding in some literature is called upward draviiihgut
crossing of edges. Upward embedding testing on the plane and sphax®aomplete
problems (cf. [6, 8]). In this paper we study the problem of upward eitiog of digraphs
on the horizontal torus which we refer to it B,. We shall present a characterization of
all digraphs that admit upward embedding BR. We also show that it is not possible to
find a polynomial time algorithm for upward embedding testing of a given digeeydr',.

1. Introduction

An upward embedding of a digragh on an embedded surfadeis an embedding
of its underlying graph on the surface such that all arcs gpeesented by mono-
tonic curves that point to a fixed direction. A necessary amrdfor a digraph to
have an upward embedding on a surface is that it has no diregtée—it is acyclic.
In this paper we deal with upward embedding on a special edibgaf ring torus
which we call it horizontal torus and refer to it &,.

There are major differences between graph embedding andrdmmbedding of
digraphs. For instance, all genus one orientable surfasetopologically home-
omorphic to a ring torus, which in turn, from the point of vi@ivgraph embed-
ding is equivalent tdl';,. But a digraph with an underlying graph with genus one,
may have an upward embedding on the vertical torus, and nilap faave an up-
ward embedding on the horizontal torus (cf., [4]). While thestion that whether
an undirected graph has an embedding on a fixed surface hdgremaal time
algorithm [5, 10], there exist polynomial time algorithms upward embedding
testing of some special cases such as three connectedidlp source [2, 9], and
outerplanar [11] on the plane. Also there exists a polynotimize algorithm for
upward embedding testing of three connected single sougrapis [3] on the
sphere. However, in general, upward embedding testing @pléme and also on
the sphere is NP-Complete [6, 8.

CTWOS - Universita degli Studi di Milano, Gargnano (Italy), May 132008
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Fig. 1. An SNP-digraph

There is a polynomial time algorithm to decide whether alsiisgurce and single
sink digraph has an upward embeddingDn[4]. In this paper we shall present a
characterization of all digraphs that admit upward embagldnT;,. We also show
that it is not possible to find a polynomial time algorithm fgeward embedding
testing of a given digraph of},.

2. Main results

In this section after introducing some definitions and notetwe present the main
results. Here in this paper by equivalence relai®@and horizontal torud’;, we
mean those defined in [4]. By a digraphwe mean a paiD = (V, A) of vertices
V, and arcsA. A sourceof D is a vertex with no incoming arc. Aink of D is

a vertex with no outgoing arc. BgNP-digraphwe mean a digraph that has an
upward embedding on the sphere but it has no upward embedditige plane. A
single source and single sink SNP-digraph is depicted inrEid

Dolati et al. [4] showed that an acyclic digraph has an upveantéedding o), if
it has exactly one source, exactly one sink and the underigraph of the subdi-
graphs induced on equivalence classes of its arcs withcegpthe relatiorR are
planar so that at most one of them is an SNP-digraph.

In the following we show that by adding new arcs, if necessany digraph that
admits upward embedding @y, can be extended to an acyclic digraph which sat-
isfies the above conditions.

Theorem 1. A digraph has an upward embedding @R if and only if by adding
new arcs, if necessary, it can be extended to an acyclicesisglirce and single
sink digraph whose subdigraphs induced on the equivalersses of its arcs with
respect taR are planar and at most one of them is an SNP-digraph.

Now we want to show that it is not possible to find a polynomiiget algorithm
for upward embedding testing of a given digraph®Dn To this end we define the
source-in-graphof a digraphD which we refer to it byS7(D), as follow:

suppose thab = (V, A) is a digraph. Lefs,,,...,s;, } be the set of its sources

12
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Fig. 2. A digraphD and itsSI(D)

whose outgoing arcs are more than one . To buildshéD) from D, we add the
set of verticeqs; , ..., s; } and the set of arc§(s; ,s;;)[j = 1,...,m} toit (see
Figure 2).

By Theorem 1 we solve one of the open problems that presentgt],iby the
following we solve another open problem about upward emiogdoin T, in the
same reference.

Theorem 2. Suppose thab is a digraph andD’ is a single source and single sink
SNP-digraph whose source and sink afeand ', respectively. LetS andT" be
the set of sources and the set of sinksS@fD) respectively.D has an upward
embedding on the sphere if and only if there exist S and¢ € T so that the
resulting digraph from identifying sourcesand s’ and identifying sinks and¢’ of
D"andS1(D) has an upward embedding df,.

Coroallary 1. It is not possible to find a polynomial time algorithm for upa/@am-
bedding testing of a given digraph dr,.
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1. Abstract

We address the problem of orienting the edges of an unddegptaph so as to
minimize the sum of the distances between a given set ofredgstination pairs
in the resulting directed graph. The problem originatesnfrithe design of Per-
sonal Rapid Transit (PRT) networks. We consider an Integaedsi Programming
(ILP) formulation with variables associated with the otation of the arcs, and
variables associated with the arcs in the paths in the eédeptaph between origin-
destination pairs. Given that the direct solution of thisura formulation is im-
practical even for small instances, we propose a branckeandpproach based on
Benders decomposition, reporting preliminary experimeastults on arising from
PRT networks.

2. Motivation and previous work

This work is motivated by the requirements to design optjtaatje scale Personal
Rapid Transit (PRT) networks for entire urban areas. PRT is@ovative type of
public transport [1], with the first system planned to operatpublic by the end of
2008 at the new terminal 5 of London-Heathrow airport. PRIoisiposed of a fleet
of fully-automated and electrically-driven vehicles fgr to 6 passengers, running
on a dedicated network of one-way guide-ways with small disrens. Similar
to Taxis, PRT vehicles are available on-demand and 24 hodesyaThe access
stations are off-line, ensuring that all vehicles can reahelr pre-programmed des-
tinations without transfers or intermediate stops. PRE&nsas a truly sustainable
urban mobility alternative that offers high-quality, esien-free and low energy-
usage transportation which is accessible to and affordab#dl social groups. This
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is why PRT has been chosen as the exclusive transport systam the sustain-
able, completely energy self-sufficient city of the Masdd@he Masdar-Initiative”,
Dubai, United Emirates), covering a 5x5 kilometers ared wpproximately 100
stations and 40 kilometers of guideways. Capacity limitsRf Bystems is a crucial
issue and is vital to the feasibility of large-scale netvgotk principle, exceeding
of capacity limits can be avoided in three ways: (i) by redgdieadways between
vehicles, (ii) by an intelligent, congestion-avoiding & routing, (iii) by an net-
work that is optimized for a-priory known trip demand patt®rThe present work
is concerned with the last option, defining models in ordefirtd an optimized
layout for a non trivial PRT network: starting from a netwadknitially undirected
links, travel costs and a demand matrix between origin- astigation-nodes, the
proposed method will orient all the links so as to minimize travel costs in the
resulting directed network.

Due to the obvious similarities between PRT and Automatei€iLiVehicle sys-

tems (AGV), many previous works originate from AGV applioas: Kaspi et

al. [4] and Langevin et al. [5] solved instances taken from AGV systems, us-
ing ILP models for the capacitated version and solving thgrrbnch and bound.
However, this approach becomes impractical when one cerssaense networks
with a large number of origin-destination (OD) pairs. Jaimand Pieroni [6] men-
tioned a branch-and-price approach for solving the undtgiad version, but with-

out giving any detailed description of the method.

3. Problem formulation and complexity

Let G = (V, E) be an undirected graph, with a lengthand a capacity. = ¢; ;
associated with each edge= {i, j} € E. Moreover, letR C {(i,7) : 4,5 € V,i #
j} be aset of origin-destination pairs, with a demadnédssociated with each origin-
destination pair- = (s,,t,) € R. We let anorientationof G be a directed graph
D = (V, A) such that each ar@, j) € A corresponds to an edde, j} € E and,
for each edg€i, j} € E, at most one of the ar¢s, j) and(j, ) isin A. We address
the problem of finding an orientatiab of GG, along with a path inD joining each
source-destination pair, so as to minimize the weighted giuitme lengths of these
paths, where the weight of the path joining each originidatibn pairr is equal
to its demand,, and the length of each auc= (¢, j) is equal to/, := ¢, ;. In the
capacitated version, we have the additional constraint theeach ara: = (i, 7)
of D, the overall demand of the origin-destination pairs whasé pses ara does
not exceed the arc capacity := ¢; ;. Note that, if the capacity constraint is not
imposed, the problem simply calls for an orientation of tdges ofGG so that the
weighted sum of the shortest-path distances between at@gtination pairs in the
resulting directed grapP is minimized.

Although the problem has been addressed previously intégrature, we could not

find any explicit statement about its complexity. First df abte that, in case the
capacity constraint is imposed, even finding a feasibleteoiuo the problem is
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easily seen to be difficult.
Proposition 1 Testing if the problem considered has a feasible solutioNRFs
complete.

Proof.In caser, = 1 for e € F, the problem has a solution if and onlyGfcontains

| R| edge-disjoint paths, one from to ¢, for » € R. This is well known to be NP-
complete. 0
On the other hand, in case the capacity constraint is notseghdinding a feasible
solution is easy, though not entirely trivial.

Proposition 2 ([2]) In case the capacity constraint is not imposed, tegtihthe
problem considered has a feasible solution can be done @atitime.

Proof. Without capacity constraint, the problem has a solutiomd anly if there
exists an orientation of the edges@fsuch that, for- € R, there exists a directed
path froms, to ¢,.. This can be tested in linear time by the algorithmin [2]. DO
(The algorithm in [2] can also be applied to a mixed graph, imclv some of the
edges are already oriented.) The above results, based ¢kneein facts, leave
open the complexity of the problem without capacity constsa This is easily
settled by using an old (and not-so-well-known) result By [3

Proposition 3 The problem considered is NP-hard even in case the capaaity co
straint is not imposed.

Proof. In [3], it is shown that the following problem is NP-completgven G =
(V, E), find an orientationD of G of diameter2, i.e., such that each node can be
reached from each other node by a path with at most two argen@in instance
of this problem, we define the instance of our problem (witltbe capacity con-
straint) on the samé& in which R := {(i,j) : i,j € V,i # j}, i.e., every ordered
pair of nodes is an origin-destination pair, all dema#ds= 1 and all edge lengths
(. := 1. Note that, for each of thg/|(|V'| — 1)/2 node pairgi, j), considering the
two origin-destination pair§, j) and(j, ), in every orientatiorD of G one of the
paths will have weight, whereas the other one will have weight at leasthis
proves that the optimal value of our problem is at l&&{V|(|V| — 1). Moreover,
the optimal value is exactty/2|V|(|V|—1) if and only if there exists an orientation
of diameter2, which shows that by finding an optimal solution to our proble
can solve the problem of [3]. 0

The natural ILP formulation of our problem is the followirigor convenience, let
A denote the set of the possible arcs arising from orientatadrthe edges irk.
Moreover, for anode € V, leto" (i) ando~ (i) denote, respectively, the set of arcs
in A exiting from and entering ifY’. The ILP formulation contains binary variables
T, = x;;, equal to one if the are = (4, j) € Ais presentinD, i.e., if edge{, j}

is oriented from nodéto nodej, and binary variableg, = y; ;, equal to one if the
path joining origins,. to destinationt, uses araz = (i, j) € A. The model reads:
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min Z Z d"l.y., Q)

TERGEZ
g+ <1, V{i,j} € E, (2
1, ifi=s,
Sy — Y y={-1ifi=t ,VieV,Vr=(s,t,)eR, (3
a€dt (i) a€d— (i) .
0, otherwise
s < xig, V(i,j) € A,¥r € R, (4)
Sy < e, Va e A, 5)
reER
zq,yn € {0,1}, Ya € A,Vr € R. (6)

Constraints (2) impose thd? is an orientation of5. Equations (3) guarantee that
the arcsy with ¢, = 1 define a path from, to¢, in D, whereas inequalities (4) link
they and ther variables. Finally, the capacity constraints (5) are nespnt in the
uncapacitated version.

4. Solution approach and preliminary results

Even without the capacity constraints (5), the direct sotubf ILP (1)-(6) by a
general-purpose ILP solver quickly becomes impracticahassize ofG grows.
On the other hand, in the uncapacitated version, if comgg&dl) are removed, the
problem decomposes int&| + 1 independent subproblems. Based on this, in our
approach we solve the Linear Programming (LP) relaxatiothefilLP by a Ben-
ders decomposition approach, with a Master Problem withrthrariables along
with auxiliary variabless, expressing the weighted length of the path frgnto ¢,

in D, the objective function beinfL, . .. The constraints of the Master Problem
are (2), along withoptimality constraint®f the form3, > o’z + b andfeasibility
constraintsof the forma® 2 > b that are originated from the solution of the Slave
Problems. The latter, one for each origin-destination parR, are defined by ob-
jective function (1) (without the summation ovérand constraints (3) and (4), the
value of ther variables being fixed by the current solution of the Mastebim.
Rather than adding Benders’ cuts in a standard way, wePadeto-optimalcuts
using the procedure defined by Magnanti and Wong [8].

In our preliminary experimental results we consideredisgalinstances of the un-
capacitated version of the problem, associated with a gridiork in which50%

of the nodes are stations, and each ordered pair of stas@rsarigin-destination
pair in R. Moreover, the edge lengtlfs are uniformly distributed iri0.5, 1.5] and
the demandd, are uniformly distributed in0, 50]. In the table above, we compare
the times to solve the LP relaxation (1)-(6) by a direct apploas a single LP
(columnDirect) and by our approach based on Benders decomposiiend, im-
posing a time limit of one hour. We also report the optimal laue (P val) and
the time required by the linear-time algorithm by [da()), that finds a feasible
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Instance| |V|/|R| Direct Bend LP val Tarj Heur
Grid5x5 | 25/156 1 4 10563.605 O 13658.12
Gridéx5 | 30/210 3 7 20417.285 1 25649.4
Grid6x6 | 36/306 9 11 32241.3 2 41978.9
Grid7x6 | 42/420 24 23 47637.86 3 67605.18
Grid7x7 | 49/600 66 48 63329.925 5 89069.78
Grid8x7 | 56/756 143 107 94863.065 10 136386.,09
Grid8x8 | 64/992 290 167 136226.865 19 191177,26
Gridox8 | 72/1260 534 374 165318.37 27 25293122
Gridox9 | 81/1640 970 561 211137.705 42  314165|59
Grid10x9| 90/1980 2980 895 28515.275 52  408750}55
Grid10x10| 100/2450 Tlim 1064 371514.9 83 559278.14
Grid11x10| 110/2970 Tlim 3661 469287.495 139 8004882

solution without taking into account the objective funati@long with the associ-
ated heuristic valueHeur). The table shows the faster increase in the LP solution
time taken by the direct approach with respect to ours, amdeitt that the heuris-
tic solution quality is not terribly bad (considering thhistis essentially a random
feasible solution), with a gap with respect to the LP valuatmdut40%.

In the full paper, we will report results on larger instancesnsidering heuristic
and exact enumerative algorithms based on the LP relaxation

Together with our model we are developing a PRT micro-sitouleith the aim
to test and compare the effectiveness of our approach ugimanuc vehicle mod-
els. Our future work will be focused on (i) collecting and\sng real-world PRT
instances; (ii) solving the problem with capacity constis still by Benders de-
composition by using additional auxiliary variables; ang $olving the problem
with additional constraints that may arise in PRT applaagi such as limits on the
number of arcs that can be presenfin

References

[1] Anderson, J.E. et al. (1998). Special issue: emerging systermpsilfidic transportation.
Journal of Advanced Transportation, 32, 1-128.

[2] Chung, F.R.K., Garey, M.R., Tarjan, R.E. (1985). Strongly conreoté&ntations of
mixed multigraphs. Networks, 15, 477-484.

[3] Chvatal, V., Thomassen, C. (1978). Distances in orientations ofhgrajournal of
Combinatorial Theory Ser. B, 24, 61-75.

20



[4]

[5]

[6]

[7]

[8]

Kaspi, M. and Tanchoco, J.M.A. (1990). Optimal flow path designmitlectional
AGYV systems. International Journal of Production Research, 2&-1030.

Langevin, A., Riopel, D., Savard G., Bachmann, R. (2004). A multyrxadity network
desing approach fo automated guided vehicle systems. INFOR, 2, BL3-12

Johnson, E.L., Pieroni A. (1983). A linear programming approacthéoptimum
network orientation problem. Presented at NETFLOW 83: Internationak$top on
Network Flow Optimization Theory and Practice, Pisa, Italy.

Benders, J.F. (1962). Partitioning procedures for solving mixediabtes
programming problems. Num. Math, 4, 238-252.

Magnanti, T.L., Mireault, P., Wong, R.T.(1986) Tailoring Benders dosilan for
uncapacitated network design. Mathematical Programming Study, 26,5412-1

21



Classbased Detailed Routing in VLSI Design

C. Schulte®* T. Nieberg?

aResearch Institute for Discrete Mathematics
University of Bonn, Lennéstr. 2, D-53113 Bonn

Key words: Routing, VLSI, Shortest Path

1. Routing in VLSI Design

Modern, highly complex integrated circuits cannot be destgwithout the use of
methods of discrete mathematics: tools based on efficigotritims are needed
to cope with the ever more demanding requirements of a higilgmated design
process [1]. VLSI (very large-scale integrated) design loioks many classical
combinatorial optimization problems with practical applions, and usually huge
instance sizes.

In the talk, we look at the VLSI routing problem, i.e. the tadlconnecting differ-
ent points (metal shapes on the chip called pins) within thp area by wires
so that they are electrically equivalent. Traditionallyistproblem is solved on
an incomplete 3-dimensional grid graph. The graph is obthiinom a complete
grid structure in the area by removing parts that are redefmeinternal circuit
structures, power supply, or already wired parts. Thesevethareas are called
blockages as they have to be avoided by the wires placedgiwouting. Pins and
blockages of such a chip are placed so that they are aligneustgrid structure,
and wiring follows the edges between adjacent grid verti€ke grid pitch, i.e. the
spacing between two parallel lines, is chosen so that speuifs (called design
rules) regarding minimum distance and spacing betweers\aire satisfied.

Next to this grid graph, an instance of the routing problemststs of a list of
nets. A net is a collection of pins that have to be connectednbjal wiring.
Different nets have to be connected by disjoint paths. Tiedlpm at hand thus
amounts to finding vertex disjoint Steiner trees for eachDee to the size of ac-
tual instances—a grid graph with more tham! vertices, millions of nets—this
problem is decomposed into smaller problems, that are tbhied sequentially.
Each net is divided into two-point connections (possiblyalging Steiner points),
and then solved by constructing shortest paths between shenessively. These
resulting shortest-path problems on a grid graph are caatipuaglly tractable also
from a practical perspective by specialized versions okddip’s algorithm and
sophisticated data structures [2].
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(@) (b) ()

Fig. 1. Examples of minimum distance and minimum length violations: In (a) the déstanc
between a wire and pin is not sufficient. In (b) and (c) we have two intidéges which
both do not have the required length. To achieve a valid wiring at leasbotie edges
must be long enough.

However, in recent technologies, blockages and pins ofitgrcsome of which
need to be connected by routing, have become a lot smallertbigagrid pitch.
As a result, pins that form source and target of a path are mgeloalligned with
respect to a possible routing grid; we call thesigrid. Adjusting the routing grid
by making it finer results in two major problems: the size & grid itself would
become intractable in memory, and even more important, timmam distance
and spacing rules avoided by using a routing grid with ’bmltsufficient spacing
would have to be taken into account explicitely. This wowdduit in an unaccept-
able increase in runtime.

1.1 Offgrid-Pinaccess

A tractable solution to the routing problem with offgrid soes and targets, is to
still use the grid graph for the larger distances to be caljemad to locally con-
struct small paths from the respective pins to nearby gridtpoHowever, simply
connecting a pin to the nearest point(s) on the grid-grapialiysresults in infea-
sible wiring due to the restrictions on minimum length andapg for the wiring
(see Figure 1).

Therefore, we developed an algorithm that computes singilesgrom pins to grid
points not violating any design rules. The main idea behngldapproach is to first
identify and remove parts of the pin where starting a wire @ause a violation
with the pin itself regardless of its length. Then, from teenaining parts of the
pin we construct paths in each direction respecting thermum lengths in order
to avoid design rule violations until we reach an ongrid poin

After deleting the paths that result in minimum distanceestto other wires al-
ready present or blockages, the endpoints of the remairatigspare passed as
source resp. target points to the ongrid path search. Whengndgath between
such points has been found, we simply have to look up the sporeling offgrid
paths and append one of them.
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Fig. 2. Circuits placed on the chip area. Circuits with equal geometric stapesigh-
lighted, these are combined into the same equivalence class. Note that stunie ofrthe
same class are mirrored (on the left).

2. Equivalence Classes of Circuits

Generally speaking, an integrated circuit maps a booleantifan to hardware.
As such, it consists mainly of transistors that have beeoeplaon the chip area
in earlier steps of the VLSI design process. A single buddmock that maps a
simple boolean function by some transistors is called dirand in other words,
the routing problem has to connect the pins of these smatrits. A circuit can
be seen as a collection of pins and blockage that is placddnntose proximity
on the chip area.

Although we have millions of circuits placed on huge chi@sheof them contain-
ing several pins that have to be connected, there actualprly a few thousand
different prototype circuits. As a result, the same configjon of pins and block-

ages can be found on many different locations on the chip pessibly rotated

or mirrored (see figure 2 for an example). Since also the ot blockages,

e.g. resulting from the power supply, are very uniformlygeld, we are able to ex-
ploit this local redundancy by collecting geometricallyatareas and circuits into
equivalency classes.

The benefit of these classes is that we now do not have to cengffigtrid paths

for millions of pins separately anymore. Instead it now seffito work on the pins
of only one representative circuit of each class. All patirspins of other circuits
can be easily deduced from the already constructed ones of bourse results in
runtime improvents and becomes absolutely necessary vipdyirag sophisticated
and time consuming methods to construct offgrid paths.

On the other hand, these classes have to be computed as hislpdses a new
problem, namely how to collect the circuits into classes, \&a designed a sweep-
line approach to do so efficiently.

With this approach, there are several trade-offs involved:

e Computing large classes results in fewer offgrid paths to diesttucted, but
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many of these paths become infeasible as some blockagenation has to be
omitted to create these large classes. Also, the problerecdidg which block-
age information to include and to exlude in the creation efc¢lasses has to be
solved.

e Computing fine-grained classes, e.g. by taking all blockafgnation into ac-
count, results in a high number of classes and thus in a higtbeuof offgrid
paths to be constructed.

3. Conclusions

In the talk, we discuss several issues involved in gridlesaild routing, the inter-
face between gridded and gridless approaches, and praligdess to avoid many
of the problems posed in the context of computer aided dedigime latest chips.
We especially focus on the trade-off given by first groupimgilar structures into
classes in order to avoid unnecessary computations dunaggess versus the cost
of computing the classes and coping with incomplete infaiona
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1. Introduction

Connecting a given set of points with minimum total length iseg problem in
VLSI design. The wires are allowed to run in two perpendicdigections. Mini-
mum Steiner trees minimize the total wire length. Manhattetworks impose an
additional constraint. In contrast to Steiner trees thegtroantain ashortestpath
between each pair of points. Given a gebf n points in the plane, Manhattan
networkof P is a network that contains a rectilinear shortest path betvevery
pair of points of P. A minimum Manhattan networis a Manhattan network of
minimum total length. See Figure 1 (a) and (b) for an example.

It is unknown whether it is NP-hard to construct a minimum Maitan network.
The best approximations published so far are a combind®a@proximation al-
gorithm in timeO(nlogn) by Benkert et al. [1], and an LP-based 2-approximation
algorithm by Chepoi et al. [2]. Kato et al. [4] proposed-approximation with run-
ning timeO(n?), however the proof of the correctness seems to be incomlete
Seibert and Unger [5] presented an approximation algorgimeh claimed that it
yields al.5-approximation. As remarked by Chepoi et al. [2] both the dpson
of the algorithm and the performance guarantee are somemdwnhplete and not
fully understandable.

We present a new combinatorial 3-approximation for thidpgm in timeO(nlogn).

In contrast to the approximation of Benkert et al. [1] our aidyon and also the
analysis of the approximation ratio is quite easy. We widatiss similarities and
differences below.
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Fig. 1. (a) A Manhattan network. (b) A minimum Manhattan network. (c)H#)erent
staircase boundaries for the same staircase.

S " -
(a) (b) (©) (d) (e)

Fig. 2. (a) to (d) The four different cases of staircases. (e) Edgested by the sweep
steps.

2. Definitions

Each pair of pointg andq spans a unique closed axis-parallel rectariglg, q)
with p andg as corners. We call two pointsq € P (w.l.0.9.p, < ¢, andp, < ¢,)
x-neighboredf there is no further point with p, < r, < ¢, andy-neighbored if
there is no further point with p, < r, < ¢,. Obviously for twoz-neighbored
pointsp andg a minimum Manhattan networks needs to contain line segnoénts

|ength‘py - Qy’-

Almost all approximation algorithms for minimum Manhatta@tworks use stair-
cases, but the definition of a staircase is not standardioeget a clearer definition
we define only one of four symmetric cases of a staircase slwigure 2. We
define the staircase type as shown in Figure 2 (a).

Definition 1 A staircaseonsists of a sequence of poifits, . . . , v;) and twobase
pointsb”, bY. For each sequence point, : = 1, ..., k, thez-base poinb” is thez-
neighbored pointin the third quadrant of. They-base point? is they-neighbored
point in the third quadrant of;. Two points belong to the same staircase if they have
the same base points.

Our algorithm partitions the global Manhattan network peatinto disjoint local
Manhattan network problems for staircases by insertingggdghich separate the
staircases of each other. That is, we construct a boundapafth staircase which
is defined as follows:

Definition 2 A staircase boundarfpr a sequencéuv, . .., v;) of a staircase with
base point$” andb? is defined in the following wayor any consecutive sequence
pointsv; andv; 1, 1 <1i < k — 1, the staircase boundary contains a shortest path
between the two points. Furthermore, the staircase boundanyains a shortest
path between; andb® and betweem, andb?.

The area contained in the staircase boundary is cafitaircase area

The boundary of a staircase is not unique. See Figures 1 (e) for examples of
staircase boundaries.
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3. A 3-Approximation of Minimum Manhattan Networks

Our 3-approximation algorithm for minimum Manhattan networkegeeds in two
steps. In the first step we compute a basic set of edges in étmehtevo dimensions.
These edges ensure that only sequence points of staireasasrunconnected to
the appropriate base points and that the edges constitta@@ase boundary with
staircase area of size at most the one of the staircase diradlby edges of a
minimum Manhattan network. In the second part we computehdtan networks
for the staircases. The general approach to partition thielgam in a set of Manhat-
tan network problems for staircases is used by all combiiztapproaches (see
for example [1], [3] or [4]). We now describe our approach inredetail. We
first examine the points from bottom to top. For tyameighbored pointg andgq
considered by this sweep we insert the horizontal bounddgg®of the rectangle
R(p, q) into our network. Afterwards we perform an analogous sweem fleft to
right. See Figure 2 (e) for an example of such a sweep in thelisgations. The up
to now identified edges contain a boundary for each stair&&senow identify all
staircases and compute for each staircase a Manhattanrke@wothat behalf we
use the standard 2-approximation stated for example by @odsson et al. [3].
Altogether, we obtain a Manhattan network for the input isee Algorithm 1
for a detailed description.

Algorithm 1 MANHATTAN NETWORK APPROXIMATION
Require: A setP C R? of points.

1: SetCR =0 andM N = (.

2: Sweep over the points @ bottom-up. Letp be the currently considered point
and g be the previously processed point. Adddd the horizontal edges of
R(p.q).

3: Sweep over the points @t from left to right. Letp be the currently considered
point andg be the previously processed point. Addi® the vertical edges of
R(p,q).

4: for all Staircases$'C' do

5: Let M SC be a Manhattan network of the stairce8€ given the staircase
boundary.

6: SetMN = MN UMSC.
end for
8: return M N U CR.

~

The difference to the approach of Benkert et al. [1] lies nyainlthe first step.
Whereas we include for pairs ofneighbored pointg andg both horizontal edges
of R(p,q) into our network, they first include only one of the two eddésfor-
tunately, these edges do not guarantee a partition into isyoirt areas for which
they can bound the edge length to be inserted separately, ey have to insert
further edges. This complicates both the analysis and tieitim in comparison
to our approach.
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Our scan procedure yields a 3-approximation outside ofcstegs and minimizes
the staircase areas. Thus, together with the standardr@xaption for staircases
we get a 3-approximation altogether. The analysis of tlgsrithm is tight. Alto-
gether, we get the following theorem:

Theorem 1 For a point setP C R? the MANHATTAN NETWORK APPROXIMA-
TION algorithm computes a Manhattan network with total lergftimost3 times
the length of a minimum Manhattan network f@iin time O(nlogn).
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We consider the classical Minimum Graph Coloring Problemnd@iCP). Given

a graphG = (V, E) and an integek, a k-coloring of the graphG is a mapping

c:V—=A{l,...,k},s.t.e(i) # c(j),¥{i,j} € E; Min-GCP consists in finding the
minimumk such that &-coloring exists. Min-GCP is NP-hard [5].

Constraint Programming (CP) is a natural choice as a methachfking if ak-
coloring exists, since constraint propagation can be é@gulauite effectively [1].
Standard CP lacks efficient mechanisms to guide the seardrdsvthe optimal
region, and to derive effective bounds on the minimkinfror this reason, hybrid
methods that integrate CP with standard mathematical pmogmag techniques
have been recently investigated; amongst them, two pragisybrid approaches
are (i) the exploitation of Semidefinite Programming retax@s into Constraint
Programming, and (ii) the so—called Constraint Programrbiaged Column Gen-
eration. We have applied both hybrid approaches to the MR ®btaining inter-
esting results and new insights for integrating the SDBxaion into the CP-based
Column Generation approach.

The idea of using SDP relaxations within a CP approach to caatdiial optimiza-
tion problems has been introduced in [9] for the stable setla@ maximum clique
problems. There is a wide literature on SDP relaxations @Mim-GCP €.g, see
[3]). Here we propose to use the solution of the SDP relaraifdMin-GCP in or-
der to devise effective branching rules within the CP codeaking ties carefully.
The SDP relaxation gives for every pair of vertices the Ihk@bd of coloring them
with the same color. We observe that in the case of Min-GCP \aéra® with bi-
nary variables as in [9], but with integer variables. Diffiet rules for choosing the
next vertex to color and the color to assign to it are expentec:

The CP-based Column Generation framework has been introdgu¢épfor solv-

ing a crew scheduling problem, and it was motivated by thel hi@enodel complex
numerical and logical constraints. The main idea of CP-b&®dmn Generation
is that the pricing subproblem is formulated as a Constraatisfction Problem
(CSP) and is solved using Constraint Programming. A regulaur@olGenera-
tion formulation of Min-GCP is introduced in [7], where the ster is a classical
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set partitioning problem, and the pricing is a maximum w&ghndependent set
problem. In our CP-based formulation, the pricing subpnohketo find a maximal
independent set with a weight greater than a given threshatdrresponding to
find a negative reduced cost variable to enter the basis ahtdster problem. To
make CP efficient in solving the pricing subproblem we use teaekerating tech-
niques introduced in [6]: the first technique consists imgsi randomized breaking
ties strategies into the CP solver, and the second in usingla@otiae threshold
that changes throughout the iterations of Column Generation

Since CP-based Column Generation solves the linear relasaifdhe integer mas-
ter problem, to solve exactly Min-GCP we need to implementaatin-and-price
algorithm. In branch-and-price, we are faced with the probbf devising effective
branching rules. For Min-GCP, an effective strategy is teceht every branching
node a couple of vertice@, j) that are not adjacent, and to either force them to
take the same color or to take different colors [7]. This igieglent to formulate
two new graph coloring problems: the first resulting from gneg vertex: and j

into an additional vertexj and deleting eventual parallel edges, and the second in
adding an edge between verteand ;. This branching rule allows a recursive use
of the same CP-based Column Generation algorithm, but to betiet the couple

of vertices(i, 7) must be chosen carefully. This is the same issue faced vétkh
formulation, and that we have solved with the hybrid CP-SD#t@gch. Therefore,
our new idea is to use again the SDP relaxation of Min-GCP tcsden effective
branching rule for the branch-and-price algorithm.

For the experimental campaign, we focus on the instancesinfGQLP that are
very challenging for existing exact methods, like DSATUR [#anch-and-cut [8],
and regular branch-and-price [7]. In particular these w@shspend plenty of com-
putational time in closing the gap between fractional anelgar solutions. Among
such instances, Mycielski graphs, although of small sieeparticularly challeng-
ing, and hence have been chosen as the first benchmark setu@siomal expe-
rience shows that our hybrid CP-SDP approach outperformakmxact methods
on Mycielski graphs. The second set of benchmark ardsthg) random graphs,
with n vertices antp expected density; these graphs have bigger size than My-
cielski graphs and for most of them the chromatic numberiisustknown. On
random graphs, the CP-based Column Generation outperfoenfiykinid CP-SDP
approach, since it is able to fully exploit the linear lowerubds. In particular,
with the CP-based Column Generation we were able to close twn mstances
(DSJC125.9 and DSJC250.9) and to improve the lower bound efr dttur in-
stances (DSJC125.5, DSJC250.5, DSJC500.9, DSJC1000.9). tintnef writ-
ing, the hybrid SDP-CP-based Column Generation is undentgatid validation,
but preliminary results suggests that this new hybridmatpproach is indeed in-
teresting.
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1. Introduction

Wavelength Division Multiplexing (WDM3 a dominating technology in contem-
porary all-optical networking. It allows several conneas to be established through
the same fiber links, provided that each of the connectioas adifferent wave-
length. A second requirement is that a connection must wessedme wavelength
from one end to the other in order to avoid the use of waveleogtverters which
are costly or slow. In practice, the available bandwidthnsted to few dozens, or
at most hundreds, wavelengths per fiber and the situatioot isxpected to change
in the near future. It is therefore impossible to serve adagt of communication
requests simultaneously. It thus makes sense to consilprablem of satisfying a
maximum profit subset of requests, where profits may reptg@semities or actual
revenues related to requests. In our model, requests anecied, which corre-
sponds to full-duplex communication. We describe a redoye&s connection path
and its profit, and formulate the problem in graph-theoretims as follows:

MAXIMUM PROFIT PATH COLORING PROBLEM (MAXPR-PC)

Input a graphG, a set of path$, a profit functionw : P — R and a number of
available colors:.

Feasible solutiora set of pathg?’ C P that can be colored with colors so that
no overlapping paths are assigned the same color.

Goal maximizeX_ . w(p).

1 Research supported by PENED 2003 project, cofinanced 75% of paipgienditure
through EC — European Social Fund, 25% of public expenditure thribliigistry of Devel-
opment — General Secretariat of Research and Technology of &sa@elcthrough private
sector, under measure 8.3 of Operational Programme “Competitivenetbs 8rd Com-
munity Support Programme. We also acknowledge funding from the Nati@cdnical
University of Athens, through PEBE 2007 Basic Research Suppogr&mme.
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Here we study MxPR-PC in rings with undirected requests and we present a
2-approximation algorithm.

While the cardinality version of the problem @ PC) has been studied by several
researchers [1, 3], Mx PrR-PC has been considered in rather few papers [4-6].
Both MAX PR-PC and Max PC areNP-hard even in simple networks such as rings
and trees; this can be shown by an immediate reduction frentdhresponding
color minimization problem (see e.qg. [1]).

MAXxPR-PC in chains is also known as the “weightedoloring of intervals” prob-
lem, which can be solved exactly as shown by Carlisle and Ljéjdn [6] an algo-
rithm based on linear programming and randomized rounditig approximation
ratio 1.49 for MAXPR-PC in rings is presented. Let us note here that, although
the algorithm in [6] achieves a better approximation ratie, algorithm presented
here is purely combinatorial, therefore faster and easienplement. Li et al. [5]
study a version of MXPR-PC where requests are not routed in advance, that is,
an appropriate routing and coloring is sought. They alsarassdirected requests
and edge capacities that must be obeyed and preseapproximation algorithm

for rings.

2. Match and Replace for MAX PR-PC

In this section we present an algorithm foraMIPR-PC in rings. MaxPR-PC in
chains can be solved exactly@nkm logm)) time, using algorithm [4].

In our algorithm, we employ a popular technique used forgjmamely to choose
an edges and remove it from a ring. We call this algorithidhatch and Replace;
details are given in Algorithm 2. We denote the profit of a depathsP with
w(P) = X ,ep w(p). Given a set of path®, the set of paths if? that are colored
with the same coloi is called tha-th color classof P; we useP(i) to abbreviate
this notion.

Theorem 1 Match and Replace is a2-approximation algorithm.

Proof. Let OPT be the value of any optimal solution of the ring instano&, 7',
be the value of any optimal solution of the instance const@io path seP. and
OPT. be the value of any optimal solution of the instance cons¢i@ito path set
P.. Recall that

OPT < OPT.+ OPT, . (1)
Let SOL. be the value of the solution obtained in step 2 of the algorifohain
subinstance solution), ar) L be the value of the final solution. Clearly,

SOL = SOL, + w'(M) (2
wherew’(M) is the sum of the weights of the edges that belong to the nragclii

computed in step 5. The instan¢é& — e, P.,w) is solved optimally in step 2.
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Algorithm 2 Match and Replace
1: Pick an arbitrary separation edg®f the ring. LetP, be the set of paths that
use edge andP. = P \ P..

2: Color the instancéG — e, P., w) optimally, using the Carlisle-Lloyd algorithm

for MAXPR-PC in chains.

3: LetP.(i) be thei-th color class ofP., 1 < i < k (note that some color classes

may be empty).

4: Construct a weighted bipartite grapif = (S U P, F), with § =
{P.(i) :i=1,...,k}. For every pair(P.(i),q) € S x P., define path set
P.(i)? such thatP.(i)? C P.(i) and¥p € P.(i)? p andq overlap (that is
P.(i)? consists of those paths 17.(i) that overlapy). If w(q) — w(P.(i)?) > 0
then we add edg€P. (i), ¢) to H with weightw' (P.(i), q) = w(q) —w(P.(i)?).
Find a maximum weight matchiny/ in H.
for eachedge(P.(i),q) € M do

uncolor all paths ir?.(i)¢ and color patly € P, with color.
end for

Therefore, taking also into account Eq. 2 we have that
OPT.= SOL. < SOL . 3)

Let Sy, be the subset of consisting ofP.(i)’s that are matched by/. Similarly,
let P, »s be the paths irP, that participate inV/. Finally, let K be the set of thé
most profitable paths @?.. We will now show that

OPT, = w(K) < SOL . (4)

For the sake of analysis we will examine a solutiin .’ thatMatch and Replace
would have computed if it had chosen a matchivi§ of a subgraphi’ of H in
step 5. Bipartite graph/’ has the same node set and the same edge weight function
as H, but only a subset of the edges Bf namely for every paifP.(i), q): edge
(P.(i),q) is in H', if w(q) — w(P.(i)) > 0 andqg € K. Let M’ be a maximum
matching inH’, and letS,, and P, ;s be defined analogously fav/’ as for M.
Similar to Eq. 2

SOL' = SOL. +w' (M) . (5)
Note thatSOL. = w(S) and also that' (M) = w(Pe,nr) — X (p),g)emr W(Pe()?)
= w(Perr) — Xip.iiygjemr [WP(i) — w(Pe(i)™)] = w(Per) — w(Swr) +
S (po(igem W(P(1)™), whereP, (i)™ consists of these paths iR, (i) that do
not overlap withg. Equation 5 may then be rewritten as followsO L' = w(S \
Surr) Fw(Penrt) + X p. (i) gemr w(Pe(i) ™). We observe thaP, ,,» € K and there-
fore w(Pear) + w(K \ Pearr) = w(K), so the last sum can be expanded in the
following way:

SOL/:ZU(S \ SM/> + UJ(K) — w(K \ Pe,]V[’) + Z w(Pc(i)ﬁq) . (6)

(Pe(i),q) eM’

Observe also that for anp.(i) ¢ Sy andqg ¢ P. v, there must be no edge
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between them ir?’, hencew(P.(i)) > w(q). Moreover,w(S \ Syr) andw(K \
P.r) are sums with the same number of terms becahSe= |S| = k and
|Sarr| = |Pear|- These observations imply that(S \ Suyr) — w(K \ Penr) >
0, therefore Eq. 6 yield$OL > w(K). SinceH' is a subgraph o/, M’ is a
matching also for/{, probably not a maximum one, therefar& M) > w'(M')
which implies, from Eq. 2 and 5, thatO L > SOL’. Combining this last inequality
with SOL' > w(K) we obtain Eg. 4. By Eq. 3 and 40L is an upper bound on
bothOPT. andOPT., which together with Eq. 1 giveSOL > 22T .

Computing a solution for the chain subinstance také€kmlogm). GraphH has
O(m) nodes (we assume that < m) and O(km) edges, therefore maximum
weighted matching off takesO(m?(k + logm)) time. Therefore the total time
complexity isO(m?(k + logm)). 9
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1. Introduction

In this paper, the problem of allocating radio resourcessgrsiin the downlink of
an OFDMA telecommunication system in the multi-cell scemar addressed.

Orthogonal frequency division multiple access (OFDMA)sé@ on multi-carrier

technology, has been widely accepted as the most promiantiQ transmission

technology for next generation wireless systems due tmlsstness to channel
distortions and granular resource allocation capability.

In a multi-carrier system the transmitted bitstream isdid into many differ-
ent substreams that are sent over many different sub-clsaiwadied sub-carriers.
OFDMA systems envisage the assignment of a number of sulewsaand the rel-
ative transmission format to users on the basis of the exated link quality.
Interference phenomena limit the number of users transigitin the same radio
resources, i.e., sub-carriers. The transmission poweirestby each user to trans-
mit on a given resource depends on et of usersassigned to that resource. The
objective is to assign radio resources so as to minimize vteeatl transmission
power while providing a given transmission rate to each (kence, satisfying
some fairness criterion among users).

* Corresponding author.
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OFDMA supports differentiated quality-of-service thrufe assignment of a dif-
ferent number of sub-carriers to different users. Moredeeifixed or portable ap-
plications where the radio channels are slowly varying,rarinsic advantage of
OFDMA over other multiple access methods is its capabibtgxploit the multi-
user diversity embedded in diverse frequency-selectiamcéls. In fact, propaga-
tion channels are independent for each user and thus theastibrs that are in a
deep fade for one user may be good ones for another.

Several papers have recently focused on the problem of optichannel alloca-
tion of OFDMA cellular systems, and some of them have alssiciemed the joint
scheduling-allocation problem [1-4].

In this work, the problem of allocating sub-carriers in tiosvtlink of an OFDMA
system in a multi-cell scenario is addressed. A complexilysis for general and
particular cases is given and solution methods are propasedrticular, exact and
heuristic algorithms based on minimum cost network flow ni®dees provided.

2. Problem statement

The allocation problem we address here can be describedl@sgoWe are given

a set ofm radio resources, the sub-carriers, and a set of users. Eng are parti-
tioned intok cellswhere each celk containsn,;, users,l < h < k. For each user
i, we denote by:(i) the cell of user. If we set a certain target spectral efficiency
n; for useri, the transmission requirements correspond to a certaifbauof sub-
carriersr; = R;/n;, whereR; is the transmission rate required by useaindy;, is
setin a such a way that is integer.

In general, users belonging to different cells can sharesnee sub-carrier, while
interference phenomena do not allow two users in the sarheodeinsmit on the
same sub-carrier. However, the power required for the in&gssson on a given sub-
carrier increases with the number of users transmittinghain sub-carrier. More
precisely, letS; be the set of users which are assigned to (i.e., that arentraimsg)
on) the same sub-carrig¢r The transmission powegs(;j) requested by users i)
on sub-carriey satisfy the following system.

pi() = Ai(§) + Sees, BOG)pe(j) i€ S
t#i (1)

where 4,(j) and B™“(j) are given data taking into account the target signal-
interference-ratio, the channel gain of usen sub-carrierj, and the channel gain
between userand the base station of céll# ¢(i) on sub-carriey.

In the following, given the sef; of users transmitting on sub-carrigrwe denote
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by T;(S;) the transmission power required pyi.e.,

T3(S5) = >_ pild).

iGSj

Note that powep;(j) increases as the interference term increases and that-the in
terference term depends on the set of users, otheritiwvamch are assigned to the
same sub-carrier. Note also that, System (1) could not hésasible solution. On

the other hand, if only useris assigned sub-carrigr i.e., the interference term is
null, thenp;(5) = A;(j).

A feasible radio resource allocatioconsists in assigning sub-carriers to users in
such a way thati) for each uset, r; sub-carriers are assigned to(it;) the users

in the same cell are not assigned to the same sub-cédutigrgiven the setS; of
users assigned to sub-carrigiSystem (1) has a feasible solution, for all the sub-
carriersj. The problem, that we call Cellular Radio Resource Allocatioobiem
(CRP), consists of determining a feasible radio resourceatilon that minimizes
the total transmission power, i.e., the sum of the transonigsowers required by
all the users. Note that, a necessary condition for a CRP icest@nbe feasible is
m > max{max;{r;}, max,{n,}}.

We show that CRP is, in its general form, strongly NP-hard. Ifase using the
expressions of System (1) to compute the transmission goreguired, we may
prove that CRP is strongly NP-hard even when there are onlyl8 aedl the sub-
carriers are identical (i.e., data do not depend on the Bpeatib-carrierj). It is
worthwhile to note that relaxing those expressions by atigumore general power
consumption models, itis possible to show that CRP is stroNg§hhard even when
there are only two radio resources.

3. A heuristic approach for CRP

When the transmission pow&} of any subcarriej can be decomposed in a certain
way, illustrated hereafter, CRP can be solved exactly in pmtyial time.

Supposd’; is comprised of a fixed cost part depending on the set of asdigsers
S; plus aconvexvariable cost part which depends only on the numbgrof users
assigned to resourgeln particular, letf;; € R, be the fixed cost of assigning user
i to resourcg andy;(-) a convex function representing the variable cost part. Then
the transmission power required by resoufcerhen a setS; of users is assigned
toit, is:

T5(S;) = g;(1Si]) + >_ fis- )

1€S;

When the transmission powers are of the form illustrated )ni{ds possible to
formulate CRP as a minimum cost flow problem on a special netwodnd hence
to efficiently solve it.
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Since any feasible flow o&' provides an assignment of users to sub-carriers, we
can heuristically use the same approach in the general gagpdooximating the
expressions of the transmission powers in System (1) irr éodEbtain a cost struc-
ture satisfying Equation (2). Such an approximation pregaay produce an as-
signment which is not necessarily feasible in the origimabpem (since a set of
users assigned to a resource may require negative powesyallowever, infeasi-
bilities can be dealt with by suitable modifications of theidsd assignments.

Preliminary computational experiments on instances witkells 16 resources and
28 users (each requiring 4 resources) show that a heuresiied by the approach
described above is able to obtain quite good solutions inrfesgc. In fact, the

quality of the solutions, from the point of view of the totahmsmission power,

is comparable with that obtained by a branch&bound algoritased on a MILP

formulation after few minutes of computation.
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1. Introduction

In a graphG = (V, E), a subset of edge®/ C E is called amatchingif no two
edges ofM share a common vertex. With each edge F, we associate a weight
w. € R, and for a subsef € E, we setw(S) := > .5 w. as its weight. The aim of
the Maximum Weight Matching Problem is to find a matchiig with maximum
weight over all matchings.

An algorithm that for all graphs returns a matchihgwhose weightv(M) is at
most a factor ofp away from the weightv(M*) of an optimal matching is said
to have an approximation ratio pf We present a local, distributed algorithm that
constructs a matching withl — <) approximation ratio for any > 0, and that
results in an approach with polylogarithmic expected rogrime.

For this algorithm, we use the standard local message passidel [3]. The net-
work is an undirected grapfi = (V, ), and two nodes, v € V in the network
are adjacent, i.€u,v) € E, whenever there is a bidirectional communication chan-
nel connecting: andv. For simplicity, we assume a synchronous communication
model: time is divided into rounds, and in each round, evexgencan send a mes-
sage to each of its neighbors(éh

Such local algorithms are specifically useful in a largdeschstributed commu-
nication network settings such as the internet and wiredessor networks. They
respect the limitations of each node in the network only @peinle to communicate
with its direct neighbors in the network. Solving optimipat problems on these
graphs by first collecting the topology at a central procesgioint, computing a
solution, and then reporting this solution to the nodesralgaids to a high commu-
nication overhead, both in terms of time and message sizeeder, by the time a

* Corresponding author.
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centralized solution is computed and reported back, thelogy may already have
changed.

Given a matching/ C FE, we define another matching C £ \ M to be an
augmentatior(for M). For such an augmentatiagh we denote byl/(S) C F all
edges inM, that have a vertex in common with an edge frémit is easy to see
that(M \ M(S)) U S again forms a matching i@, and we say that this resulting
matching is obtained by augmenting with S. We denote by gaip(S) = w(S) —
w(M(S)) the gain of augmenting/ with S. The size of an augmentation is the
number of edges contained i Considering the set/(S) U S C E, we call an
augmentatiort connectedf M/ (S) U S is a single component i

For a subset”” C V of nodes, we usé&/ (V') to denote the subgraph induced
by V" in G. Furthermore, a subset of nodésC V is called independent set if

G(I) contains no edges. We call such a setximalif it cannot be extended by

additional nodes. L, (v) be the set of nodes € V' which have distance at most
rfromv e V.

2. Thel-Augmentation Graph G’

The algorithm presented works on a structure that weacgjmentation graphand
which is defined and locally constructed as follows.

Definition 1 Thel-augmentation grapld” = (V’, E’) (of a graphG with respect

to a matchingM) is defined as the intersection graph of connected augmengat
of size at mostin GG: The noded”’ of G’ are all connected augmentations of size at
most/, and two such augmentations are connected by an edge if tiveydtdeast
one node (frond7) in common.

For each such augmentation, we call the node with the lowlesttifier its repre-
sentative (in7). Note that any node € V' may represent multiple augmentations
from thel-augmentation graph. Every node only needs to construcidheected
augmentations itis part of and communicate the augmentaitioepresents. There-
fore, in order to locally construet’, each noder € V' needs to have knowledge
aboutl'p(;)(v) in G which it can obtain irO(/) communication rounds.

Any communication inG’" is now mapped to the representativeginand passing
a message along a single edgeihtakesO(l) rounds inG. We now restrict our
attention to this-augmentation grapl”’ = (V’, E’). In total, we havelV'| =
O(n?).

3. An Algorithm to Improve a Matching

Starting with an empty matching, we iteratively call Algbrn 3 a certain number
of times in order to improve the current matching.

After having constructed theaugmentation graph based on the matchihgiven
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Algorithm 3 IMPROVEMATCHING
Input: G = (V, E), weightsw,, e € E, matchingM in G, € N
Output: MatchingM’ in G

. Construct-augmentation grapty’ = (V' E)

2 A:=0

3. V(l) = V/

o for t:=1to [logsl*n] do

6 Wi={veV®|(v)N{ueV®|gainu) > 2-gainv)} = a}*
6. Calculate maximal independent deih G'(W)

7. ./4 = A ul

o VD = VO Ty (1))

o. endfor

o.M’ := M augmented by augmentations represented in

(*) Here,Iy (.) is taken w.rtG’.

as input, the loop (4.-9.) constructs a skbf augmentations. By construction,
the set/ that is added tod each time is an independent set. Therefore, thedset
constructed in Algorithm 3 is an independent set:inand we can augmenit by

the local augmentations containeddnn parallel. We obtain:

Theorem 1 [4] Let T\s(m) denote the time needed to locally construct a maximal
independent set on a graph withh nodes.

Then, Algorithm 3 can be realized by a local, distributed ragh that requires
O(l + log (I>n) - Tys(n®?)) communication rounds.

For the analysis of Algorithm 3, we look at the differenceviEgnw()/) and
w(M'"), in other words, the gain ofl. In particular, we are interested in the im-
provement with respect to an optimal solutidf.

For this overall gain, we can state the next theorem, whitbbvis an idea presented
in [1] and that is adapted to the local, distributed settmi.

Theorem 2 Receiving a matching/ as input, Algorithm 3 returns a matching’
with

W) > w(b1) + g (S Her) - win)

whereM* is a matching of maximum weight dn

4. A (1 - e)-Approximation Algorithm

As a corollary to Theorem 2, we would like to point out thaaréhg with M = &,
a single invocation of Algorithm 3 results in a local apprio#tat yields a constant
factor approximation of the Maximum Weight Matching prabléor anyl > 1.
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Moreover, setting = O(1/¢) and invoking Algorithm 30(1/¢) times € > 0)
results in a locall — ¢)-approximation algorithm:

Theorem 3 [1,4] Let | € N. Calling Algorithm 30(l) times returns a matching
M of weight at leastl — O(1/1)) - w(M*).

The overall number of rounds needed to obtain such a soligitrenO(i? + [ -
log (I*n) - Tyns(n°W)).

5. Conclusions

The presented Algorithm 3 yields a local, distributed allfpon that constructs a
(1 — e)-approximation of a Maximum Weight Matching in a graph, anéslso in
O(%-logn-Tws(n®")) communication rounds. Taking, e.g., the well-known locall
algorithm of Luby [2] with randomized time aD(logn) to compute a maximal
independent set, we can obtain(ahs%loan) randomized time algorithm.
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Molecular phylogenetics studies the hierarchical evohary relationships among
organisms (also calle@xa) by means of molecular data (e.g., DNA or protein se-
guences). These relationships are typically describeddansof weighted trees, or
phylogenies, whose leaves represent taxa, internal gertiee intermediate ances-
tors, edges the evolutionary relationships between péai@xa, and edge weights
the evolutionary distancegi.e., measures of the dissimilarity) between pairs of
taxa [6]. Molecular phylogenetics provides several cidtéor selecting one phy-
logeny from among plausible alternatives [3]. One of the ioportant criteria

is the Minimum Evolution (ME) criterion [8, 11, 12]: it stedte¢hat, given a sef

of n taxa and the correspondimgx n symmetric matrixD = {d,;} of evolution-
ary distances, the optimal phylogeny foiis the one whose sum of edge weights,
estimated fronD, is minimal. The biological justification at the core of theEM
criterion is based on the fact that, in absence of convexeamtverse evolution [2],
the true phylogeny of has an expected sum of edge weights smaller than any other
possible phylogeny compatible wiiD.

Phylogenies satisfying the ME criterion are determinedddyisg aMinimum Evo-
lution Problem(MEP), generallyNP-Hard [3], which can be stated as follows.
Consider an connected, unweighted, undiregtbglogenetic grapt: = (V, &),
whereV =V, U V; is the set of verticed/, is the set of: leavesrepresenting the
n taxa in[', andV; the set of(n — 2) internal verticesrepresenting the common
ancestors. By analogy, = £.U¢E; is the set of (n—1)(n—2) edges¢. is the set of
external edges.e., the set of edges with one extreme being a leaf &aiglthe set
of internal edgesi.e., the set of edges with both extremes being internailces. A
phylogeny!l” of the sefl” is any spanning tre€ of G such that each internal vertex
has degree three, and each leaf has degree one. iotas the set of edges of a
phylogenyT’, T as the set of all the possiblen — 5)!! phylogenies of* (wheren!!

is the double factorial of) [6], and assume that a weight functign £(7") — R

* Corresponding author.
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is given. Denotav as the(2n — 3)-vector of edge weights associateditpand let
L(T,w) be thelengthof 7', i.e., the sum of the associated edge weights. Then, the
minimum evolution problem consists in:

min L(T,w) S.Lf(D,T,w) =0,T € T, w € R (1)
where f(D, T, w) is a function correlating the distance matiix with the phy-
logenyT" and edge weights. Defining the functiornf (D, T', w) means specifying
an edge weight estimation model, i.e., a model to compute &agghts starting
from the knowledge oD and7" [3]. Thus, a version of MEP is completely charac-
terized by specifying the functions(7, w) and f (D, T, w).

Several versions of MEP are known in the literature (seedBBfrecent survey),
each one characterized by its own set of assumptions on tieéida (D, T, w).
The most recent version is the Balanced Minimum Evolution (Bd®blem [4, 5]
which is based on Pauplin’s edge weight estimation moddl [R8uplin proved
that under this edge weight estimation model the length diydogeny7 can be
computed as:

L(T) =) > 27T4d,; (2

i=1j=1

wherer;; is the number of edges belonging to the path betweenitara j in 7.
Hence, solving MEP under Pauplin’s edge weight estimatiodeh(i.e., solving
BME) means to minimize the function (2) with respect to all gossible phyloge-
nies? in GG. To the best of our knowledge, to date the only attempt airsgBME
is represented by heuristic approaches [5]. In the remguioirithe paper, we show
an exact approach to tackle instances of BME exploiting te isomorphism [1]
and the combinatorial properties of the function (2) [7,3, 1

Several authours [7, 9, 13] studied the combinatorial pitogeeof the function (2)
and evidenced the relationship between BME and the Trav8ladgsman Problem
(TSP). Specifically, define@r (T, £, w) as a complete, undirected, weighted graph
whose vertices are taxa Inand whose weights),;; = d,;, for all i, j € I', the au-
thors proved that the length of the optimal solution of BME dggi@ to half-time
the length of the shortest hamiltonian circuitdfy. In other words, the shortest
hamiltonian circuit inGr identifies the way in which the taxa are ordered in the
optimal phylogeny [7, 9]. Note that, for any fixed hamiltomigrcuit H in G there
exist 22 possible phylogenies having the taxa order identifiedihyHence, a
possible way to solve exactly an instance of BME would corisigghumerating

all those2"—2 possible phylogenies whose taxa order is identified by tloetest
hamiltonian circuit inGr. Note that, once the instance of TSP is solved, this ap-
proach has the benefit of reducing the space of solutions of Bbi& (2n — 5)!!

to 2"~2. However, since the length of isomorphic phylogenies argvatent, the
restriction of such enumeration only to non-isomorphiclpggnies would drasti-
cally decrease (see [6]) the dimension of the solution spd&ME and improve
the overall running time of the algorithm. This is the fundantal idea of our enu-
merative algorithm whose pseudocode is reported in Figure 1
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procedure BVMESol ver (I': set of taxaD: distance matrix)
C «SolveTSPI',D);
T* =NULL; min,y = oo;
for Any possible non-isomorphic phylogefiydo
for any pair of unassigned leaveand; in 7" do Computer;;;
Tc <AssignLeaves(, 1)
if MMyl > L(Tc) then MMyl = L(Tc); T =1T¢
for Any clockwise shiftR of C onT do
Tr <—AssignLeaves(R,)
if ming,g > L(TR) then min,, = L(TR); T =Tk
end for
end for
return T andming
end-procedure

Fig. 1. BMESolver pseudo-code.

Given an instancé of BME, denotel™, respectivelymin,,;, as the optimal phy-
logeny of I, respectively the optimal length @f*. Our algorithm starts solving
TSP onGr; the solutionC' so obtained identifies the taxa orderiin. The algo-
rithm proceeds by enumerating all the possible non-isotorphylogenies fol-
lowing the algorithm described in [1]: for each non-isomugpphylogenyT’, the
algorithm assigns to each leaf a taxa as shown in Figure 2a;ittcomputes the
value (2) and the eventual minimum is stored. Since the T8Ri@o only identi-
fies the taxa order ifi**, the next(n — 1) algorithm steps consist in a clockwise
rotation of taxa assignment to leaves (see Figure 2b) anddhmgputation of the
corresponding new value (2). When all the possible non-isphio phylogenies
have been enumerated, the algorithm ends returning thealgdhylogeny found.

Preliminary computational results show the effectiverségsir algorithm for solv-
ing small and medium size instances.
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The problem Consider a connected undirected graéphk- (V, E') with |[N| = n
vertices and £| = m edges, a linear cost function: £ — N defined on the
edges and a quadratic cost functipn £ x £ — N defined on the pairs of edges.
The Quadratic Minimum Spanning Tree Probld@MSTB requires to determine
a spanning treé& = (V, X') minimizing the sum of all linear costs for the edges in
X plus all quadratic costs for the pairs of edgesXinWithout loss of generality,
we assume;; = ¢;; andg;; = 0 forall 4, j € V.

Let z; = 1 if edgei belongs to the solution;; = 0 otherwise, andv (S) denote
the set of edges with both endsS$nC V. A formulation for theQMSTPis:

min z = Z C;ri + Z Z qij T (1)
ek i€E jeR
Z ri=n—1 (2)
i€eE
o <|S|-1 SCV:|S[>2 )
1€E(S)
z;€{0,1} i€eE (4)

The QMSTPhas applications in network design, when interferencesdostween
links have to be considered. Despite its neat structurasitieen seldom considered
in the literature: two greedy algorithms have been propasdgd] and compared
to a genetic algorithm in [5]. Two other genetic algorithnasé been proposed to
solve a fuzzy variation of the problem [1, 2].

The QMSTPis N'P-hard in the strong sense and not approximable (urfRess
NP), evenifc; = 0 foralli € E andg;; € {0,1} forall (i,j) € E x E. The
number of solutions, given by Kirchoff’'s theorem [3], shigrpicreases withn,

unless the graph is very sparse. Ihis 2 for complete graphs.
* Corresponding author.
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The heuristic algorithms  We have implemented three constructive greedy algo-
rithms and a Tabu Search. The constructive heuristics appate the quadratic
objective function with a linear one, thus reducing @&ISTPto an auxiliaryMin-
imum Spanning Tree ProblefSTB:

min z = Z ¢;x; subject to (2 —4), with & ~¢; + Z ¢z, Vi € E
i€E JEE

The Minimum Contribution MethodMCM) estimates’; as the linear cost; plus
the (n — 2) minimum quadratic costs betweérand the other edges (notice that
> ier 0ij*; includes exactlyn — 2) non-zero terms in all feasible solutions). The
rationale is that, if is selected, these edges are more likely to enter the solutio

The Average Contribution Metho@ACM) estimates’; as the linear cost; plus
(n — 2) times the average quadratic cost betweand the other edges:

ZjEE qij
m—1

G=c+(n—-2)

()

The Sequential Fixing Metho(lSFM) updates step by step estimate (5). kétbe
the current subset of chosen edges &nd E \ X’ the current subset of unchosen
edges which can be feasibly added ', i.e. such thafe} U X" is acyclic. Then,

¢; is the linear cost; plus the quadratic costs betweeand the edges iX’, plus
the number of edges to complete a spanning tree times thagevguadratic cost
between and the edges if'.

ZjeF djk

JEX

(6)

At the first stepX’ = (), F = E'\ {i} and (6) reduces to (5). Th&CM and the
SFMhave been proposed in [4], with slightly different (and lesssistent with the
underlying rationale) expressions fgr

The Tabu Search algorithm is based on a natural neighbodriegach move adds

a new edge and removes one of thile< n — 1 edges from the resulting loop.
Suitable data structures allow to scan, for each of(the- n + 1) edges to be
added, only the’ edges which can be feasibly removed. Each move is evaluated i
O (1) by maintaining in memory coefficiedd; = c; + X ;cy ¢;; foralli € E. In
fact, when exchanging edgés X andi' € E \ X, the objective function varies
by 6, = Dy — D; — 2¢,». Since the update of coefficients; after performing
the chosen move take3 (m) time, the overall complexity of a neighbourhood
exploration isO (mn).

The tabu mechanism forbids recently removed edges to gethet solution and
recently added edges to get out of it. Of course, a tabu mopeowing the best
known result is performed anywaggpiration criterior). Notice that (apart from
very sparse graphs) the number of edges out of the soluticeeels the number
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of edges inside it. To guarantee a comparable strength twth&abus, the length
of the prohibition {abu tenurg for the insertion is larger than that for the removal.
Moreover, the tabu tenures vary (inside suitable rangex)rding to the results
of the search: they increase for each improvement in thectogefunction and
decrease for each worsening.

The exact algorithm We have also implemented a branch-and-bound algorithm
based on the relaxation of the quadratic objective fundbaalinear approximated
one. The relaxed subproblem is, thu$/8TP. For each edgg the linear estimate

¢; includes the linear cost, the quadratic costs with the already fixed edges and a
suitable number of cheapest quadratic costs with the unérges. This approxi-
mation differs from equation (6) for two features: 1) in tleesnd term, the subset
of already fixed edges replaces the subset of already chos=) ) in the third
term, the cheapest quadratic costs replace the averag@sasttheMCM).

The solution of the relaxed subproblem is a spanning treghybvaluated by the
original objective function, provides an upper bound ateaade. An initial upper
bound is also given by theFMfollowed by Tabu Search.

Branching is performed by fixing an edge in or out of the sotutibhe branch-
ing edge is the cheapest unfixed one which belongs to the@olot the relaxed
MSTR The visit strategy combinedxst-upper-bound-firsgtrategy (visit the open
branching node with the best upper bound) to the more imsttlower-bound-first
strategy (visit the open branching node with the best loveemid): the algorithm
starts with the former, switching to the latter when the ugpeund does not im-
prove for a predefined number of branching nodes. The reasbiat in the upper
levels of the branching tree the lower bound is often bad,redmeethe heuristic
solution gives stronger information on the problem.

The computational results We have generated a benchmark66frandom in-
stances with different features, one instance for each owtibn of the following
features: size (fromo0 to 30 vertices by steps df), density 83%, 67% or 100%),
linear costs (uniformly generated random integerjn0] or [1; 100]), quadratic
costs (uniformly generated random integersliri0] or [1; 100]). The experimen-
tal campaign has been performed oa.2 GHz PC with3 GB of RAM and all
algorithms have been implemented in C language.

All greedy constructive heuristics run in less than one sdc®heSFM obviously
outperforms the other ones, providing better or equal tesub7 cases out o060,
but only in4 cases this is also the best known result overall.

The Tabu Search runs f@00 000 iterations with a tabu tenure varying 8 8] for

the edge removal and; 12| for the edge insertion. It is robust enough to make the
initialization heuristic nearly always irrelevant (of ase, the number of iterations
required to find the best known result strongly depends o it¢ computational
time ranges from less than one second<10) to less than one minute. (= 30).

The branch-and-bound solves in less than one minute alinnes with, = 10 and
all sparse instance83% density) withn = 15, plus a single instance with = 15
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and67% density. The other instances could not be solved in one leatibiting
remarkable final gaps. In fact, the hardness of the problearpshincreases with
the number of edges. The same few optimal results and sigolaclusions have
been obtained by applying CPLEX to the standard linearinadidormulation (1-
4).
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Appendix

Theorem 1 The QMSTPis AV'P-hard in the strong sense and not approximable
(unlessP = N'P), even ifc; = 0 for all i € E andg;; € {0,1} forall (,5) €
ExFE.

Proof Given an instance oBAT, build the following instance oQMSTP graph
G = (V. E) has a vertey; for each clause and a vertex for each Boolean vari-
able; an edge is given for each pair of verti¢gs x;) such that literalz; or z;
appears in clauseand for each pair of verticgs;;, z;,1). The linear cost function
is identically zero, whileg..r = 1if e = (y;,2;), ¢ = (y;,7;) and variabler;
appears affirmed in claugeand negated in claudeor viceversay.., = 0 for all
other edges.

This instance 0QMSTPhas a solution of zero cost if and only if there is a spanning
tree such that all pairs of its edges have zero quadratic thetedgesy;, z;) can

be interpreted as the use of variableto satisfy clausé. Therefore, the zero cost
trees exactly correspond to the consistent assignmeigf/sag all clauses.

As the cost of any other feasible solution>s1, any polynomial algorithm with
a constant approximation guarantee would necessarily fiadbptimal solution.
Hence,QMSTPdoes not belong tolP X
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1. Introduction and main results

In [4] it was shown how one can combine integer charactearzatfor cycle and
path polytopes and Grotschel's cardinality forcing indijigs [3] to give facet
defining integer representations for the cardinality ret&td versions of these poly-
topes. Motivated by this work, we apply the same approacthemtatroid poly-
tope. It is well known that the so-called rank inequalitiegdther with the nonneg-
ativity constraints provide a complete linear descriptadrthe matroid polytope
(see Edmonds [2]). By essentially adding the cardinalitgifay inequalities, we
obtain a complete linear description of the cardinality steained matroid poly-
tope which is the convex hull of the incidence vectors of ¢hmslependent sets
that have a feasible cardinality. Moreover, we show how épagation problem for
the cardinality forcing inequalities can be reduced to fbathe rank inequalities.
We give also necessary and sufficient conditions for a calitirforcing inequality
to be facet defining.

Given a matroidV/ = (F,Z) with rank functionr and a weightingo. € R on the
elements, the maximum weight independent set proltesw (/) := > .c; we, I €
7 can be solved to optimality with the greedy algorithm. Mo the matroid
polytope Pr(E), that is, the convex hull of the incidence vectors of indejse
sets/ € 7, is determined by the so-called rank inequalities and theagativity
constraints (see Edmonds [2]), i.€5(E) is the set of all points € R” satisfying

Sz, <r(F)forall) £#F CE,

ecl
Te > 0 foralle € F.

Here, for any/ C E we setx(l) := Y ..;z.. The rank inequality associated
with F'is facet defining forPz(F) if and only if F' is closed and inseparable (see
Edmonds [2]).

* Corresponding author.
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Letc = (cyq,...,c,) be afinite sequence of integers WithS ¢; < ¢o < + -+ < ¢y
Then, thecardinality constrained independent set polytdp@ ) is defined to be
the convex hull of the incidence vectors of the independetst/sc 7 with |I| = ¢,
for somep € {1,...,m}. The associated optimization problemx w(I),I € Z,

|I| = ¢, for somep € {1,...,m} can be solved in polynomial time (for instance
with Lawler’s weighted matroid intersection algorithm fgplied toM; := M, =
M, see the item “Open Questions” on page 3).

Grotschel [3] gave a polyhedral analysis of the underlyiagid problem of car-
dinality restrictions that enables us to provide a completear description of
P$(E). Given a finite sefB and a cardinality sequenece= (ci,...,cy,), the set
CHS(B) := {F C B : |F| = ¢, for somep} is called acardinality homogenous
set systemConsequently, wher/ = (E,Z) is the trivial matroid, i.e., alFF C £
are independent sets, thEmCHS (F) = CHS'(F). Thus, cardinality constrained
matroids are a generalization of cardinality homogenotisystems.

The polytope associated with CH®), namely the convex hull of the incidence
vectors of elements of CHEB), is completely described by thievial inequalities

0 <z, <1,e € B, thecardinality bounds:;; < .. 2. < ¢, and thecardinality
forcing inequalities

(cpi1 = [F]) X ze — (|F|—¢p) X ze < cplcpsr — [F])
eck e€EB\F (1)

forall F C B with ¢, < |F| < ¢, forsomep € {1,...,m — 1}.

Result 1.In the full paper we will show by case-by-case enumeratia tie sys-
tem

(cprr = r(E))2(F) = (r(F) = ¢p)x(E\ F) < ¢p(cpa —7(F))

)

forall F C E with ¢, < r(F) < ¢,4, for somep € {0,...,m — 1},
(E) = a, 3
2(E) < cm, (4)
x(F)< r(F) forall) # F C E, (5)
Te >0 foralle e £ (6)

completely describeBy(E).

Of course, eachr € P¢(F) satisfiesc; < z(FE) < ¢,. The cardinality forcing
inequality CF(z) = (¢ —1(F))z(F)—(r(F)—¢,)1(E\F) < ¢y(cpri—r(F))
associated witli’, wherec,, < r(F') < ¢,11, is valid as can be seen as follows. The
incidence vector of any € 7 of cardinality at most,, satisfies the inequality, since
r(INF)<c:
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(1 = r(F)X'(F) = (r(F) = ¢,)X (E\ F)

The incidence vector of any € 7 of cardinality at least,,,, satisfies also the
inequality, since(I N F) < r(F)andthus (I N(E\ F)) > cpp1 — r(F):

(cpsr = T (F)X'(F) = (r(F) — )X (E\ F)
(F) = (r(F) = )X (E\ F)
r(F) = (r(F) = ¢)(cppa — r(F))
).

I VARRPVAN
—~
"@Q
+
=
<
—~

However, it is not hard to see that some incidence vectoraddpgendent sets
with ¢, < |I| < ¢,41 Violate the inequality.

Result 2. In the most cases, namelydf > 0 andc¢,.; < r(E), a cardinality
forcing CFr(z) < ¢,(cp41 — 7(F)) is facet defining if and only iff" is closed.
Here we only show necessity. Assume tlkats not closed. Then, there is some
e € B\ Fsuchthat(F U {e}) = r(F). Consequently;, < r(F U {e}) < cpt1,
and Ch.(z) < ¢y(cpe1 — r(F)) is the sum of the valid inequalities Gy (z) <
cp(cppr —r(F U {e})) and—z, < 0. In the full paper we also give necessary and
sufficient conditions for the remaining cases+ 0 or ¢, = r(E)).

Result 3.The separation problem for the cardinality forcing inediesd (2) can be
solved in polynomial time by tracing back to the separatiosbfem of the rank
inequalities. To get an idea of the transformation,afete R” be any nonnega-
tive vector. The separation problem for the class of cafiynfrcing inequalities

consists of checking whether or not

(cpr1 = r(F)z*(F) = (r(F) = ¢)z"(E\ F) < ¢plcppn = 7(F))
forall F C E with ¢, < r(F) < ¢, forsomep € {0,...,m — 1}.

When one assumes that satisfies all rank inequalities (5), then one can show
thatz* violates the cardinality forcing inequality associatedhwi” if and only if
sx*(F")—r(F') > for appropriate), ¢ > 0. The latter problem can be approached
with Cunningham'’s separation routine for the rank ineqigsif1].

Open questionslt stands to reason to investigate the intersection of twivords
with regard to cardinality restrictions. It is well-knowihian independence system
7 defined on some ground s@tcan be described as the intersection of two matroids
M, = (E,Z;) and M, = (E,Z,), then the optimization problemax w(I), [ € Z

can be solved in polynomial time, for instance with Lawlevsighted matroid in-
tersection algorithm [5]. This algorithm solves also thedazality constrained ver-
sionmaxw(/l), I € ZNCHS'(F), since for each cardinality < r(E) it generates

an independent sétof cardinalityp which is optimal among all independent sgts

of cardinalityp. Thus, from an algorithmic point of view the problem is welid-

ied. However, there is an open question regarding the agsdgdolytope. It is well

60



known, Pr(E) = Pr,(F) N P (FE), that is, the non-cardinality constrained inde-
pendent set polytopE;(E) is determined by the nonnegativity constraints> 0,

e € E, and the rank inequalities(F') < r;(F), ) # F C E, j = 1,2, wherer;

is the rank function with respect ;. We do not know, however, whether or not
P{(E) = Pf (E) N Pf(E) holds. So far, we have not found any counterexample
contradicting the hypothesis that equality holds.
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Introduction. It is necessary in many applications to compare objectesemted
as graphs and to determine the degree of the similarity leetweem. This is often
accomplished by formulating the problem as the one invgltite maximum com-
mon subgraph between the graphs being considered. We eomgck theMaxi-
mum Common Edge Subgraph Problem (MCESXYefined as follows. Given two
graphsG and H with |V;| = |Vy|, find a common subgraph @f and H (not
necessary induced) with the maximum numbeedfes Graphs are assumed to
be simple, finite and undirected. As usual, we denot&byresp.E;) the set of
vertices (resp. edges) of a given gragh

The MC'E'S problem was introduced by Bokhari in [1]. Since thEC'E'S prob-
lem comes from parallel programming environmeirdtsis usually referred to as
thetask interaction graphand H as theprocessors graphVertices inGG represent
tasks (its edges join pairs of tasks with communication detapand vertices i
are processors, a pair of processors being joined by an eldge they are directly
connected. The problem consists in assigning, i.e. mapp#sch task to one pro-
cessor in such a way that the number of neighboring taskgreessito connected
processors is maximized.

The MCES problem is also of particular interest since it generalithess graph
isomorphism problem. Furthermore, the maximum common rsydbg problems
has become increasingly important in matchtdgand3 D chemical structures [5].
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Note that if|V;| # |Vi/|, a suitable number of dummy vertices have to be inserted
into the smaller graph in order to obtain an instanc®Idéf£S. If |Vi| and|Vy]|

are not required to be equal, we obtain a problem which#sX-hard, while the
MCES problem is only known to b& P-hard [3]. There have been many attempts
to devise useful algorithms faC' E'S. Some of them approximate the solution of
the MCES problem, while others give the exact solution for a spexgaliset of
graphs or graphs of moderate size. But most of the approashé€'t' S propose
heuristic procedures intended for particular architexgyt, 2].

Our contribution. We present a new integer programming formulation for the
MCES problem and carry out a polyhedral investigation of this sloéd num-
ber of valid inequalities are identified, most of which arediadefining. Those
inequalities were incorporated to a branch&cut algoritiomthe MC' E'S problem.
We report on our computational experiments, which show twribution of the
inequalities we found here.

A new integer programming formulation. The only polyhedral study of thddC'E'S
problem so far was done by Marenco in [3, 4]. The integer @ogning formula-
tion presented by this author has variablgs for i € Vg, k € Vy, which arel

in a feasible solution if is mapped td:, and0 otherwise. Furthermore, his model
also has variables,;, for ij € E¢, which arel if exists kil € Ey such that is
mapped td: and; to [, and0 otherwise. The main idea of our new model is to cre-
ate variables that represent the assignment of edgéstofthe edges off. More
formally, apart from variables,;, we also include variables;;;, for all ij € E¢
andkl € Ey which arel if ij is mapped td:/, and0 otherwise. We present now
our monotonous integer programming model for €' 'S problem.

max Z Z Cijkl (1)

ijeEc kl€Ey
> yn <1VieV >y <1L,Vk e Vy (2)
keVy ieVe
> i <Y vk, Vij € Eg > cijm <Y yir, Ykl € B (3)
kle By kEVy ijeEG ieVg
Z Cijkl < Yir +yi1, Vi € Vg, Vkl € Ey 4)
JEN(3)
Z Cijkl < Yik + Yjk, Vij € Eg,Vk € Vg
IEN (k)
Cijkl € {0,1},Vij € Eq,Vkl € Eg yir € {0,1},Vi € Vg,VE € Vir ~ (5)

Inequalities in (2) force that every vertex Gfis mapped to at most one vertex of
H; and that for every vertex aoff, there is at most one vertex 6f mapped to it.
Similar inequalities for edges are in (3). First inequality4) forces that for a fixed
vertex: from GG and a fixed edgé/ from H, if some edge incident tbis mapped
to kI, then: is mapped either té& or to [. Second inequality in (4) is analogous.
Note that we work with the monotonous model since the probfaaet-defining
inequalities are substantially easier than in the modargin [3]. This is because
the monotone polytope associated to the above formulatiarbe easily shown to
be full-dimensional.
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We present now some valid inequalities and facets that weddor the polytope
P given by the convex hull of the integer solutions of the ietegrogramming
model (1)—(5). Using standard techniques from Polyhedratlioatorics, we were
able to show that inequalities (3) and (4) from our model defactets. The next
theorem shows that a class of valid inequalities for the rhgi¥en in [3], which
involves vertex degrees, is part of a broader family of fatedtning inequalities
in our model. To state this result we denote/®y:) the set of all neighbours of a
given vertexi.

Theorem 1 Let: be a fixed vertex fro, k a fixed vertex fronH, I C N(i) and
K C N(k). Then, following inequalities are valid and define facets.

SN ciji < min{ |1 K yie + Y vip = lyie + Y vip, i |I] < |K[.  (6)

jel leK peK pek
DO i < minf{| 1), K Yyin + > vk < [Klyir + D ks i [T > K] (7)
jel leK pel pel

It is worth noting that we obtained a facet that generalibes¢sult of Theorem 1.
For given edges; in G, andkl in H, it bounds the number of edgesdahincident
to i that can be mapped to edges incidenttan H.

In the next theorem we introduce a facet-defining inequalitere the benefit of
having an extended formulation including the variablgs becomes apparent.
More precisely, we are able to express the following verypsgnmnequality which
can not be written in the model given in [3].

Theorem 2 LetG’ be an induced subgraph 6fand M/ a maximal matching i/ .

If V| = 2p+1 andG” has an hamiltonian cycle, then inequalty;cx_, > rien Cijkt <
pisvalid. If[M| > p + 1, then it defines a facet.

Using the following theorem that explores the structurénefdgraphs given as input
instances, we obtained better upper bounds for some irestanc

Theorem 3 Let S be a fixed graph. Let furthermore, (resp.ky) be the maxi-
mum number of edge disjoint subgraphsir(resp. in ) such that each of those
subgraphs is isomorphic t8. If k¢ > kg, then inequality)-..p. > cry, Cow <
|EG‘ — (k?G — kH) if |Eg| < |EH|, is valid.

Finally, we note that by lifting technique, we obtained a f@vonger valid inequal-
ities than presented in [3]. We omit them here due to spadealiion.

Computational results. The polyhedral investigation described earlier was the
starting point of our branch and bounB&B), as well as branch and cuB&C)
algorithms. We used the sarfig instances used by Marenci, of which are very
small, with less thari0 vertices each. Other9 instances have0 vertices each,

9 instances have at lea%i vertices. The largest instance tasvertices. All the
graphs are quite sparse and present a high degree of symmigtrynost of them
being regular graphs.

We usedxPRESsas the Integer Programming solver and the MOSEL language
to code our programs. A fast polynomial time algorithm wasigieed to sepa-
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rate inequalities (6) and (7). Besides, a routine was impieetkethat separates the
inequality in Theorem 2, but only fgp = 1 andp = 2. We also addea pri-
ori in the model all the inequalities from Theorem 3 for wh#is a k-cycle and

k € {3,4,5}. Finally, another feature of our algorihtm was the impletagaon of

a simple, though efficient, heuristic based on the solutadrike linear relaxations
computed during the the enumeration.

Our B&C algorithm outperformed the standaBk B algorithm. Using ouBB&C
algorithm, we managed to solge instances, compared to the 31 solved by Marenco.
Among the unsolved instancel) have duality gap of at mod0%, 11 have gap
betweeni0 and20%, and2 have gap greater th&d%. Our algorithm is quite fast.
Only few instances required more thah minutes to be solved and the execution
time never exceede! minutes.

Conclusions.We showed that with our extended formulation which include-v
ables that interlaces edges@fwith edges of/f, we gain on expressiveness with
respect to the model given in [3]. We carried out a polyheniradstigation of this
new model and presented some valid inequalities and fadeitsstudy led to some
advance in obtaining the exact solutions to €' E .S problem using Integer Pro-
gramming and3&C algorithm.
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1. Introduction

The mathematical programming formulation language is ¢ pewerful tool used

to formalize optimization problems by means of parameteesjsion variables,
objective functions and constraints. Such diverse sett@sgcombinatorial, integer,
continuous, linear and nonlinear optimization problems ba defined precisely
by their corresponding mathematical programming formaouest Its power is not

limited to its expressiveness, but usually allows hassde-Eolution of the prob-
lem: most general-purpose solution algorithms solve aptition problems cast in
their mathematical programming formulation, and the gposding implementa-
tions can usually be hooked into language environmentshwaliow the user to

input and solve complex optimization problems easily. Wl known that several
different formulations may share the same numerical ptagse(feasible region,
optima) though some of them are easier to solve than othersrespect to the
most efficient available algorithms. Being able to cast tledj@m in the best pos-
sible formulation is therefore a crucial aspect of any sotuprocess.

When a problem with a given formulatioR is cast into a different formulation
@, we say that) is a reformulation ofP. Curiously, the term “reformulation”
appears in conjunction with “mathematical programmingéo£00,000 times on
Google; yet there are surprisingly few attempts to forme#yine what a reformu-
lation in mathematical programming actually is [1, 7]. Femmore, there is a re-
markable lack of literature reviews on the topic of reforatidns in mathematical
programming [3]; and even more importantly, very few santmethods consider
reformulation-based algorithmic steps (usually, the nraidation is taken to be a
pre-processing step) [6]. Although some automatic relaratoftware exists [2],
there is no equivalent for general reformulations.

In this paper we propose a data structure for storing andpuéation mathematical
programming formulations, and several definitions of ddfe types of reformula-
tions, all based on transformations carried out on the mepaata structure. A

* Corresponding author.
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(non-exhaustive) list of known reformulations based ors¢hdefinitions can be
found in [4].

2. A data structure for mathematical programs

We refer to a mathematical programming problem in the masége form:
min{f(z) | g(x) S bAz € X}, (1)

where f, g are function sequences of various siZess, an appropriately-sized real
vector, andX is a cartesian product of continuous and discrete interVeésletP

be the set of all mathematical programming formulations lshde the set of all
matrices.

Definition 1 Given an alphabetl consisting of countably many alphanumeric
namesN, and operator symbolé),, a mathematical programming formulation
Pisa7-tuple(P,V,E,0,C,B,T), where:

e P C N, is the sequence of parameter symbols: each elemerP is a param-
eter name;

e )V C N is the sequence of variable symbols: each elementy is a variable
name;

e £ is the set of expressions: each element £ is a Directed Acyclic Graph
(DAG) e = (Ve, A¢) such that:

(@) V. C Lis afinite set

(b) there is a unique vertex. € V, such thaty—(r.) = 0 (such a vertex is called
the root vertex)

(c) verticesv € V, such thaté™(v) = () are called leaf vertices and their set is
denoted by\(e); all leaf verticesv are such that ¢ PUVURUPUM

(d) forall v € V, such thatv*(v) # 0, v € O,

(e) two weightings(, ¢ : V. — R are defined ori/,: x(v) is the node coefficient
and¢(v) is the node exponent of the noddor any vertexo € V., we letr(v)
be the symbolic term of namely,v = x(v)7(v)¢™.

Elements of are sometimes called expression trees; nadesO represent an
operation on the nodes i (v), denoted by (4" (v)), with output inR;

e O C{-1,1} x & is the sequence of objective functions; each objectiveifumc
o € O has the form(d,, f,) whered, € {—1,1} is the optimization direction
(—1 stands for minimizatiory-1 for maximization) and, € &;

e C C & xS xR (whereS = {-1,0,1}) is the sequence of constraint®f the

ec <be if s =—1
form (e, s, b.) Withe. € £€,s. € S;b. ER: ¢ = e. = b if sc=0
ec > be if sc = 1;

e B C RV x RM is the sequence of variable bounds: for al V let B(v) =
[L,,U,] with L,,, U, € R;

e 7 C {0,1,2}V is the sequence of variable types: for allc V, v is called a
continuous variable i7 (v) = 0, an integer variable if7 (v) = 1 and a binary
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variable if 7 (v) = 2.

We write 7 (z) and respectively3(z) to mean the sequences of types and respec-
tively bound intervals of the sequence of variables in V. We sometimes refer to
a formulation by calling it aroptimization problenor simply aproblem Consider

a functionz : V — RIVI (called point) which assigns values to the variables. A
point z is type feasibldf: z(v) € Rwhen7 (v) = 0, z(v) € Z when7 (v) = 1,
z(v) € {L,,U,} whenT7 (v) = 2, for allv € V; z is bound feasibléf z(v) € B(v)

for all v € V; z is constraint feasiblef for all ¢ € C we have:e.(x) < b, if

se = —1, e.(x) = b, if s, =0, ande.(x) > b, if s, = 1. A pointz is feasible inP

if it is type, bound and constraint feasible. Denote/BP) the feasible points of
P. Afeasible pointr is alocal optimumof P with respect to the objectivee O if
there is a non-empty neighbourhoddof = such that for all feasible points# =

in N we haved, f,(z) > d,f,(y). A feasible point: is aglobal optimunof P with
respect to the objective € O if d,f,(x) > d,f,(y) for all feasible points; # =.
Denote the set of local optima &f by £(P) and the set of global optima @f by
G(P).If O(P) =0, we definel(P) = G(P) = F(P).

3. Reformulations

The generic term we employ for a problethrelated to a given problen®? by
some form of transformation carried out on the formulatiénfoas defined in
Defn. 1 isauxiliary problem Among the several possible auxiliary problem types,
four are specially interesting and used quite commonlysi@mations preserving
all optimality properties (opt-reformulations); trangfaations preserving at least
one global optimum (narrowings); transformations basedropping constraints,
variable bounds or types (relaxations); transformatitvas &re one of the above
types “in the limit” (approximations).

Opt-reformulations are auxiliary problems that preserveoptimality informa-
tion. We define them by considering local and global optimdodal reformula-
tion transforms all optima of the original problem into opé of the reformulated
problem, although more than one reformulated optimum mayespond to the
same original optimum. A global reformulation transformigobal optima of the
original problem into global optima of the reformulated Ipleam, although more
than one reformulated global optimum may correspond todheesoriginal global
optimum.

Definition 2 @ is a local reformulation ofP if there is a functionp : F(Q) —
F(P) such that (a)p(y) € L(P) for all y € L(Q), (b) ¢ restricted toL(Q) is
surjective. This relation is denoted By <, (). ) is a global reformulation of if
there is a functiorp : F(Q) — F(P) such that (a)o(y) € G(P) forall y € G(Q),
(b) ¢ restricted toG ((Q) is surjective. This relation is denoted By<1,, ). We write
P < Q (resp.P < Q) if there is ap such thatP <, @ (resp.P <, @)). Q is an
opt-reformulation ofP (denoted by < Q) if P < Q and P < Q.

Opt-reformulations can be chained (i.e. applied in segejetwobtain other opt-

reformulations.
Lemma 1 The relations<, <1, < are reflexive and transitive.
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Narrowings are auxiliary problems that preserve at leastgbobal optimum. They
come in specially useful in presence of problems exhibitiragy symmetries: it
may then be the huge amount of global optima that is prewgraisearch from
being successful. An example of narrowing is given by thalloats obtained from
the symmetry group of the problem [5]. All opt-reformulatsare a special case of
narrowings; narrowings can be chained to obtain more commaeowings. Chain-
ing an opt-reformulation and a narrowing results in a namgw

Definition 3 @ is a narrowing ofP if there is a functiony : F(Q) — F(P) such
that (a)p(y) € G(P) forall y € G(Q).

Loosely speaking, a relaxation of a problétis an auxiliary problem of” with
fewer constraints. Relaxations are useful because they widéd problems which
are simpler to solve yet they provide a bound on the objeftimetion value at the
optimum. The “fundamental theorem” of relaxations states telaxations provide
bounds to the objective function. Opt-reformulations aadgrowings are special
types of relaxations. Relaxations can be chained to obther oelaxations; chain-
ing of relaxations with opt-reformulations and narrowirrgsults in other relax-
ations.

Definition 4 @ is a relaxation ofP if 7(P) C F(Q).

Approximations are auxiliary problems dependent on a nigalgparameter, which
approximate as closely as desired other auxiliary probkemsome limiting value
of the parameter. Since approximations can be defined fdydls of auxiliary
problems, we can have approximations to opt-reformulatio@rrowings, relax-
ations and approximations themselves. In general, appations have no guaran-
tee of optimality, i.e. solving an approximation may giveuks that are arbitrarily
far from the optimum. In practice, however, approximatiorenage to provide so-
lutions of good quality. Opt-reformulations, narrowingslaelaxations are special
types of approximations. Chaining approximations and o¢hwedliary problems
yields an approximation.

Definition 5 () is an approximation of if there is a countable sequence of prob-
lems@);. (for k € N), a positive integek’ and an auxiliary problen®)* of P such
that: (a) @ = Qy; (b) for all expression treeg* € O(Q*) there is a sequence of
expression treeg, € O(Q;) that represent functions converging uniformly to the
function represented by (c) for all ¢* = (e*, s*,b*) € C(Q*) there is a sequence
of constraintse, = (ex, sk, bx) € C(Qy) such that: (i) the functions represented by
e, converge uniformly to the function representecehyy(ii) s, = s* for all k; (iii)

b, converges to.
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1. Introduction

Nowadays, Operations Research tools are widely used to iaptm@al world prob-
lems. The underlying difficulty of real world applicatiorssthat most of them are
due to uncertainty. As shown in [8] and [15] and referencesdiim, the uncertainty
should not be neglected when optimizing. There are threa agroaches to cope
with uncertainty in operations research.

The first approach is a reactive method, usually catiatine or recoveryalgo-
rithm. In such methods, the uncertainty is neglected atop#tion phase, but han-
dled thanks to the re-optimization process. Although tmasthods are efficient in
many applications, their main disadvantage is that no bdonthe final solution
is provided and that the re-optimization itself and the iempéntation of the new
solution are time-consuming, which is contrasting with déindine requirements of
immediate reactivity. See [1] for a general survey on ondilg®rithms.

The second general approach is stochastic optimizatioerenvtne solution with
lowestexpectedost is wanted. The advantage is that when the solution iimp
mented several times under identical conditions, we ar@iged with an approxi-
mation on the average cost. However, the method needs thacté@zation of an
uncertainty set and a probabilistic distribution on it. $Je[10] and [15] for more
details on stochastic optimization.

Finally, the latest researches focus mbust optimization, [3] and [4]. The ad-
vantage of this approach is to find, if it exists, a solutioattis feasible for any
realization within an uncertainty set, and an upper cosnidas provided. How-
ever, this is a conservative worst case approach, which moaupe solutions with
high costs in average to ensure feasibility on the whole aicgy set.

* Corresponding author.
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The motivations to derive the conceptwicertainty featureare that on one hand
it is difficult to explicitly characterize an uncertaintytsend, on the other hand,
completely neglecting uncertainty and use purely reacweroaches might lead
to bad solutions.

The idea is that instead of explicitly describing the uraiaty, we focus on impos-
ing desired properties, or features, on the solution tr&apaoven to lead to more
robust solutions in terms of feasibility or to amelioratergcoverability i.e. the
performance of a recovery algorithm. These features thusvie characteristics
of both proactive and reactive methods dealing with rolesgrand recoverability.
Uncertainty is considereidhplicitly through those features: no explicit uncertainty
description is required. Clearly, uncertainty featureduamth problem and recovery
algorithm dependent.

To illustrate the concepts, consider the widely studiedlfadl airline scheduling
(see [12] for a general survey). An usual technique for atgwriuo absorb delays
is to over-estimate travel times in order to have bufferdosoab possible perturba-
tions. So, a possible uncertainty feature would be to maearttie idle time between
successive flights, which allows delay absorption and thaeases the robustness
of the solution.

The stochastic model of [16] considers recourse to addhessrew scheduling
problem. Interestingly, the final conclusion is that theutiohs tend to reduce the
plane changes of crews. This gives an example of an uncgrfaiature, namely
measuring how well the routes of the planes match union caings for the crew.
Maximizing this uncertainty feature will, according to tbenclusions of [16], in-
crease the recoverability of the schedule.

[11] builds robust schedules for planes that allow crew swags in case of dis-
ruptions. A corresponding uncertainty feature is the nurmobglane crossings, i.e.
when two planes are on the ground at the same time and the &goet and other
features can be derived from ad-hoc recovery algorithni¥ ([7

We notice that, in many works dealing with robustness orvego(see e.g. [13],
[6], [14]), the solutions of the different approaches teactproperty that is sim-
ple, such as the number of plane crossings ([11], [5]), reduthe length of plane
rotations ([9]) or increasing idle time ([2]).

2. Framework for Uncertainty Features

We start, without loss of generality, from a general detarstic minimization
problem(P) given as

25 —min f(x) (1)
a(x) <b (2)
xeX (3
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Note that this problem is prone to noise in the data, but weatdormulate the
nature of this noise. We transfor(#) in a multi-objective optimization problem
by adding an uncertainty feature (that has to be maximiz€d). Objective (1)
becomes:

[2p, zp] = [min f(x), max u(x)].
Note that the feasibility of solutiow is not affected. Whem(x) is of the same
complexity thanf (x) anda(x), then the obtained problem is no more difficult than
the initial problem(P).
There are three commonly used methods to solve multi-atsgeptoblems. One is
the exploration of the Pareto frontier, the set of non domeidaolutions. Another
approach is to consider a weighted combination of the olgsctA third approach
is to optimize one of the objectives and enforce a bound orsémend with an
additional constraint.

Note that uncertainty features are a simple and intuitive tsamplicitly take into
account the uncertainty.

In this framework, it is straightforward to consider sevaracertainty features
at once. In this case, eithefx) is a combination of several uncertainty features
w1(x), -+, um(x) or we address a multi-objective problem with+ 1 objectives

f(X>7M1(X)7 e 7Mm(x>'

3. lllustrative Examples

The aim of uncertainty features is to avoid the explicit mMgeof uncertainty. We
show here that it is possible to use that framework to forteuteth a stochastic
optimization as well as a robust optimization problem.

LetU be the uncertainty set of a stochastic optimization problemthe set of pos-
sible values for the problem data, associate with a proibadiktribution. Clearly,
if we takeu(x) = —Ey{f(x)}, the expectation of the cost ovEr, then we obtain
a stochastic optimization problem. If we solve the multjeative by optimizing
only the uncertainty feature and bounding the objecfife) by +co0, we get the
usual expected cost minimization of stochastic problems.

Robust optimization can also be formulated as a particulse oduncertainty fea-
tures.

Let us consider the approach of [4] for linear robust optatian with a unique
constraint:

Zhop =minc’x 4)
> ajz+p(x,T) <b (5)
xeX (6)

where 3(x, I') is the characterization of the worst scenario in an unaesteset
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when at most’ coefficientsa; change. Note that the uncertainty $étcontains
J > T changing coefficients; € [a; — a;,a; + a;] for j € J. The objective is to
find the solution of least cost that is feasible for all polesgzenarios it/ having

at mostl’ changing parameters. This must hold for the worst scenexgaining

the formulation (4)-(6).

We now show how to derive the above formulation using unadstdeatures. The
problem we start with is the feasibility problem

xeX

J

min{Zajxj—f—ﬁ(x, J) —b} (7)

The solution of this problem gives the worst violation of tmnstraint when all

J parameters are changing. A negative solution of (7) meamsaolution is ro-
bust for all scenarios /. Hence, the main concern is feasibility with respect to
all scenarios. The uncertainty feature of a solution is giventdyost, thus we
setu(x) = —c’x (cost is to be minimized). In this case, we handle the multi-
optimization by maximizing only the uncertainty feature”x and constraining
the feasibility, imposing it not to exceédd + p) =z}, 5. Defining

BOeI=D) _ if 22 £ 0

p — Z)I;OB

0 otherwise.

whereg(x,J —T') + 8(x,I") = B(x, J).

We do not report here the details for brevity. The main rasuttat, for the linear ro-
bust problem with a single constraint, the uncertaintyussaproblem is equivalent
to the robust formulation of [4]. Note that the extensionie tase of: constraints
is also possible and remarkably, the formulation with utaiety features allows to
estimate the maximal value of, the number of varying coefficients in roiyto
ensure that a robust solution exists.

In [7] we develop a recovery algorithm for airline schedglitincertainty features
improving the algorithms efficiency are, as described irtised, plane crossings
and idle time. Moreover, we intend to derive more specifi¢uiess based directly
on the recovery algorithm’s networks structure and evdiytaansider uncertainty
features for crew scheduling and recovery.

We see that uncertainty features allow to fall back to steshd@ethods with par-
ticular choices ofi(x). Their advantage compared to standard methods is that they
allow to implicitly exploit the structure of a recovery alighm without increasing

the complexity, as long as the uncertainty features havedhee complexity than

the deterministic objective and constraint functions.
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4. Conclusion

In this paper, we introduce the concept of uncertainty f@ata implicitly cope
with uncertainty instead of modeling it explicitly with amcertainty set. We show
that the uncertainty features are a generalization of tistieg methods for opti-
mization under uncertainty, since, by choosing an unaastdeature based on an
uncertainty set and choosing an appropriate fungtiog), we retrieve the stochas-
tic or the robust formulations. The advantage on existinthows is the possibility
to consider reactive methods implicitly if the uncertaifggture increases recover-
ability.

The validation of the approach is clearly problem dependente different prob-
lems do not necessarily have similar structural properfieghermore, uncertainty
features for recoverability depend on the recovery algoritFor a specific prob-
lem, one has to measure, by simulation, the correlationdwtva structural prop-
erty and the solution cost. A good feature is identifiable Isygaificative negative
correlation, i.e. when an increase in one term leads to afisignt decrease in the
other.

An experimental comparative investigation on knapsackleras is in process, and
an application to airline scheduling is planned.
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1. Introduction

We consider a dynamic planning problem for the maintenande@pairment ser-

vices of a housing corporation. Large maintenance a@widéire typically known

well-ahead, while emergency incidents are urgent and esémn. The same pool
of mechanics is used to serve both kinds of jobs. Furthernsorae jobs will need

to be outsourced to subcontractors since the number of owhanées is not suf-

ficient to serve all jobs. In this service mechanic problemfeeis on a decision

to make today for the planning period of the next two weeksctvimaintenance

activities to assign to subcontractors and which ones toraechanics, while tak-

ing into account the unknown emergency incidents whichaviie (and need to be
served) during the planning period. The decision criteabthe service mechanic
problem is to minimize the expected costs of serving all jobs

In the service mechanic problem five aspects are important.

e Probabilistic information on the emergency incidents sduwhen making deci-
sions on the maintenance activities.

e We decide whether or not to outsource jobs to subcontractors

e Foreachincident, besides the assignment decision itaslalsided during which
time slot(s) the incident is served. Every incident haswis due time, not later
than the end of the planning period.

e Not every mechanic is able to serve every job (depending tdirtygse).

e The routing of mechanics is not considered.

* Corresponding author.
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In the literature, very little attention has been paid to $kevice mechanic prob-
lem described above. While we focus on the uncertainty wipeet to emergency
incidents, by using probabilistic information, most rel&ipapers ignore future in-
cidents when making decisions. Furthermore, we expliciélgide whether or not
to subcontract jobs, while most related papers do not evasider the possibil-
ity of outsourcing. Instead, they include routing of medban vehicles while we
exclude travel times.

For example, Johns [5] and Madsen et al. [7] discuss the @nobf scheduling re-
pair men in which future jobs are not considered when degidimthe known jobs.
Furthermore, outsourcing is not allowed, only one type ofhamic is considered,
and routing is performed. Also in the grocery delivery peshlof Campbell and
Savelsbergh [3] future jobs are ignored when deciding orsthd time and rout-
ing of deliveries. The vehicle fleet is homogeneous and athadeliveries can
be rejected, this is not a decision to be made. Rejected jabdeaegarded to
be outsourced to subcontractors afterwards. In the roatnagselection problem of
Bolduc et al. [2] and Chu [4] outsourcing of jobs is modeled assiens. However,

they study the deterministic variant of the problem with ¢yye of own vehicle

(skill type); routing of the own fleet is not considered.

2. Problem description

In the service mechanic problem we consider two kinds of jmibsnechanics:
large maintenance activities which are known well beforeythtart and urgent
emergency incidents which gradually become known duriegpianning period.
All jobs need to be served.

Each job requires a specific type of mechanic; either a haadyon an expert.

Experts are able to serve jobs requiring handymen, but trexge is not possible.
The numbers of available handymen and experts are given apdany during the

planning period of two weeks. In addition to the own mechsuffandymen and
experts) subcontractors can be used to outsource any kijath.0fVe assume that
sufficiently many subcontractors are available.

For (maintenance) activities a start and end time is giverwell as the required
type and number of mechanics. The data of (emergency) imSdmnsists of the
required type and number of mechanics, the arrival timedtleetime (time before
which the incident has to be served), and the duration. kaesibf the jobs are not
necessary since we do not take travel times into account.

The objective of the service mechanic problem is to minintiieeexpected costs of
serving all jobs. First of all, subcontracting today (beftine start of the planning
period) is less expensive than during the planning periathEérmore, since the la-
bor costs of the own mechanics have to be paid regardlessathetthe mechanics
actually work, using own mechanics is free of charge. Thésooissubcontracting
a job are proportional to the duration of the job and the neglinumber of me-
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chanics. Moreover, jobs requiring experts are more experisisubcontract than
those requiring handymen. We assume that the contractssulittontractors have
already been made so that there are no fixed costs for ouilsgurc

In addition to the non-preemptive version, we also condidepreemptive service
mechanics problem in which interruption of maintenancéviiets is allowed in
order to serve incidents.

3. Two-stage recourse model

To model the service mechanic problem we have developed stage recourse
model as known in stochastic programming [1], [6], [8]. Thrstfistage models
today when the data of the maintenance activities are cdaiplenown and prob-
abilistic information on the emergency incidents is assiiidéis is consistent with
most two-stage recourse models in which the second stagemliypconsists of a
(static) optimization problem like a mixed-integer lingaogramming problem.
However, our model is non-standard since the second staggyisamicproblem,
simulatingthe planning period of two weeks.

In the first stage all maintenance activities for the next tweeks are assigned to
mechanics. The assignment of activities to subcontra@ermanent. Thus, these
activities can not be reconsidered and therefore do notaappehe second-stage
problem. In contrast, the assignment of activities to owclma@ics is preliminary
since during the planning period it can be reconsidered.

The objective of the service mechanic problem is to find tlsggasnent with min-
imal (expected) costs. The costs of an assignment congist®@arts: the costs
of assigning maintenance activities to subcontractoraytdthe first-stage costs)
and the expected costs of (re-)assigning activities andents to subcontractors
during the planning period. In the previous section we hédready explained that
only the costs of subcontracting are considered. To find sig@sient with small
(expected) costs, we use a genetic algorithm.

In the second stage, for a given first-stage assignment aed gealization of the
emergency incidents, an event simulation is applied. i ghnhulation, two online
decisions are made. First, after the arrival of an incidestaet time has to be deter-
mined, in such a way that the due time is respected. Furthesrath preliminarily
assigned activities and emergency incidents need to bgnesksto mechanics, ei-
ther own mechanics or subcontractors, at minimal costsolgh it would proba-
bly be best to make both decisions simultaneously, due togisns on CPU time
the two decisions are made sequentially.

In this paper, we will investigate three different simubatstrategies. The strategies
differ in the way they find suitable start times for the ingitkeand whether or
not preemption of activities is allowed. In the first strategimple preemption of
maintenance activities is not allowed. The start time ofdents is set equal to the
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arrival time. We expect this strategy to be fast, but to gesuits of low quality,
compared to the other two strategies. In strat8ggrchpreemption of activities is
also not allowed. Now, the start time of incidents is set étjutne earliest possible
time when there are enough own mechanics available. If #sglts in exceeding
the due time, the start time is set equal to the arrival tinteatreast one incident
or activity is outsourced. To determine which one is asgigimea subcontractor

a greedy heuristic is applied. Preemption of maintenanteités is allowed in
simulation strategfPreemptiveRules regarding e.g. the number of times an activity
can be interrupted and the length of the interruption arerdehed. Following
these rules the start time of incidents is set as early asigppess

4. Current research

A genetic algorithm is used to solve the entire two-stageuese model. Prelimi-
nary results will be presented for all three simulationtsgees, based on randomly
generated data sets.
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1. Introduction

In this talk we consider special cases of online schedubbg hich require pro-
cessing on a number of machines simultaneously (paraldsl) jdobs are charac-
terized by their processing time and the number of machines; simultaneously
required for processing, and are presented one by one tasaaatemaker. As soon
as a job becomes known, it has to be scheduled irrevocablyité.start time has
to be set) without knowledge of successive jobs. Preempginat allowed and the
objective is to minimize the makespan. We study a number@tiapcases of this
online problem.

In contrast to an online algorithm, affline scheduling algorithm has complete
knowledge of the list of jobs to construct the optimal offleehedule. This opti-
mal offline objective value is used to measure the qualityndihe algorithms. An
online algorithm isp-competitive if for any list of jobs it produces a schedule¢hwi
makespan at mogttimes the makespan of the optimal offline schedule. An online
problem is called semi-online if there is some a priori krexige of the list of jobs,
e.g., the jobs appear in non-increasing order of machinanemgent. Because of
such knowledge smaller competitive ratios might be obthine

Using the three-field scheduling problem notation, the wared problem is de-
noted by P|online — list, m;|Cax S€€ [7]. In the literature the concept of par-
allel jobs is known by many different names, suchpasallel tasks paralleliz-
able tasks multiprocessor taskanultiple-job-on-one-processoand 1-job-on+-
processorsin some literature the machine requirement of a job is called the
width or the size of a job. And in stead of; the termsize; or simply s; is used to
denote the parallel machine requirement of job

There is a great deal of similarity betwe&fonline — list, m;|Cy,.x and the online
* Corresponding author.
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orthogonal strip packing problem. The orthogonal stripkpag problem is a two-
dimensional packing problem. Without rotation rectandiase to be packed on
a strip with fixed width and unbounded height. The objects/¢oi minimize the
height of the strip in which the rectangles are packed. Inathiene setting one
rectangle is presented after the other and has to be assigtiexlit knowledge
of successive rectangles. To see the similarity, let eaahimea correspond to one
unit of the width of the strip, and time to the height of thestiThe width of a
rectanglej corresponds to the machine requirement of jand its height to the
processing time. Minimizing the height of the strip usedjgiealent to minimizing
the makespan of the machine scheduling problem. The diféerkes in the choice
of machines. InP|online — list, m;|Ciax @anym; machines suffice for joh, where
rectangles can not be split up into several rectangles hegétaving widthm,.
Therefore, algorithms for strip packing can be used forlfgnab scheduling [5],
but in general not the other way around.

2. Overview of Results

We give an overview of the current state of the research omermarallel job
scheduling, and its various semi-online versions. Thelt®ate summarized in Ta-
ble 1. The first online algorithm for online parallel job sdnéng with a constant
competitive ratio is presented in [7] andli&-competitive. In [12], an improvement
to a7-competitive algorithm is given. Thidynamic waiting algorithnschedules
jobs with a small machine requirement greedily and delaggdbs with a large
machine requirement. For the strip packing problem in [6]9%-competitive on-
line algorithm is given under the assumption that jobs hapmaessing time of at
most1. This shelf algorithmgroups rectangles of similar height together. The cur-
rently best known algorithm is designed by combining thegdef separating jobs
with large and small machine requirement, and using a stralftsire. This results
in a6.6623-competitive algorithm which is independently obtaine{Ghand [10],
and due to its structure it can be applied to online orthobsini@ packing as well.

For Plonline — list, m;|Cyax the best known analytical lower bound on the com-
petitive ratio is a bound df resulting from the strip packing problem [2], which ap-
plies directly to the parallel job problem with > 3. In [6] a tight lower bound of

is given for the two machines case. Furthermore, a competdproof, based on an
ILP-formulation, resulting in a lower bound @f43 for P|online — list, 7| Ciax

is given.

Until now, the best known algorithm for the case witinachines is th8-competitive
greedy algorithm. In this talk we show an improved algorithm
Theorem 1 For P3|online — list, m;|Ciax @ 2.8-competitive algorithm exists.

In the literature a number of semi-online variants of onlpaallel job schedul-

ing are considered. In case the jobs appear in non-incigasoter of machine
requirement the best known lower boundli88 from classical parallel machine
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Plonline — list, m;|Ciax

Model Lower Bound Upper Bound
- 2.43, [6] 6.6623, [5, 10]
m =2 2, [6] 2, (Greedy)
m=3 2, 2] 2.8, (This talk)
3<m<6 2, [2] m, (Greedy)
Semi-onlineP|online — list, m;|Caz
Model Lower Bound Upper Bound
-non-increasingn; 1.88, [9] 2.4815, (This talk)
m=20r3 2— L, [4] 2 — L (Greedy)
m=40rb - 2 (Greedy)
-non-increasing; 2, [2] 2, [11]
m=2 2,131 413

-non-decreasing;

m =2

(V]I
—
SN
—_

V]IV
—
w
—_

Table 1
Results on online scheduling éflonline — list, 7| Ciax

scheduling, i.e. this bound uses only jobs with = 1 [9]. Furthermore, for this
case in [11] it is shown, that greedy scheduling the jol2s7§-competitive and no
better thare.5-competitive. In this talk we show that slightly modifyiniget greedy
algorithm yields a better algorithm.

Theorem 2 For P|online — list, m;|Ciax With jobs appearing in non-increasing
order of machine requirement,2a4815-competitive algorithm exists.

Furthermore, we show that férand3 machines and jobs appearing in non-increasing
order of machine requirement the greedy algorithni2is- %)-competitive. As

we know from classical parallel machine scheduling [4]s tsithe best possible;
these bounds are tight. Finally, we show that 40&and 5 machines greedy i8-
competitive.

In case the jobs appear in non-increasing order of proagsisine a greedy algo-
rithm is 2-competitive [11]. The best know lower bound on the competitatio is
g from the strip packing problem [2]. For the two machine cagh non-increasing
processing times a lower bound &fand a3-competitive online algorithm are
known [3]. For the case where jobs appear in non-decreasaey of processing
times and two machines, an optimal (best possible rétiu)mpetitive algorithm is
given in [3]. Optimality follows from a lower bound from clgisal parallel machine
scheduling [4].

The results, summarized in Table 1, show that in only a fewigpeases the gap

between the lower and upper bound on the competitive ratilmsed. In particular
the gap for the general probleRjonline — list, m;|Cp.x IS large.
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1. Introduction

Traditionally percolation theory has been the study of thepprties of a random
subgraph of an infinite graph, that is obtained by deletirdhesige of the graph
with probability 1 — p for somep € (0, 1) independently of every other edge. The
guestion that has been mainly investigated is whether thgraph that is spanned
by these edges has an infinite component or not. The clasgp=bf graphs that
was studied in percolation theory is the lattiéé in various dimensiong > 2
(see [8]). Various other types of lattices have also beediestlu In each of the
above cases the main problem is the calculation of a criticab that ifp < p.
then the random subgraph obtained as above has no infinitearants, whereas
if p > p. there is an infinite component with probability 1.

In the present work, we study percolation on finite graphssghmumber of vertices
is large. This problem is old, in the sense that for exampglg arandom graph is

a random subgraph of the complete grapmorertices, where each edge appears
with probability p independently of every other edge. In this context, a goesti
about the appearance of an infinite component is senselessnahow analogous
guestion is whether there exists a component of the randbgraph containing a
certain proportion of the vertices or as we customarily sgyaat componentore
specifically, if the original graph has vertices the question now is whether there
exists are > 0 for which there is a component of the random subgraph thaadthas
leasten vertices with probabilityl — o(1) (asn — o). Hence, we also ask (quite
informally) for the existence of a critical. for which whenevep < (1 —d)p. then
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for everye > 0 there is no component having at leastvertices with probability
1 — o(1) and whenevep > p.(1 + ) then there is a component with at least
vertices for some > 0 with probability 1 — o(1). A classical example of this is
the G,,, random subgraph ok, the complete graph on vertices, where as it
was proved by Erdis and Rényi in [5] the critical probability is equal tgn (see
also [2] or [9] for a detailed discussion).

More generally, Bollobas, Kohayakawa and tuczak in [3] mislee following
question: given a sequence of graghs, } whose order tends to infinity asgrows,
is there such a phase transition? Assume thabas|G,,| vertices and,, edges.
For each such. we have a probability space on the set of spanning subgrdphs o
G, and the probability of such a subgraph@@f that has: edges i (1 — p)»~¢,
wheree,, is the number of edges 6f,,. LetG,,(p) be a sample from this probability
space. Thus we are seekingasuch that: ifp < (1 — ¢)p., then for every > 0 as
n — oo all the components af,,(p) have at most|G,,| vertices with probability
1 —o(1), and ifp > p.(1 + ¢), then there exists = ¢(p) > 0 for which the largest
component ofG,,(p) has at least|G,,| vertices with probabilityl — o(1). If the
sequence of graphs {3¢,, }, this is simply the case of@, , random graph.

2. The main result

In the present paper, we determine a percolation threshalldel case where the
sequenced G, },cz+ IS a sequence of sparse random graphs eertices. In par-
ticular, for every integen > 1, GG, is a uniformly random graph on the séf =
{1,...,n} having a given degree sequenrtie) = (d;,...,d,),i.e.fori=1,...n
vertex: has degred;. More formally, adegree sequenam the set/, is a vector
d = (dy,...,d,) consisting of natural numbers, wherg' , d; is even. We le2 M/
denote this sum, antl/ = M (n) is the number of edges thdtspans. For a given
d =d(n),if d(n) = (di,...,d,) forn € Z*, we setD;, = D;(n) = [{j € V,, :
d; =i}/, foralli € N, andA = A(n) = max;<;<,{d;}. Finally, if G is a graph on
V,., thenD(G) denotes its degree sequence.

An asymptotic degree sequerisea sequencéd(n)),cz+, where for each € Z*
the vectord(n) is a degree sequence &f). An asymptotic degree sequence is
sparse if for everyi € N, we havelim,, .., D;(n)/n = \;, for some\; € [0, 1],
where}”;~, \; = 1, and moreover

lim le Zz(z —2)D;(n) = Zz(z —2)\; < 00. (1)

The generating polynomiabf a sparse asymptotic degree sequence is defined as
L(s) = 32, \is'. We assume that every asymptotic degree sequehes),.cz+

we work with is such that for every the set of simple graphs that hasdén) as

their degree sequence is non-empty.

We consider two types of percolation. Firstly, for somes (0,1), each edge of
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G, Is present with probability independently of every other edge. This type of
percolation is usually calledond percolationin that we randomly delete the edges
(i.e. the bonds) of7,,. This is distinguished from another type of percolationathi
is calledsite percolationHere, we go through the vertices@f, and we make each
of them isolated with probability — p, independently of every other vertex (or as
we say we delete this vertex). The random subgraph in this isathe spanning
subgraph of(z,, that does not contain the edges that are attached to theeserti
that were deleted. The terms “bond” and “site” percolatiaaehtheir origins in the
percolation theory of infinite graphs (see [8] for an exteasliscussion on both
types as well as the references therein).

We shall now define the percolation threshold in each of tlwabases. Let’(n)
denote the random subgraph that is obtained in either casletal (G’ (n)) be the
lexicographically first component @¥’(n) (this is the component that has maxi-
mum order and the smallest vertex it contains is smaller thaismallest vertex of
every other component of maximum order - the comparison é&tvihe vertices
is by means of the total ordering 6f)). Starting from the bond percolation we set
prerd = sup{p € [0,1] : |L1(G'(n))|/n 2 0 asn — oo} (the symbol? denotes
convergence in probability, i.e. we say thgt = 0 if for everye > 0 we have
P[|X,| > ¢] — 0 asn — 0). The convergence in probability is meant with re-
spect to the sequence of probability spaces indexed by th&*savhere for each

n € Z7 the probability of a certain spanning subgraph is the priibathat this is
the subgraph which is spanned by the edges that survivernidemadeletion of the
edges of the random grayghy,. Similarly, in the case of site percolation we define
piite = sup{p € [0,1] : |L1(G'(n))|/n 2 0 asn — oo}, whereG’(n) is now the
spanning subgraph af,, that is the outcome of the deletion of those edges that
attached to the chosen vertices, i.e. the vertices that We malated. Note that in
both cases there are two levels of randomness.

If G,, is a randomi-regular graph oiv,, for any fixedd > 3, the bond percolation
threshold has been calculated by Goerdt in [6] and is equal (@ — 1). Before
this, bond percolation in random regular graphs was stuaddikoletseas, Palem,
Spirakis and Yung in [11], where it was proved that the caitiprobability is at
most32/d, for d large enough. Also, Nikoletseas and Spirakis in [10] andr@oe
and Molloy [7] study the edge expansion properties of thatgtamponent that
remains after the edge deletion process. However, thesgpdiol not provide any
analysis on the site percolation process. Our main theaneaivies also the latter
and is stated as follows:

Theorem 1 If (d(n)),cz+ IS @ sparse asymptotic degree sequence of maximum
degreeA(n) < n'/? and L(s) is its generating polynomial which is twice differ-
entiable at 1 and moreovet”(1) > L/(1), thenpsite = pbend = [/(1)/L"(1).
Moreover, wheneves > p2"? (p > psite, respectively) there exists an> 0 such
that|L,(G'(n))| > en with probability 1 — o(1).

The formula for both critical probabilities was obtainedgrogovtsev and Mendes
in [4] using qualitative (i.e. non-rigorous) arguments.

To make the statement of the above theorem slightly clebateys consider the
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case of bond percolation (the case of site percolation iBasimLet G(n) be the set
of graphs onV,, whose degree sequencedig:). Each grapiG € G(n) gives rise

to a probability space which consists of all its spanninggsaphs. In particular,

if G hase edges and~’ is a spanning subgraph 6f that hase’ < e edges then
its probability isp® (1 — p)*=¢; let P[] denote this measure. In other words, this
space accommodates the outcomes of the bond percolatioagsrapplied td-
and we call it thepercolation spaceof GG. For anye € (0,1) we letg.(G) be
the set of all spanning subgraphs @fwhose largest component has at least
vertices. This event has probabilif[-(G)] in the percolation space 6f. Now,
assume that < p"<. Theorem 1 implies that for any givenc (0, 1), the event
{G € G(n) : PY(y-(G)) < p} occurs with probabilityl — o(1) in the uniform
spaceg(n). That is, asymptotically for almost every graphdiin) the random
deletion of the edges leaves a component of order at deasiith probability no
more thanp. If p > p°"? then the second part of the theorem implies that there
existse > 0 such that the ever{iG € G(n) : P§(g.(G)) > 1 — p} occurs with
probability1 — o(1) in G(n). Hence, as — oo almost all graphs ig/(n) are such
that if we apply the bond percolation process to them witainebent probability,
then there is a component having at leastertices with probability at least— p

(in the percolation space).

3. Sketch of the proof of Theorem 1

The fact that the critical probabilities coincide reflectsedaviour that is similar to
that of percolation on an infinite regular tree. Of coursehigit ttontext the critical
probabilities are defined with respect to the appearance afifanite component
that contains the (vertex that has been selected as the)lusiog the fundamental
theorem of Galton-Watson processes (see for example {idan be shown that
the bond and the site critical probabilities coincide areythre equal ta/(d — 1),
whered is the degree of each vertex of the tree. Observe that fordke of a
randomd-regular graph Theorem 1 implies thdt’® = p%? = 1/(d — 1). This is
not a coincidence as it is well-known that a rand@megular graph locally (e.g. at
distance no more thairfrom a given vertex for some fixel looks like ad-regular
tree.

More generally, the typical local structure of the classadom graphs we are
investigating is also tree-like. Note that the rati¢(1) /L/(1) equals

i i\
i | L 2
2 5= @)

Consider a vertex € V,, which has positive degree and let us examine more closely
the behaviour of one of its neighbours. It can be shown tteapthbability that this

has degree is proportional toiD;(n). In particular, it is almost equal t igg’?()n)
- 'LAL . ’ oy
and this tends tgm asn grows. Moreover, one can show that with probability

1 — o(1) there are no edges between the neighbouts ©herefore (2) is the limit
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of the expected number of children a neighbour dfas. This scenario is repeated
for every vertex in thel-th neighbourhood of, whered is fixed. More precisely,
the vertices which are at distance no more thanduce a tree rooted atwhich
contains at modi In n vertices, with probabilityy — o(1). Suppose that there are
t; vertices of degreein this tree. Thus for a vertex that is at distaaldeom v, the
probability that it has degreeis proportional toi(D;(n) — t;) = iA\n(1 — o(1)).
More precisely, itis
i(Di(n) — ;)

> J(Dj(n) =)

SinceA < n'/? and¢; < Inlnn, it follows thaty";it; < InlnnY,c,0i =

O(n'/?). Hence, the limit of the above probability as— oo is again iﬁijk
<~ N

and (2) gives the limiting expected number of children oftrsacvertex. In other
words, the graph that is induced by the vertices which aréstdrite no more than

d from v behaves like the tree of a branching process that startedweith the

ratio L”(1)/L'(1) being the expected progeny of each vertex. Observe here that
the conditionZ”(1) > L’(1) implies that in fact this is a supercritical branching
process which yields an infinite tree with probability 1.

Therefore, at least locally either bond or site percolatsoassentially percolation
on such a random rooted tree. In both types of percolatignifL’(1) /L” (1), then
the expected number of children of a vertex that surviydi§1)/L'(1) < 1. Thus
the random tree that is developing aroundfter the random failures of the edges
or the vertices will be distributed as the tree of a sub@itiranching process. In
particular, the tree that surrounds most of the verticeldowitut off from the rest of
the graph at a relatively small depth. On the other hand>ifLZ/(1)/L"(1) a large
proportion from each of these local trees is preserved an@woner they are big
enough to guarantee that there are enough edges going dwof 0 eventually
there is a fair chance that some of them are joined togetltefarm a component
of linear order.
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On co-distance hereditary graphs
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Abstract

We present a linear time recognition algorithm as well as a 4-expressicaltalating the
clique-width for the co-distance hereditary graphs which is the complenyeritess of the
well known family of distance hereditary graphs.

Key words: Distance and co-distance hereditary graphs, split decomposition,
clique-width, linear recognition algorithm

1 On distance hereditary graphs

For terms not defined here the reader is referred to [1]. GiveraphG = (V| F),

V' will denote its vertex setl its edge set andV(z) the neighborhood af € V.

A vertex having exactly one neighbor is callegpp@ndantvertex. Two vertices:
andy aretwinsiff N(z) = N(y), they aretrue twins iff (zy) € E andfalsetwins

iff (xy) ¢ E. Thedistancebetween two vertices andy, denoted byi;(z, y),

is the length of a shortest path betweemandy. The class of Distance Heredi-
tary (DH for shortly) graphs have been widely studied andymasults have been
obtained for these graphs (see [1]). Among them we recdllDkbgraphs are to-
tally decomposable usingplit decompositionWe recall also that DH graphs are
also known as HHDG-free graphs since they can be charastielly four forbid-
den configurations: the House (i.e. the complementary gophchordless chain
of 5 vertices orP; ), the Hole (i.e. a chordles cycle of at least five vertices, t
Domino (i.e. a cycle of 6 verticesbcde f having exactly one chordf ) and the
Gem (i.e. the graph formed by B, = abcd and a universal vertex w.r.t. this
P,). Finally, a graphG is distance hereditary iff for any connected subgr&ph
of G dg(x,y) = dy(z,y) holds for every pair of vertices aff. A pruning se-
quence(S, o) of G is a total orderingr [z, . .., z,] Of its vertex set and a sequence
Sls1,...,sy| of triples, such that fol < ¢ < n —1andi < j, in the induced
subgraph; of G[V \ {z1,...,x;_1}], s; is one the following words(z;, P, z;), if
N(z;) = {z;} (z; is a pendant vertex) drz;, F, z;) (z; andz; are false twins) or
(x;,T,x;) (z; andz; are true twins). The pruning sequence is used for the recog-
nition of a DH graphG: starting from a vertex oty we construct successively
subgraphs of7 by adding true twins, false twins or pendant vertices. Invjak
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proposed a linear time recognition algorithm for DH grapliscbnstructing the
corresponding pruning sequence. But this algorithm reaagnalso the domino
and the house as DH graphs, problem that was resolved in [@&.r@&cognition
algorithm of DH graphs presented in [3] will be for us the femork for the recog-
nition of a co-distance hereditary graph We shall show in the next section that
for testing ifG is distance hereditary we do not need to comgutit we can work
on G and make the necessary transformations to this algorithonder to remain
in linear time on the size af. We give below the recognition algorithm in [3] and
we enumerate the 6 steps needed these transformations.

Algorithm 1 ([3]). The pruning sequence of a connected DH graph
Build the distance level§,= L1, ..., L, from a vertexv of G (1); j < 1;
For i = k downtol do
For every connected componefitof G[L;] (2) Do
z < Prunecograph(C, j) (3);j < j+ | C'| —1; End_For
Sort the vertices of,; by increasingnner degreq4)
For every vertexc of L; having exactly one neighbgr (5) do
o(j) < yands; < (zPy); j «— j+ 1; End_For
For every vertext € L; taken in increasing inner degree ords;
y — Prunecograph(G[N,_.(2)], j) (6); j — j+ | Nii(z) | —L; 0(j) —
ands; < (zPy); j < j+ 1; End_For
End_For

Let us explain some terms used in the above algorithmGlet a connected graph
andv be a vertex of7. A distance level, in GG is the setl,, . .., L, of vertices of

G such thate € L; if dg(v,z) = 1. For every vertex: of G and for every integer

i such thatl < i < k, we denote byV;(z) = N(x) N L;. The inner degree of

x is the cardinality ofV;(z). The algorithmPrunecograph(C, j) constructs the
pruning sequences, o) of the cograph corresponding to the connected component
C' and contractg’ to the last vertex of . We must point out tha®runecograph

(C, 7) works on the cotre@'(C') corresponding to the cograghand by [2] a cotree
can been obtained in linear time on the size of the consideygdhph.

2 Linear recognition of co-distance hereditary graphs

We shall show now how the recognition algorithm of DH graptespnted in pre-
vious section can be transformed in order to recognize aistartte hereditary
(co-DH for shortly) graph& in linear time on the size ofi. We assume thatr

is a connected graph as well & If G is not connected we shall work in each
connected component 6f. Let us explain now how we can process thgteps in
algorithm 1 inGG using the edges of the grapgh

Step 1.Algorithm 2 : constructing all distance levels L, of a connected compo-
nent of GG
Input : A graphG with n vertices, a list, = {1, ...,n} of all vertices ofG and an
arrayindeX1..n] such that indej| = 0 for all ..
Output : The setL, = {L4, ..., L} of distance levels from a vertexof a con-
nected component @f.

i := 0; Pick an arbitrary vertex of L, L, := = and delete it fron..

While L is non emptyDo
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[For every vertexy € L;, and for every vertex € N(y) N L increase byl
indeXz]. If index[z]|=| L; | movez from L to L;,» and put indek| = 0];
If L = () thenexit; { L, U .. U L; is a connected component G}
Li+1 = L, 1:=1 + 1, L= Li-i—l

End_While

Complexity of Step 1.When constructing L we construct also an arréy ..n|
such thatA[i] contains a direct access in the list containirduring the execution

of the above algorithm. Hence, we can find in constant timengighbors of every
vertexy €L;. It is easy to see that the complexity of the above algorithhmear

on the size of~.

Steps 2,3.Since G[L;] must be a cograph we check this by obtaining in linear
time the corresponding cotrdéby using the algorithm in [2]. Then we obtain the
corresponding cotree as well as the connected componedt&gf by changing
the0-nodes ofl" into 1-nodes and itd-nodes intd)-nodes.

Steps 4,5We shall sort the vertices df; by decreasing inner degregwill be the
vertex whose inner degree will be;_; | —1.

Steps 6.0nce the vertices af; have been sorted by decreasing inner degree, using
the arrayA we find first the non-neighborhood iy _; of each vertex of L; within
O(degree(x)) complexity and then proceed in an analogous manner descab
Steps 2 and 3 above.

Itis clear now that we can apply the Algorithm 1Ghwithin linear time complexity
on the size of7. It remains a last verification presented in [3] that cosdisicheck

if the obtained pruning sequen¢s, o) corresponds to an HD graph. Due to the
space limitations of this extended abstract, we leave todader to verify that this
can be done in linear time on the size(@f

2 Cligue width of co-distance hereditary graphs

The well known notion otlique-widthof a graphGG denotedcwd(G), is the min-
imum number of labels needed for constructiigusing four graph operations:
labeling by: a new vertexv(denotedi(v)), disjoint union of H and H’' denoted
He H', n;(G),i+# j,is the graph obtained by connecting all the vertices labele
i to all the vertices labeled in G andp; ;(G) the graph obtained by renamirig
into j in G. An expression obtained from the above four operationsgusiabels
is called ak-expressionWe denote by (¢) a graph defined by the expression
In [4], it is proved that every distance hereditary graphs blsque-width at most
3 and a3—expression defining it can be obtained in linear time. Thigression
is constructed as follows: from the pruning sequeffter) associated with a DH
graphG we construct a special tré& (), the pruning treg whose vertices are the
vertices ofG and whose edge§r, y} are labeled, F' or T' if there existss; in o
such thats; is (xlf),(xFy) or (zTy) respectively. Letv be a node of (G), T, is
the set of vertices ofr of the sub-tree rooted atandG(7,) the subgraph ofs
induced by the vertices df,. Let v andv be two vertices off,,, thenw is a twin
descendant af if all the edges connectedto v are labeled with true or false. Let
aq, ..., be the sons ai ordered from left to right. In [4] it is proved that for every
«; the set of edges relying the vertices@(T,,) andG(a U T,, , U...UT,,) is

Qi1

empty whenevery; is a false twin son ofi and it is formed by al{u, v} where
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u is a twin descendant af; in 7,,, andv is eithera or a twin descendant of
inT,, , U...UT,,. This result allowed to obtain & — expression for a distance
hereditary graph by labeling the twin descendants of any noid 7z with 2 and
by 1 all the other vertices df 5. Using this labeling for the vertices 6f and using
the pruning tree of7 we can obtain al — expression for G in linear time. For
this we shall calculate the expressigrassociated witld7 (7, U T,,,, U ... UT,,)
by assuming that we know tfse— expression t,, associated witliz(7,,) and the
3 — expression e;, associated witld:(7,,,, U ... UT,,). We then have:

1.If a; is a leaf son ofy then

ei = pa—1(pa—1(Ma(ma(nz(ein® (p2—a(p1-3(ta,))))))))
2.1f a; is atrue twin son of thene; = ps—a(p3—1(71,4(11.3(M23(€it1D(p2—a(p1-3(ta,))))))))
3. 1If a; IS a false twin son ofv then € = p4_,2(p3_,1(7’]174<77173(772’4<7’]273(61‘4_1 D

(P2—a(pr-3(ta;)))))))))-

Itis now to see how we can obtainta- expression for G in linear time on the size
of G. It follows that many optimization problems have linearuimn for co-DH
graphs (see [4]).
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1. Introduction

We show NP-completeness of several graph problems andiegbibe of their
combinatorial properties. More specifically, we relate twacepts of alliances
in graphs and of domination. We discuss a natural paramestreixpresses the
strength of an alliance.

General notions I' = (V, E) denotes a simple graph of order= |V| and size
m = |E|. The degree of a vertex € 1 will be denoted by(v). For a non-empty
subsetS C V and a vertex € V, we denote byVs(v) the set of neighbors has
in S. We denote the degree oin S by ds(v) = | Ns(v)|. A denotes the maximum
degree of a graph. The boundary of aSet V' is defined a®9S := U,csN5(v).

Total domination. A setS C V is adominating setf d5(v) > 1,Vv € S = V\S.
Thedomination numbet(I') is the minimum cardinality of a dominating set. The
concept of total domination was introduced by Cockayne, Baavel Hedetniemi
in [2]: a setS C V is atotal dominating setf ds(v) > 1, Vo € V. Thetotal
domination numbery, (I") is the minimum cardinality of a total dominating set.
The concept of total domination can be extended to multiplmaidation. That is,
a setS C V is atotal k-dominating seif 6s(v) > k, Yo € V. So, thetotal
k-domination number,, (I") is the minimum cardinality of a totat-dominating
set. Notice that the concept of totaldomination is different from the concept of
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doubledomination introduced by Harary and Haynes in [6]. A Set. V is a
double dominatinget if 55(v) > 2, Vo € S andds(v) > 1, Vo € S. A fortiori
every double dominating set is a totatlominating set.

Alliances. Alliances in graphs were introduced as a graph-theoregaatof friend-

ship and hostility relationships that might apply to mititaor similar scenarios.
Depending on the character of such an alliance, defensty@fensive groupings
were studied (and combinations thereof). We further gdizeréhese notions by
considering thestrengthof alliances [9].

A nonempty set of verticeS C V is called adefensive-alliancein I' if for every

v € S, ds(v) > dg(v) + r, wherer is the strengthof the defensiver-alliance,
—A < r < A. A defensive (-1)-alliance is adéefensive alliancg and a defensive
O-alliance is a strong defensive allianégas defined in [8]). A particular case,
called “global defensive allian¢e was studied in [7]. A defensive-alliance S
is calledglobal if S is a dominating set. Thglobal defensive-alliance number
74(T) is the minimum cardinality of any global defensivalliance inT.

A non-empty set of vertice§ C V is called anoffensiver-alliancein T" if and
only if for everyv € 95, dg(v) > dg(v) + r, where—A + 2 < r < A denotes
the strengthof the alliance. In particular, an offensive 1-alliance s“affensive
alliance', and an offensive 2-alliance is &tfong offensive alliance(as defined
in [8]). An offensiver-alliance S is calledglobal if S is a dominating set. The
global offensiver-alliance numberdenoted byy?(I"), is defined as the minimum
cardinality of a global offensive-alliance inI".

An alliance is calleddual (sometimes also callggowerfu) if it is both defensive
and offensive [8]. Hence,global dual allianceds a global dua(—1)-alliance, i.e., a
dominating set that is both(a-1)-defensive alliance andlaoffensive alliance, and
aglobal strong dual alliancés a global duab-alliance, i.e., d40)-defensive global
alliance and &-offensive alliance. In general, a s&tC V' is a dualr-alliance in
['if S is both a global defensivealliance and arir + 2)-offensive alliance if".
So, for dualr-alliances,—A < r < A — 2. Theglobal dualr-alliance number
denoted byy’(T"), is defined as the minimum cardinality of a global duallliance
inT.

2. Globalr-alliances

Cami et al. [1] showed NP-completenessifee —1. We were able to modify their
construction to show NP-completeness for any fixed

Theorem 1 For all fixedr, the following problem is is NP-complete: Given a graph
I" and a bound’; determine ify?(I") < /.

Vian + k2 +k
féﬁf(mén—

Theorem 2 For any graphl’,

o — k
5 .

Theorem 3 For any graphl’, v¢(T") >




Corollary 1 For any graphl" of sizem and maximum degreés > d,, v¢(L(T")) >
[Mw , whereL(T") denotes the line graph @f.

Theorem 4 For all fixedr, the following problem is NP-complete: Given a graph
' and a bound’; determine ify2(T") < /.

AsetS C V is ak-dominating set if for every € S, §5(v) > k. The k-domination
numberof I', v, ('), is the minimum cardinality of &-dominating set ifi".
Theorem 5 For any simple graph’ of ordern, minimum degreé, and Laplacian

: r
spectral radius., L% [%H <12 < w
Theorem 6 For all fixedr, the following problem is is NP-complete: Given a graph
I and a bound’; determine ify(T") < /.

Theorem 7 For any graphl” of ordern, sizem and minimum degreg [

7 <n—[5].

\/8m+4n(r+2)+(r+1)2+r+1“
7 <

3. Total k-domination

We consider the following decidability problem totablomination £-TD) for each
fixed integerk > 1: GivenI' = (V, E') and an integer parametéris there a vertex
setD with |D| < ¢ such thatp(v) > k for all v € V? The smallest such thaf”
together with/ forms a YES-instance &f-TD is denotedy,, ().

Theorem 8 Vk > 1: k-TD is NP-complete.

Theorem 9 Every totalk-dominating set is a global defensive (offensivajliance,
where—A < r < 2k — A. Moreover, every global duatalliance,r > 1, is a total
r-dominating set.

Corollary 2 Each totalk-dominating set is a global duatalliance, where-A <
r<2k-1)—A.

Corollary 3

o For —A <7 <2k—A,~,(I') > 7/(I') and~,,(I') > 92(T).

o For —A <r <2(k—1)—A,~,(I') >~T).

o Fork >1,~i(T") >~ (D).

By Corollary 3 we have that lower bounds fof(T"), 4°(I") and~;(T") lead to
lower bounds fory,, (I'). Moreover, upper bounds for, (I') lead to upper bounds

for (T"), 77(T") and~;:(T).

Concluding Remarks. Let us finally mention that most complexity results pre-
sented in this paper for various types of global allianceslmEshown in the non-
global case, as well. This generalizes earlier results f#r8]. Interestingly, we
could show (as in [5]) fixed parameter tractability for allmiened problems, while
(as noted above) the obviously related total dominatioblera is W[2]-hard. (For
notions concerning parameterized complexity, we refeB}g [
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Introduction. A vertex separatom an undirected graph is a subset of the vertices,
whose removal disconnects the graph. The Vertex Separatbtetn (VSP) was
recently studied in [1-3] and can be stated as follows: giveannected undirected
graphG = (V, E), with |V| = n, an integerl < b < n and a cost; associated
with each vertex € V, find a partition ofV into disjoint setsA, B, C, with A
and B nonempty, such thdf) £ contains no edgéi, j) withi € A, j € B, (ii)
max{|A|, | B[} < b, (i) 3;cc c; is minimized.

The VSP isNP-hard and has widespread applicability in network conmigfi,
3]. It was studied by Balas and de Souza in [1] where a polyhadrastigation is
performed. Also, extensive computational results obthwéh a branch-and-cut
developed by the same authors are reported in [2].

In this work we investigate the usage of Lagrangian techesgun the develop-
ment of more efficient methods to solve VSP instances to @pityn Recent pa-
pers [4-9] report successful applications of the so-cakdak-and-cut (R&C) al-
gorithms for discrete optimization problems. These athans offer an alternative
to strengthen the dual bounds provided by classical Lagranglaxations. This
is done through the separation and later dualization oflvaequalities within the
Lagrangian framework, similar to what happens to cuttirgnpk in Integer Pro-
gramming (IP). Thus, we decided to focus on the developmieR&& algorithms

for the VSP.

Results obtained with a very preliminary version of our R&Qrviravork were pre-
sented in [3]. Here we discuss algorithmic and implemeoriagsues that allowed
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us to improve on these early results. Below we briefly des¢hbéasic steps and
implementation aspects that are relevant to the desigra-esnd-cut algorithms.

Relax-and-cut algorithm basics.Suppose we have an IP formulation for certain
discrete optimization problem. Assume that we have twoafatenstraints, one of
which, makes the problem hard, i.e., if we get rid of them, rsulting problem
can be solved efficiently. In the classical Lagrangian ra&i@x scheme, we dualize
the set of hard constraints, by penalizing them in the oledunction. Given
the vector of penalties, we define the Lagrangian Subprofl&Sywith respect to
these values, whose optimum is a dual bound for the optimaéwaf the original
problem. The Lagrangian Dual problem seeks the vector wieiatls to the best
dual bound and can be solved, for example, by the subgradietiod (SM). Now,
at each iteration of the SM, one has to compute an optimatisolof LS, sayz*.

It turns out that this solution may not satisfy some of thelided constraints and
this provokes the recalculation of the associated pesalewever, if we know a
family F of strong valid inequalities for the convex hull of the fddsipoints of the
original IP model, we may dualize further inequalities. Soge that a separation
routine for F is at hand. Then, we can solve the separation problen#fand
x* and, if a violated inequality is found, we dualize it. Thistie chief idea of
a R&C algorithm, likewise polyhedral cutting-plane genenatis applied in IP.
Nevertheless, it is worth noting that separation problenssw in R&C algorithms
may be easier than their polyhedral cutting-plane algoritlounterparts, since LS
normally has integral valued solutions (cf. [9]).

Implementation strategies.Two strategies to implement R&C algorithms are dis-
cussed in the literature. They differ, basically, on the reotmat which the new
inequalities are dualized. In a Delayed Relax-and-Cut (DR&8)eral executions
of SM are made and the cuts found during one such executicadaed only at the
beginning of the next one. In a Non Delayed Relax-and-Cut (NDR&@®jcally a
single SM run is done and cuts are dualized along the iteratis they are found.
See [4,5, 7-9] for details. Comparison carried out in [8] ®sggd that NDR&C
performed better than DR&C.

An IP formulation for the VSP. We now describe the IP formulation for the VSP
presented in [1], on which our Lagrangian relaxation is Hags@r every vertex

i € V, two binary variables are defined;; = 1 ifand only ifi € A andu;; = 1
ifand only ifi € B . ForS C V andk € {1,2}, letu,(S) denote>(u; : i € S),
u(S) = u1(S) + uz(S). In the IP model for the VSP shown below condition (1)
forces every vertex to belong to at most one shore. Ineiggii2) prohibits the
extremities of an edge to be on distinct shores. Inequsl{8¢ limit the size of the
shores and, at the same time. As observed in [2], ittheariables are integer for
all i € V, the integrality of theu, variables can be dropped from the formulation.
Though this observation is not taken into account by our &agian relaxation, it
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is relevant for IP solvers.

max Z ci(u + ugo)

eV
Ui + Uip < 1, VieV Q)
it + ujp < 1, uj 4+ up <1, V(i,j) € E (2
1 <up(V) <b, k=1,2 (3)
uin > 0, uy € {0, 1}, VieV. 4)

Different Lagrangian relaxations can be devised from thitRulation above. In
this work we evaluate some of them and choose a simple oneighie constraint
sets (1) and (2) are dualized. As seen before, R&C algoritmensased on families
of valid inequalities whose elements are dynamically cieali In the VSP case, we
use two families of cuts described in [1]. The first class dfing planes is related
to minimal connected dominator€) inequalities). The other class is associated
with minimal dominators and a lifting procedureld inequalities).

The relax-and-cut framework. The algorithm we implemented is structured in
three modules. The first one is the R&C algorithm. The outpuhf module is
the set ofCD and/orLDinequalities separated during the execution of the algarit
and the best primal and dual bounds computed. The seconceoates a classical
Lagrangian procedure based on the model (1)-(4) appendbdhe cuts returned
from the first module. Finally, the third module correspotwithe B&C algorithm
in [2] modified to improve the IP model according to the boucaisiputed by R&C
and to separate the cuts returned by the latter in a tablaiptdshion. If one is
willing to use R&C as a stand alone approach for VSP, the dvalgbrithm is
aborted after the execution of the second module. On conditiat a hybrid exact
algorithm combining R&C and B&C is to be ran, the second modsildisabled,
and the output of first module is directly used by the third.one

Computational results. Computational tests were conducted on instances of public
domain. The main conclusions of these experiments can bmauzed as follows:
(A) there is no clear dominance between delayed and non delaysidns of R&C;
(B) for dense instances the R&C algorithms compute optimaltisoisimuch faster
than the B&C algorithms from [2], outperforming the latterfay in almost all the
cases; ¢) for sparse graphs our framework is competitive with the Bdgbathms
from Balas and de Souza, but we still find few instances wherstdmdard branch-
and-bound outperforms both algorithms, confirming the respio [2]; (D) R&C
algorithms alone can rarely solve instances of VSP to opityn®n the other hand,
hybrid approaches that use R&C algorithms as a preprocepbiasge for a B&C
algorithm are well suited to compute optimal VSP solutiofs; Finally, on the
primal side, the R&C algorithm proved to be a very effectiveristic, producing
very high quality solutions, often optimal ones, in minutenputation times;
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Conclusions.The combination of Lagrangian and cutting plane algoritlasgro-
posed by relax-and-cut and its hybridization with a braand-cut algorithm for
VSP is a promising approach to tackle the problem. The resbitained with our
computational experiments turn the framework proposeduioknowledge, the
best exact algorithm available for the VSP to date. Moreowverbelieve this tech-
nique can also be successfully applied to other combiratopgtimization prob-
lems for which a polyhedral study has been conducted. Hawiween our experi-
ence, this might require intensive experimentation andesol@verness on how to
combine R&C and B&C algorithms.
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Inverse Tension Problems
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For optimization problems with estimated problem paramset@e often knows a
priori an optimal solution based on observations or expeniis, but is interested
in finding a set of parameters, such that the known solutiapisnum (a) and the
deviation from the initial estimates is minimized (b). Thelplem of recalculating
the parameters satisfying (a) and (b) is knowimmasrse optimization problem

Among several inverse optimization problems the inverseork flows have been
intensely investigated [2, 3, 7, 15, 16]. Ahuja and Orlin {&frive LP formulations
for several inverse network flow problems. In another papgtHey analyze the
combinatorial aspects of inverse minimum cost flow problemear unit weight’,
and L., norms. Yang et al. [16] study inverse maximum flow and minimcuth
problems. A thorough survey study on this topic has been dgri¢euberger [10]
analyzing different types of inverse and reverse probldratsttave been considered
in the literature. As opposed to network flows, their duaission problemg$1]
and the corresponding inverse versions have vastly bedeated. Our aim in this
study is to fill this blank of the literature and show that thuality relation between
tensions and flows is valid for their respective inverse [@ois, as well. Moreover,
this study enlightens the connnection between tensiongmband cut problems.

LetG = (N, A) be connected digraph with node $étcontainingn nodes and arc
setA containingn arcs, and.;; represent an arc with tail nodend head nodg A
tensionis a function fromA to R which satisfies Kirchhoff’s law for voltages [13].
In other words, a vecta? € R is atensionon graphG with potentialr € RY
suchthat/(i,j) € A 6;; = m; — ;.

Minimum cost tension problem (MCiE)finding a tensior satisfying lower {;; €
RU{—0cc}) and upperTi; € RU{+oo}) bounds on each arc such thaf, c 4 ci;0;;
is minimum. Inmaximum tension problem (MaxThe graphz contains 2 special
nodess andt, and an ara,; € A between these two nodes with bouritls, 7;) =
(—00, 00). The maximum tension problem is finding the maximum tensioi@
as € A such that the tensions on all arcs satisfy the upper and loawands.

* Corresponding author.
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Given a feasible tensiofto an instance of a MCT (MaxT), tHaverse minimum
cost tension problem(IMCT) (inverse maximum tension problem(IMaxT)) is
perturbing the cost vector fromto ¢ (bound vectors fron?" to 7' and/or from

¢ to {) in a way thatd will become the optimum tension with the perturbed cost
vector (bound vectors) while the perturbatita— ¢| (|7 — T + ||t — &||) is
minimized according to some norm. We consider rectilinda) @and Chebyshev
(L) norms for the inverse minimum cost tension problem, andhorm for the
inverse maximum tension problem.

Inverse Minimum Cost Tension Problem UnderL;-Norm

Supposey;;s are the weights associated with the cost changes on aeas, dlhjec-
tive function underZ; norm is to minimizez%,eA w;;|ci; — ¢;|. The residual cuts
w; andws, are calledarc-digoint if w; Nw; = P andw; Nw; = (. Using the arc-
disjoint residual cuts, we can show that the inverse minincost tension problem
under rectilinear norm reduces to solvinghaimum cost tension problem
Theorem 1 LetCost(€2*) be the minimum cost of a collection of arc-disjoint resid-
ual cuts inG. Then,—Cost(2*) is the optimal objective function value for the
inverse minimum cost tension problem under unit weightlmeetr norm.

If we define the sets of ards = {a;; € A : t;; < 0;; < Tj;}, L == {a;; € A :
0,; = ti;}, andU = {a;; € A : 0;; = T};}, then LP corresponding to the inverse
minimum cost tension problem under unit weidhtnorm is:

Minimize > ¢;(m; — m) (1)
aijeA
subject to
—1<m—m<1 fora;ekK
Ogﬂ'j—ﬂ'igl foraijeL
—1<m—m<0 fora;ecU

For the nonunit weights case, the LP remains to be a minimwtiension problem
but with the corresponding bounds; and—w;; instead oft and—1 for the tension.

Inverse Minimum Cost Tension Problem UnderL_..-Norm

Inverse minimum cost tension problem undeyr norm has an objective of mini-
Mizing max,, ;e w;j|c;; — ¢;5|. The problem under unit weights reduces to solving
aminimum mean residual cut problein order to achieve this, we exploit the opti-
mality conditions [9] for the tensions and th@ptimality definition by Hadjiat and
Maurras [8].

Theorem 2 Lety* denote the mean cost of a minimum mean residual autwnr.t.

6. Then, the optimal objective function value for the inverseimum cost tension
problem undei,, norm ismaxz (0, —u*).
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Hadjias and Maurras [8] provide a Newton type algorithm tlvesdhe minimum
mean residual cut problem. Using their algorithm we can fmdg@timum solution
for the inverse problem in strongly polynomial time. McCockand Ervolina [12]
study max mean cuts and mention that a direct method of @dioglmax mean
cuts as Karp [11] does for minimum mean cycles has not yet bmamd. Here,
we present a direct method to identify the minimum mean costnd derive an
LP formulation. To the best of our knowledge, this is the firsi-iterative method
presented in the literature.

Supposev(i) denote a cut with(S, S) = ({i}, A\{i}) andCost(w(i)) is its cor-
responding cost. We define a new gragh= (N, A’) with A’ = AU A = {ay; :
a;; € A} and supplies/demands efCost(w(i)) on each node € N. Our goal is
to find nonnegative flows on areg,;; > 0 for a;; € A’, such that the supplies and
demands are satisfied and the maximunp@f+ ¢;; for all a;; € A andaj; € Ais
minimum. We call this probleraqual network flow problem.

Theorem 3 If z* is the optimum objective fuction value of the equal netwosk flo
problem onG’ = (N, A’), then the cost of the minimum mean cutis’. Moreover,
the dual LP of the equal network flow problem ismenimum cost tension problem
on graphG = (N, A).

Corollary 1 The minimum mearesidual cut problem on grapli; = (N, A) can
be formulated as a minimum cost tension problem on the saapdhgr

Inverse Maximum Tension Problem (IMaxT) under L;-Norm

Given a weight vectow for changing the bounds of the arcs, the inverse maximum
tension problem undel; norm is minimizingy_,, e 4 wi; (|73 — Ti5] + tii — tii])
such that),; is the maximum tension for the maximum tension probler(ﬂ()ﬁ T).

For the maximum tension it is known that there exists a mimmpath, which has

a length equal to the maximum tension [14]. Using this fact tre properties of
minimum path, we can prove the following result.

Theorem 4 Suppose’* is the minimum path corresponding to the maximum ten-
sion problem inGG(¢, T'). P** and P*~ denote the forward and backward arcs of the
path, respectively. The optimum solution of the inverseimmam tension problem
w.r.t. unit weightL,-norm is

T — éij if Q5 e p*t oo éz'j if Qjj € pP*
K T,. otherwise " t;; otherwise

Hence, solving the inverse problem is equivalent to solhangaximum tension
problem onG (¢, T).

Conclusion and Future Work

For the inverse minimum cost and maximum value tension problunder rectilin-
ear and Chebyshev norms we show that the duality relatiorsdtigeen network
flows and tensions is also valid. Hence, by a generalizatidhi® approach from
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network flows and tensions to flows in regular matroids [4],caa get some in-
sights into dealing with inverse linear programs with tigtainimodular matrices.
Moreover, it seems that inverse tension problems may hatenal for practical

applications, especially in scheduling problems. Thesecarrently explored, as
well.
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1. Introduction

We consider several basic network optimization problenteua generalization of
the reload cost model introduced in [5]. The concept of loast, that is of a cost
incurred when two consecutive arcs along a path are of diftetypes, naturally
arises in a variety of application contexts. For instaneeransportation it allows
to account for the relevant cost of unloading and loadingeaifht from one carrier
to another. Other interesting application areas inclugetenmunication networks
and energy distribution.

In this paper we consider a general model including reloatiscas well as regular
arc costs. We are given a directed gragh= (V, A) with a non-negative cost
w(a) for each ara: € A. Moreover, as in [5], each akcis assigned a coldfa)
out of a finite setl of colors and a non-negative integetoad cost matrixR =
{riv }hirer is given, where entry, s is the cost of going from an arc of coléto

an arc of colorl’ (r; = 0 for all [ in L). If P is any path inG consisting ofk
consecutive arcsy, ..., ax, respectively of colorg,, ..., [, thereload costof P is
r(P) = Zj:’;ll 1,1,,,, that is the sum of the reload costs at its internal nodes, and
thearc costof P isw(P) = Z?;l w(a;). Then we define the overdtnsportation
costasc(P) = r(P)+w(P). A similar model involving undirected graphs can also
be considered, as pointed out below.

In [5] and [1] complexity results are presented for the peabbf finding a spanning
tree of minimum reload cost diameter (there are no arc cdst$®] Gamvros et
al. consider the minimum reload cost spanning tree prob2espite the natural
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applicability of the reload cost concept, these are the maflgrences we are aware
of.

In this work we investigate optimum paths, tours, and flondaunthe above general
reload cost model. Indeed we believe that considering tblessical problems un-
der this model has a clear practical relevance. We focusdretiee computational
complexity of the problems under consideration.

2. Paths

In this section we consider four problen®soblemP 1: find a minimum transporta-
tion cost path between two given nodeandt of G. ProblemP2: find a set of paths
from a given node to the other nodes @ minimizing the sum of their transporta-
tion costsProblemP3: find a minimum transportation cost path-tree froto the
other nodes of~. ProblemP4: find a path-tree from to the other nodes ofr
minimizing the maximum among the transportation costsop#ths.

Problem P1 is easily seen to be polynomially solvable. Agplhall nodes ofG
different froms andt the following splitting procedure: each nodgsay having

n incoming arcs anah outgoing arcs, is replaced with a complete bipartite graph,
oriented from the left to the right shore, havingertices on the left shore, so that
each arc incoming to arrives to one and only one of thesevertices, and having
m vertices on the right shore so that each arc outgoing frammes out of one and
only one of thesen vertices. While the original arcs 6f maintain their costs, each
arc of the complete bipartite graphs, say from node nodey, is assigned an arc
cost equal to the reload cost due to the colors of the aft@itering inz and of the
arc of G outgoing fromy. Let H be the resulting graph. It is straightforward to see
that a minimum arc cost — ¢ path in H corresponds to a minimum transportation
costs — t path inG (possibly visiting a node more than once).

Some additional observations are in orderGlihas no arc costs, then the above
procedure still works yielding a minimum reload cast ¢ path inG. WhenG

is an undirected graph, the splitting procedure has to bafradds follows. Each
nodev must be substituted by a clique containing a number of nogealdo the
degree ob in G, and each edge @f that is incident ta is incident to exactly one
node of the clique. Each edge of the clique, say from nottenodey, receives a
arc cost equal to the reload cost of going from the color ofeithge ofG' incident

to x to that of the edge ofr incident toy. Notice that the results for problem P1
can also be obtained using the line-graplizoinstead of resorting to the splitting
procedure.

Problem P2 is also polynomially solvable. Applydtthe same splitting procedure
of Problem P1 and let{ be the resulting graph. Compute a minimum arc cost
path-tre€l’ in H with origin s using, say, Dijkstra’s algorithm. We show now how
the paths irfl” from s to all vertices ofH allow to identify a set of paths fromto

all vertices of(G, such that the sum of their transportation costs is minimion.
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each node of G, say having: incoming arcs andr outgoing arcs, we select in
the left shore of the bipartite graph replacingn H, the node closest te in H;
then we use the path ifi from s to this node to identify, as done in problem P1, a
path inG from s to v. Obviously the resulting set of paths fronto all nodes of7,
being a set of minimum transportation cost paths frota the nodes of7, solves
P2. However these paths do not usually form a tre€.dh fact we can show that
Problem P3 is NP-hard, via a reduction fromNMSET COVER.

Problem P4 is also NP-hard, even if restricted to graphsnigaviaximum degree

4. Indeed in [1] a polynomial-time reduction from problemS2T-3 to a prob-
lem called MN-DIAM is described. The same reduction, with edges appropriately
directed, can be seen as a reduction from 3-SAT-3 to P4, taklsythe desired
result. Note that the min-max case of problem P2 remainsauissolvable in poly-
nomial time, using the same procedure that solves P2.

3. Tours

In this section we summarize some results concerning optitour problems. The
problem of traversing all edges of an undirected gr&plvith a tour of minimum
arc cost so that each edge is used at least once is the famouss€fRostman
Problem (CPP), which is solvable in polynomial time. If wekdor a similar tour
of minimum transportation cost, this problem becomes Ni:h@onsider indeed
the subproblem in whicly is already Eulerian, the arc costs are all zero, and we
look for an Eulerian tour of minimum total reload cost. We dow that this
problem is NP-hard for directed and undirected graphs. tklegroblem of finding
a Hamiltonian tour of minimum reload cost in an Hamiltoniaagh (or directed
graph)G is NP-hard. This can be shown by adapting the original redach [3]
from the minimum vertex cover problem to the Hamiltonianrtproblem.

4. Flows

Given any directed graph with arc capacities, unitary costsarcs, and unitary
reload costs, and an originand destinatiort, ans — t flow of minimum trans-

portation cost can be found in polynomial time. Indeed, bylypg the splitting

procedure of Section 2 to all nodes except the origin and ¢élsérthtion, the prob-
lem reduces to that of finding a minimum (arc) cest ¢ flow in the new network
H. Note that in this case the line-graph does not help.

Let us now consider the network flow problem variants withtiplé origin-destination
pairs{(si, ;) }1<i<q, the so-called multicommodity versions. If the flow is urispl
table (must be routed along a single path for each origititsson pair) and there
are capacities constraints on the arcs, the resulting taftminimum multicom-
modity transportation cost flow problem can be shown to behidfel even without
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arc costs. The reduction is from the shortest arc-disjpaiths problem, which is
shown NP-hard in [4]. If the flow is unsplittable but there agearc capacities,
the problem is solvable in polynomial time because of theipues results about
minimum reload cost paths. Given any uncapacitated netwavikh both arc costs
and reload costs, an optimum solution is obtained by justisogposing the set of
paths derived by independently applying the splitting pchoe of Section 2 for
each origin-destination pair.

If the flow is splittable (can be routed along different pdtireach origin-destination
pair) and there are arc capacities, the minimum multicomipbgnsportation cost
flow problem is polynomially solvable because it can be reduo that of finding a
splittable multicommodity flow of minimum (arc) cost. Thsachieved by apply-
ing the splitting procedure to all the nodes and by addingthhe&omplete bipartite
graph corresponding to an origin (destinationy-b& new left shore nods; (right
shore nod€l;) connected with arcs fromy; to all nodes of the right shore (from
all nodes of the left shore t&;). All these additional arcs have zero cost and un-
bounded capacity. Depending on whether the node in thenatigiraphG is an
origin s; or a destinatiort;, the corresponding nod& or 7; is considered as the
origin or destination in the new network.

5. Concluding remarks

We have presented a first set of complexity results for sewetavork optimiza-
tion problems under a natural reload cost model. We are milyrenvestigating
more efficient algorithms for the problems that are solvablpolynomial time,
and polynomial-time algorithms with worst-case approxioraguarantee for those
that are NP-hard. Since in some applications it may not beogpijate to mix arc
costs and reload costs, it would be interesting to invetilgacriteria problem ver-
sions, where one type of cost is minimized while keeping ttheioone below a
given threshold.
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A decomposition for total-coloring graphs of
maximum degree 3
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Abstract

The total chromatic numbeyr(G) is the least number of colors needed for coloring the
elements (vertices and edges) of a grépim such a way no incident or adjacent elements
receive the same color. Deciding whether a gréb Type 1, thatisyr(G) = A(G) +1,

is NP-complete [6], even when restricted to cubic bipartite inputs. We dewettgrom-
position technique for searching for a 4-total-coloring of graphs with maxirdagree 3.
We use this decomposition tool for extending a result on the total chromaticerumhb
partial-grids, a subclass of bipartite graphs.

Key words: total chromatic number, graph decompositions, partial-grids.

1. Introduction

Let G be a simple graph with vertex-set(G) and edge-sel/(G). The set of the
elementof G is S(G) = V(G) U E(G). Two verticesu,v € V(G) areadjacent
if ww € E(G); two edgese;,e; € FE(G) areadjacentif they share a common
endvertex; a vertex and an edge areincidentif « is an endvertex of. A cut of
a graphG is a set of vertices whose exclusion disconnéet#\ cut composed of
two adjacent vertices is said to bé@-cut

A total-coloringof GG is a functionr : S(G) — C such that, fono pair of adjacent
or incident elements,y € S(G), it holdsnw(z) = n(y). If |C| = k, thenr is a
k-total-coloring Thetotal chromatic numbeof GG, denotedyr(G), is the least:
for which G has ak-total-coloring. Clearlyyr(G) > A(G) + 1, whereA(G) is
the maximum degree af; if x7(G) = A(G) + 1, thenG is Type 1 The Total
Coloring Conjecture [1, 7], which states that every grdplnas total chromatic
numberA(G) + 1 or A(G) + 2, is open since 1964.
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2. The decomposition technique

We present a decomposition technique for total-colorirgphgs of maximum de-
gree 3. The technique decomposes a graph into subgraphh dihioot have a
K,-cut. The following lemma, stated without proof, consideres total-coloring of

the biconnected components of a graph.

Lemma 1 Let G be a graph such that all of its biconnected components have an
a-total-coloring, wherex > A(G) + 1. Thend itself has am-total-coloring.

The K,-cut-free components 6f are the subgraphs 6f which do not have -
cut and are maximal with respect to this property. The foilguresult, which we
state without proof, is important to our strategy for tatalering.

Lemma 2 LetG be a biconnected graph of maximum degree 3@tk collection
of its K-cut-free components. The intersection graply a acyclic.

Given a biconnected gragh of maximum degree at most 3 and two adjacent ver-
ticesu andv of degree 2 ir7, we say that the sét = {u, v} is afrontier candidate
Letw' ¢ C andv’ ¢ C be the vertices adjacent, respectivelyutandv. We re-

fer to u, v, v'u, uv andwvv’ as theelements at the frontier-candidafe:, v}. Let
F(G) = {{w1,v1}, ..., {u,,v.}} be the collection of all frontier-candidates Gf

We say that a 4-total-coloring of GG is afrontier-coloring ofG if:

() # m(vl), andr ({wu), vl ug, v, uv ) = {1,2,3,4}

for each{u;,v;} € F(G), whereu, & {u;,v;} andv, ¢ {u;,v;} are the vertices
adjacent, respectively, tg andv;, for eachi = 1, ..., r. Observe that the elements
at a frontier-candidatéu, v} are colored in one of the following ways (except for
a permutation of colors):

u' u i o' u' u A4 s
1 "2' 4 3 2 or 2 ‘5 4 2 1

In the first case, we say thatis thereference vertex ofr, {u, v}); in the second
casey is the reference vertex ¢fr, {u, v}). Now, we state a result that shows how
to color a biconnected graph from frontier-colorings offits-cut-free components.
Theorem 1 Let G be a biconnected graph of maximum degree at most 3. Seippo
everyK,-cut-free componen, of G has two frontier-coloringsr, , and,; such
that, for each frontier-candidatéu, v} of G,, vertexu is the reference vertex of
(700, {u,v}) if and only if vertexv is the reference vertex ¢f,;, {u,v}). ThenG

is 4-total-colorable.

Proof (sketch): LetG = {G}, ..., G,} be the family of theK,-cut-free components
of G and letZ(G) be its intersection graph. Now consider a total or@er, ..., G;,
ong given by a breadth first search on the t/ég) starting at an arbitrary element
Gi, € G and letH; = G[V(G;,) U...UV(G,,)]. Observe thatl, = G. By
hypothesis,H, = G;, has a frontier-coloringr,, that is a 4-total-coloring which
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satisfies the frontier condition for the set of all of its fien-candidates. We prove
the lemma by induction op. [

3. Partial-grids

A graphG,,x, with vertex setV(G,,x,) = {1,...,m} x {1,...,n} and edge set
E(Gan) = {(@7])“{:7[) : ’Z - k| + |J - l‘ = 1, (ivj)a (k7l) S V(Gmxn)}’ ora
graph isomorphic td@~,,,, is agrid. A partial-grid is an arbitrary subgraph of a
grid. Partial-grids are harder to work than grids; for imst, recognition of grids
is polynomial [3], but the problem is open for partial-gri@$.

The total chromatic number of grids has been determined'f#g.total chromatic
number of partial-grids were determined [4] for all case&mtthe maximum de-
gree is not 3; if the maximum degree is 3, some cases couldalssiftéd: partial
grids with at most three maximum degree vertices or with man induced cy-
cle of size at most 4 are Type 1. The last step towards a coenglessification of
partial grids is the case of maximum degree 3.

A graph isc-chordal [5] if it does not have an induced cycle larger thaim this
section, we show that the decomposition technique develop®ection 2 provides
a nice method for total-coloring partial-grids with bouddagze maximum induced
cycle. The applicability of this tool comes from the factttHfar each fixed:, there
exists only a finite number afchordal K5-cut-free subgraphs of partial-grids. So,
the task of determining the total chromatic numbercaordal partial-grids of
maximum degree 3 may be reduced to that of exhibiting cadsrior a finite num-
ber of graphs. We use Theorem 1 for classifying as Type 1 ah@dal partial
grids of maximum degree 3.

Theorem 2 All partial-grids of maximum degree at most 3 and maximunooed
cycle of length at most 8 are 4-total-colorable.

Proof (sketch): The biconnected components of a partial-grid are itselfigar
grids. So, by Lemma 1, we just need to prove the Theorem famniniected partial-
grids. Besides, everi,-cut-free component of achordal partial-grid is itself a
c-chordal partial-grid. So, all we need to do is to exhibit,éach 8-chordak’;-cut-
free partial-grid of maximum degree at most 3, coloringsgang the conditions
of Theorem 1 (see Appendix 4)1

4. Final Remarks

Total-coloring is notably a challenging problem. The tataloring conjecture is
open since 1964, and determining whether a graph is Type Pi€bimplete even
for very restricted graph classes, such as cubic bipantaplts. So, it is of great
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value developing techniques for total-coloring graphs akimum degree 3. The
proposed decomposition is an original technique, whichpypdyefor total-coloring
partial-grids, extending a known result [4] for these giaph

Future work. Our main goal is to prove the conjecture [4] that all pargets of
maximum degree 3 are Type 1. We are also investigating nesgessfor which our
approach could be applied. One of those classes are the nmaxitegree 3 partial
d-dimensional grids, which are subgraphsiedimensional grids. We observe that
the d-dimensional grids can be total-colored using the resulf8]pthe particular
case ofi-cubes was solved independently [4]. Another line of ingadion is trying

to extend our decomposition tool by using cuts larger thanThose cuts could,
hopefully, be applied for total-coloring graphs with maxim degree larger than 3.
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Appendix. Colorings of all 8-chordal K,-cut-free partial-grids of maximum
degree at most 3

m2:5(G1)—>{1,2,3,4} 5 8(G1)—>{1,2,3,4} M24:8(G2)—>{1,2,3,4} M2 S(G2)—>{1,2,3,4}
1 2 3 3o 2 1 1 2 3 4 1 2, 3 1 2 3
s u Uy uz us Uz u3 Uy p2 u3
3 4 4 3 3 3 4 4
U us uy u3 Ug L Uy Ug us Uy
£ 2 2T 4 2 4 7 2 4 1 2 4 3
T34:5(Ga)—>{1,2,3,4} T3 S(Ga)—{1,2,3,4} M4 2:5(Gs)—{1,2,3,4} T 5. 8(Ga)—>{1,2,3,4}
1 2 4 4 4 3 14 2 1 3 2 14 2
uq uz us u D3 USO uz c‘ll1 u; Uao
31 4 4 13 4 3 3 14
40ug Uy 10Uz uy4d U 1 2 U103
1 2 2T 1 2 2 11
uz Ug Us uz Us us us uz Us Us
2 i f @ % e T A 2 T s 3 4 3 2

15 o' S(Gs)—>{1,2,3,4} 55 8(Gs)—>{1,2,3,4} T4 S(Ge)—>{1,2,3,4} M5 8(Ge)—>{1,2,3,4}
2 4 1 2 4

Fig. 1. Total-colorings satisfying the conditions of Theorem 1. (With the dimdicating
the reference vertex at a possible frontjer, v}, the edgeuv will be represented by an
arrow pointing to the reference vertex. We emphasize, neverthelessglaaenot dealing
with directed graphs.) Observe that there exist six 8-choidatut-free partial-grids of
maximum degree at most 3 and that, for each of these graphs, we indicatetdiad-col-
orings. Each coloring is a frontier-coloring (that is, it satisfies the frorctadition for all
frontier-candidates). Observe that, for each indecomposable giagh= 1, ... ,6, there
are two coloringsr, , andm,;, such that, for each frontier candiddte;, u;} of G/, vertex
u; is a reference vertex dfr, o, {u;, u;}) if and only if vertexu; is a reference vertex of
(mep, {ui, uj}). So, the conditions of Theorem 1 are satisfied.
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1. Introduction

In this note G denotes a simple, undirected, finite, and connected grapheitex
setV (G) and edge sek(G). For anyv in V(G), thedegreeof v, denotedig(v),

is the number of vertices adjacention G. A cliqueis a set of pairwise adjacent
vertices ofGG. A maximal cliqueis a clique that is not properly contained in any
other clique. The size of a maximum cliqgue®fs denoted by (G). A stable sets

a set of pairwise non adjacent vertices:bfAn edge-coloringf GG is an assignment
of one color to each edge ¢f such that no adjacent edges have the same color.
The chromatic indexy’, is the minimum number of colors for whio# has an
edge-coloring. A known theorem by Vizing [11] states that,d simple graph, the
chromatic index is at mogk(G) + 1, whereA(G) is the maximum vertex degree.
Graphs whose chromatic index equal§~) areClass1; graphs whose chromatic
index equalsA(G) + 1 areClass2. Despite the restriction imposed by Vizing, it
is NP-complete to determine, in general, if a graph is Class].1There are not
many graph classes for which the problem is known to be polyalp see [5, 7, 9]
for examples. The complexity of the problem is open for veéryctured classes of
graphs such as cographs, proper interval graphs and sghihgr

A graphd satisfying the inequality® (G)| > A(G) L@J is said to be aover-
full graph. A graphG is subgraph-overfullwhen it has an overfull subgraph
with A(H) = A(G) [4]. When the overfull subgrapl/ can be chosen to be a
neighbourhoodwe say thatz is neighbourhood-overfull3]. Overfull, subgraph-
overfull, and neighbourhood-overfull graphs are in Class

* Corresponding author.
1 This research was partially supported by CAPES and CNPq (48252/2Ghd
300934/2006-8).

CTWOS - Universita degli Studi di Milano, Gargnano (Italy), May 132008



A split graphis a graph whose vertex set admits a partition into a stablargba
clique. Split graphs is a well-studied class of graphs foiclimost combinatorial
problems are solved [2, 8, 10]. It has been shown that evedynzakimum degree
split graph is Clasd [1] and that every subgraph-overfull split graph is in fact
neighbourhood-overfull [3]. It has been conjectured thairg Class2 split graph

is neighbourhood-overfull [3]. The validity of this conjece implies that the edge-
coloring problem for split graphs is in P. The goal of this @afs to investigate
this conjecture by giving another positive evidence fowvasidity. We describe a
new subset of split graphs with even maximum degree that issClaUsing latin
squares, we construct a polynomial edge-coloring for tigeaphs.

2. A split graph subset that is not neighbourhood-overfull

A color diagramC' = (C4, ..., C}) is a sequence of color arrays, where each color
arrayC; = [¢;1,..., ¢4, 1 < i <k, consists of distinct colors. A color diagram
C'is monotoniaf the colorc; ; occurs at most; — j times inCy, ..., C;_, for all
1<i<kandl <j<d,.

A monotonic color diagram can be used to provide an edgedogldor a bipartite
graph. LetB be a bipartite graph with bipartitiofU, V'}. If C = (C,,,...,Cy,)

is @ monotonic color diagram where, for each verigx U, C,,. is a set ofdp(u;)
distinct colors, therB has an edge-coloring that uses the color§'pfto color the
edges incident ta;, u; € U [1]. We use this result in our study of edge-coloring of
split graphs.

A k x k-matrix with entries from{0, ...,k — 1} is calledlatin square of ordef; if
every element of0, ...,k — 1} appears in each row and column exactly once. A
latin square of ordek, M = [m, ;|, iscommutativéf m, ; = m;;, for0 <i < j <

k —1anditisidempotentifn,; =i,for0 <: <k — 1.

From now on,G is a split graph with a partitiod @, S}, where@ is a maximal
cligue andS is a stable set. Note thal is also a maximum clique. To every split
graphG we shall associate the bipartite graphobtained fromG by removing all
edges of the subgraph 6f induced by@Q. Let d(Q) be the maximum degree of
vertices of@ in the bipartite graptB, i.e.,d(Q) = max,cq dg(v). ThenA(G) =
w(G@) —14+d(Q).

In [1], Chen, Fu and Ko, use an odd order idempotent commet&itin square to
show that an odd maximum degree split graph is Class 1. It isvkribat there is
an idempotent commutative latin square of ordef; only if, » is odd. Hence, the
technique presented in [1] could not be directly applied @it graphs with even
maximum degree.

In order to provide an edge-coloring with(G) colors for some split graphs when

A(QG) is even, we consider a matrix/ = [m;;], 0 < i,j < A(G) — 2, where
m;; = (i+7) (mod (A(G) —1)). From now on, the entries of a matrix are called
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colors. The matrixV/ is a commutative latin square of ord&fG) — 1, so we need
a new color. We replace some entriesdf with the new color, as described in
Algorithm ColorDiagrams. Then, we consider a verteix S with degree at least
@ and we label the vertices Of asu;, us, . . ., uy ) such thatu, is adjacent to
v,0 < i < dg(v). Then, we use the colar; ; of the submatrix4d = [a; ;| formed
by the firstw(G) rows and columns af/ to color the edgév, u;), 0 < i < dg(v).
After, we use the colog; ; to color the edgéu;, u;) of the subgraph ofr induced
by @, 0 < i, < w(G). Now, it remains to colot()) — 1 edges ofB and we use
the monotonic color diagrar@' produced by our algorithm to color these edges.
The constraints of Theorem 1 are given by this strategy. Td@ithm used in our
approach follows.

Algorithm ColorDiagrams (A(G), w(G), dg(v))
Construct dA(G) — 1) x (A(G) — 1)-matrix M where
Construct a sequence = (Cy, . . . , Cu(@)-1), Where
Ci = [miyw(g), R ,miyA(G),g], 0<1< W(G)
Add m;; as the first element af;, de(v) < i < w(G).
Add A(G) — 1 as the first element af;, 0 < i < w(G).
Construct a matri¥,, ¢ .(c), wherea; ; «— m; ;,0 < i,j < w(G);
[ —0;l —w(G)— 1z —1,¢c— w(G) + z;
If cis odd, thercount «— LWJ, elsecount — LWJ;
While ( < ) and ¢ < A(G) — 2) do
Replace the color from a;;» anda,; of A with A(G) — 1;
Replace the coloA(G) — 1 of C; andCy with ¢;
l—1+1;U — U —1; count < count — 1;
if count = 0, then
r—x+1c—wG)+z;l —1+1;
if cis odd, thercount — | 2@—(@—x"1|.
if cis even, themount «— |

A(G)—E)(G’)—z—QJ .
2 )
Return@, C).

The following results are used in the proof of Theorem 1.

Lemma 1 The matrixA returned by Algorithm ColorDiagrams is commutative, its
elements are fron0, ..., A(G) — 1}, and it has pairwise distinct elements in each
line and column. Moreover, i\(G) is even, the elements of the main diagonal of
A are pairwise distinct.

Lemma 2 Let G be a split graph with eve\(G). If G has a vertex in S with
dg(v) > @ and (d(Q))* > 2w(G) + 1, then the sequend€ returned by the
Algorithm ColorDiagrams is a monotonic color diagram.

Theorem 1 Let G be a split graph with everA(G). If G has a vertex in S with
degree at least'™ and (d(Q))? > 2w(G) + 1, thenG is Class 1.

A split graph satisfying the conditions of Theorem 1 is nagheourhood-overfull.
So, our result gives a positive evidence to the conjectuaeftr any split graph
neighbourhood-overfullness is equivalent to being Class 2.
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1. Introduction

All the graphs in this paper are considered to be undirediieite and contain no
loops or multiple edges. Thdirect productG x H of graphsG and H is a graph
with V(G x H) = V(G) x V(H) and E(G x H) = {{(a,x),(b,y)}|{a,b} €
E(G)and{x,y} € E(H)}. This product is also known as Kronecker product, ten-
sor product, categorical product and graph conjunction.

A vertex coloringis an assignment of labels or colors to each vertex of a gfaph
such that no edge connects two identically colored vertites minimum number
of colors required to color the gragh is called thechromatic numberdenoted
by x(G). An edge coloringof a graphG is a coloring of the edges @f such that
adjacent edges receive different colors. The minimium remal colors required
for such a coloring is calleddge chromatic numbemnd denoted by'(G).

ForS C V(G)U E(G), apartial total coloring of G, is a mappingy : S — C
such that, for each adjacent or incident elemenisc S, we havep(x) # ¢(y).

If S = V(G)UE(G), theny is atotal coloring The least integer k, for which
|C'| = k andy is total coloring, is called thetal chromatic numbeof G and is de-
noted byx”(G) or sometimes also by, (G).Clearly,x”(G) > A(G) + 1. TheTo-

tal Coloring Conjecture (TCG)osed independently by Behzad[11] and Vizing[2],
states that every simple graghhasy”(G) < A(G) + 2. If x"(G) = A(G) + 1,
then G is atype 1 graph; if’(G) = A(G) + 2, then G is a type 2 graph.

TheT'C'C has been confirmed for cartesian product of graglasd H, if the TC'C
holds for the graph& and H by Zmazek, Zerovnik [7] and for the powers of cy-
clesCF by Campos, Mello [5].Here we confirm tHeC'C for direct product of a
path, P,, and a grapltZ, whereG is type 1 graph. We further investigate the total
chromatic number of direct product of a path and an arbitcgcje.

* Corresponding author.
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2. Total coloring of P, x P,

We start by investigating a product of two patls,andP,,, n, m € N.
Theorem 1 \"(P, x P,,) = 5.

PROOF. Clearly, x'(P,) = 2. Now color the edges oF, with colors1 and2,
and color the vertexes df,, with colors{1,2,...,m} in natural order. Define the
function as following:
0:S— 0"
v((g9,h)) = 2- C(h) + 3(mod5)
e((g,h), (9", h) = C'(g,9) +2- C(h)(mod5); h < K’
whereS = V(G)U E(G),C" = {0, 1,2, 3,4} andC andC"’ correspond to coloring
of vertexes and edges respectively as described above.
Take an arbitrary vertex, sdy, h). The neighbours of this vertex afg — 1, —
1),(9g+1,h—1),(¢g—1,h+1),(¢g+1,h+1). As the vertex color depends only
on the second coordinate of the vertex, showing that cokigasd to two vertexes
with consecutive second coordinates is different is sefficiTake(g, 1) and(g +
1,h+1):

o(g,h) — g+ 1,h+1)=2-C(h) —2—2-C(h+ 1) + 2(modb)
=2-C(h) = 2(-C(h) + 1) = —2(modb) # 0.

Now observe the edges surrounding the vefteX). The colors of these edges are:

* o((9,h)(g—1,h—=1))=C"(g,9—1)+2-C(h—1)
* ©((g9,h)(g—1,h+1))=C"(g,9g—1)+2-C(h)
* o((9,h)(g+1,h=1))=C"(g,g+1)+2-C(h—1)
e o((9,h)(g+1,h+1))=C"(g,9+1)+2-C(h)

SinceC’(g,g+1) —1=C"(g,9 — 1) = 1 (without loss of generality) an@'(h —
1)+1 = C(h) = z, the values arz, 2z + 1, 2z + 4, 2z + 2 respectively. Observe
that all the edges have different color. Singgy, h) = 2z + 3(mod5) it is also
proven that the color of the vertex differs from the coloradfacent edgesl

The proof also provides an algorithm for total coloring otlswa graph. It can be
understood in simpler way. If the coloring of edges as dbsdrabove is used, all
the vertexes in sam@-fibre have edges of same colors adjacent. As the maximum
degree of a vertex in &-fibre is4, there is one color from"” set not used and can
be used for color of the vertexes in the fibre.
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3. Total coloring of G x P,

The idea of coloring ofP, x P,,, where one of the paths had no impact on the
coloring of the vertexes and edges in the direct productbeafurther developed
to coloring of a direct product of path and arbitrary gr&ph

Theorem 2 " (G x P,) = A(G x P,) + 1,if X'(G) = A(G).

PROOF. Proof of this theorem is done is similar way as in proof of tleeo 1, by
introducing functiony as:
p:S—C"
¢((g,h)) =X'(G) - (C(h) +1)(mod®)
o((g, ), (9", 1) = C'(g,9) + X' (G) - C(h)(modO); h < hf
where® = (A(G) -2+ 1) andC” ={0,1,2,...,© — 1}.
Again, the colors of adjacent vertexes, edges adjacentbitraay vertex and the

end vertexes of such edges much be verified to have diffecdmtscassigned.
The details of this proof will be given in full papérl

Again, each of the possibl&(G)A(P,) edges inG-fibre gets different color from
setC” assigned and the remaining one can be used to color the vertex
Remark 1 The function used in the proof will also produce total colgriof a
graphG x P,, if the division is done b = A(G) -2+ 3andx/'(G) = A(G) + 1.
However, such coloring will usA(G x P,) + 3 colors which does not match the
conjecture. Better colorings exist in this case .

4. Total coloring of C,, x P,

Coloring of Cy, x P, is an immediate corollary of Theorem 2, however we will
prove that the theorem holds for all the cycles.
Theorem 3 \'(C,, x P,) =5

PROOF. The theorem only needs to be proven for case whete 2k + 1. We will
prove this by observing that the direct prodagy,,; x P, produces an even cycle
Cor4o. There exists total coloring of such an even cycle with 4x]d0]: since the
sum of vertexes and edges in such a cyclg kst 1), we can color it by sequentially
exchanging the color§l, 2, 3,4}. Such an cycle is also bipartite, so the vertexes in
each of partitions will be colored in one color. These pari correspond to two
G-fibres if the cycle is observed as productf. 1 x P,. Without loss of generality,
let the colors of vertexes in the coloréik + 1)-cycle be{2,4} and the edges of
colors{1, 3}.

The graphC,,, x P, is constructed of. copies of such a construction. If the first
copy is colored as described above, the colors of edges,amd3 cannot be used
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for edge colors in next copy. One partition of next copy’sadravill be the partition
of first copy, so one color for the vertexes will already bermedi Now use of of
the colors{1, 3} for the other partition vertexes and use the coload the color
of the other partition from first copy as colors for edges is tiext copy.

Same procedure of assigning colors can be applied to allékieaopies until we
color all the copies of’,, x P,. [
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1. Introduction

We consider the IME-DEPENDENTSHORTESTPATH PROBLEM (TDSPP): given
a directed graplt; = (V, A), a source node € V, a destination node € V,
an interval of time instant$’, a departure time, € 7" and a time-dependent arc
weight functionc : A x T'— R, find a pathp = (s = vy, ..., v, = t) in G such
that itstime-dependent cost, (p), defined recursively as follows:

’Y’I’o (vh U?) - C(Ul, V2, 7—0) (1)
Voo (V15 o 01) =Yg (U1, oy V1) + c(Vim1, Vi, To + Vg (U1, -, 0i21))  (2)

forall 2 < ¢ < k, is minimum. We also consider a function: A — R,
such thatv(u,v) € A, 7 € T (AMu,v) < ¢(u,v,7)). In other words \(u,v)

is a lower bound on the travelling time of afe, v) for all time instants iril". In
practice, this can easily be computed, given an arc lengthtlae maximum al-
lowed speed on that arc. We naturally extentb be defined on paths, i.&(p) =

> (vs)ep Mvi, v7). In this paper, we propose a novel algorithm for the TDSPP
based on a bidirectionad* algorithm. Since the arrival time is not known in ad-
vance (sa: cannot be evaluated on the arcs adjacent to the destinadaba),nour
backward search occurs on the graph weighted by the lowerdiog function\.
This is used for bounding the set of nodes that will be expldrg the forward
search. We assume that the graph has the FIFO property.

* Corresponding author.
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2. A* with Landmarks

A* is an algorithm for goal-directed search, similar to Dijk& algorithm, but
which adds a potential functiom to the priority key of each node in the queue.
One way to compute the potential function, instead of usinglilean distances,
is to use the concept ddandmarks Landmarks have first been proposed in [2];
they are a preprocessing technique which is based on tingtler inequality. The
basic principle is as follows: suppose we have selected A se” of landmarks,
and we have precomputed distandés, (), d(¢,v) Vv € V,{ € L; the following
triangle inequalities holdi(u, t) + d(t, ) > d(u,¢) andd(¢,u) + d(u,t) > d(¢,t).
Thereforer;(u) = maxep{d(u,t) — d(t,¢),d(¢,t) — d(¢,u)} is a lower bound
for the distancel(u, t), and it can be used as a potential function which preserves
optimal paths. On a static graph (i.e. non time-dependbialyectional search can
be implemented, using some care in modifying the potentiattion so that it is
consistent for the forward and backward search (see [3])irditional A* with
the potential function described above is called ALT. Ittraightforward to note
that, if arc costs can only increase with respect to thegioal value, the potential
function associated with landmarks is still a valid lowewuhd, even on a time-
dependent graph. Unidirectional ALT in a time-dependeahacio has been tested
in [1].

3. Bidirectional Search on Time-Dependent Graphs

Our algorithm is based on restricting the scope of a timeeddpntA* search from
the source using a set of nodes defined by a imdependentd* search from the
destination, i.e. the backward search is a reverse sealgk, iwhich corresponds
to the graphz weighted by the lower bounding function

Given a graphG = (V, A) and source and destination vertices € V, the algo-
rithm for computing the shortest time-dependent cost patorks in three phases.

(1) A bidirectional A* search occurs o, where the forward search is run on
the graph weighted by with the path cost defined by (1)-(2), and the back-
ward search is run on the graph weighted by the lower bourfdinction .

All nodes settled by the backward search are included in d&efPhase 1
terminates as soon as the two search scopes meet.

(2) Suppose that € V is the first vertex in the intersection of the heaps of the
forward and backward search; then the time dependent.cest,, (p,) of the
pathp, going froms to ¢ passing through is an upper bound tg,, (p*). In the
second phase, both search scopes are allowed to proceketheriackward
search queue only contains nodes whose associated keydexceeith the
additional constraint that the backward search cannobegpiodes already
settled by the forward search. In other wordsddte the key of the minimum
element of the backward search queue; phase 2 terminatesagas’ > .
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Again, all nodes settled by the backward search are includad.
(3) Only the forward search continues, with the additior@istraint that only
nodes in)M can be explored. The forward search terminates whesettled.

We have the following theorems.

Theorem 1 The algorithm in Sect. 3 computes the shortest time-depémaeh
from s to ¢ for a given departure time,.

Theorem 2 Let p* be the shortest path fromto ¢. If the condition to switch to
phase 3ig. < K for a fixed parametef, then the algorithm in Sect. 3 computes
a pathp from s to ¢ such thaty,, (p) < K., (p*) for a given departure timey.

4. Experiments

of our time-dependent ALT algorithm. Our implementatiowigtten in C++ using
solely the STL. As priority queue we use a binary heap. Ous tegre executed
on one core of an AMD Opteron 2218 running SUSE Linixl. The machine
is clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache. The p
gram was compiled with GC€.1, using optimization level 3. We use 16 maxcover
landmarks [2], computed on the input graph using the lowemiong function\

to weight edges. When performing randem queries, the source targett, and
the starting timey, are picked uniformly at random and results are based on 10000
gueries. We tested our algorithm on the road network of Wed$terope provided
by PTV AG for scientific use, which has approximately 18 roiflivertices and
42.6 million arcs. A travelling time in uncongested traffituation was assigned
to each arc using that arc’s category (13 categories) tardate the travel speed.
We generated time-dependent costs using a random genbested on statistical
real-world data.

Table 4 reports the results of our bidirectional ALT varianttime-dependent net-
works for different approximation values using the European road network as
input. For comparison, we also report the results on the saaeé network for
the time-dependent versions of Dijkstra and unidirectiénid. As the performed
ALT-queries compute approximated results instead of agitsulutions, we record
three different statistics to characterize the solutioalitys error rate, average rel-
ative error, maximum relative error. Bsrror rate we denote the percentage of
computed suboptimal paths over the total number of qudBgselative erroron

a particular query we denote the relative percentage iserethe approximated
solution over the optimum, computed @gw* — 1, wherew is the cost of the ap-
proximated solution computed by our algorithm asidis the cost of the optimum
computed by Dijkstra’s algorithm. We rep@terageandmaximunwvalues of this
guantity over the set of all queries. We also report the nurobeodes settled at the
endof each phase of our algorithm, denoting them with the lapkése 1, phase 2
and phase 3.

As expected, we observe a clear trade-off between the gwdlihe computed so-
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ERROR QUERY

relative # settled nodes time

input | method K rate avg max| phase 1 phase 2 phase 3 [ms]
Dijkstra - 0.0%  0.000% 0.00% - - 8908300 6325.8
uni-ALT - 0.0%  0.000% 0.00% - - 2192010 17758

ALT 1.00 | 0.0% 0.000% 0.00% 125068 2784540 3117160 3399.3

1.05 4.0% 0.029% 4.93% 125068 1333220 1671630 1703.6
1.10 | 18.7% 0.203% 8.10% 125068 549916 719769 665.1
1.13 | 30.5% 0.366% 12.63% 125068 340787 447681 385.5
EUR 115 | 36.4% 0.467% 13.00% 125068 265328 348325 287.3
120 | 44.7% 0.652%  18.19% 125068 183899 241241 185.3
150 | 48.8% 0.844% 25.70% 125068 130144 172157 121.9
2.00 | 48.9% 0.886%  48.86% 125068 125071 165650 115.7

lution and query performance. If we are willing to accept ppraximation factor
of K = 2.0, queries are on average 55 times faster than Dijkstra’'sighgo, but
almost50% of the computed paths will be suboptimal and, although trerage
relative error is still small, in the worst case the appraaded solution has a cost
which is 50% larger than the optimal value. The reason faerghr solution quality
is that, for such high approximation values, phase 2 is ieoytsAs a consequence,
nodes in the middle of the shortest path are not explored bapproach, and the
meeting point of the two search scopes is far from being thiengpone. However,
by decreasing the value of the approximation consfantve are able to obtain
solutions that are very close to the optimum, and performamsignificantly bet-
ter than for unidirectional ALT or Dijkstra. In our experimis, it seems as if the
best trade-off between quality and performance is achiexddan approximation
value of K = 1.15, which yields average query times smaller than 300 ms with a
maximum recorded relative error 63%. By decreasingdy to values< 1.05 it does
not pay off to use the bidirectional variant any more, as thidicectional variant
of ALT is faster and is always correct.
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1. Abstract

We study the Generalized Traveling Salesman Prob@is@, which is a variant
of the well-known Traveling Salesman Proble8. We are given a grapty =
(V, E), whereV is the set of nodes, and the set of edges, each with an associated
cost. The set of nodés is partitioned inton clustersVy, ..., V,, with V; U ... U
Vi, =V andV;NV; = 0if i # j. GTSPis to find an elementary cycle visiting at
least one node for each cluster, and minimizing the sum ofakés of the traveled
edges. We focus on the so-calleduality GTSRE-GTSRH, in which the cycle has
to visit exactly one node for each cluster.

The GTSPis a generalization of th€SP. we obtain the traditional SPin the par-
ticular case where all the clusters are composed by just ode. Thus th&sTSP
is NP-Hard.

Most of the literature focuses on heuristic approachesdivirgy the problem, due
to its high complexity. However, in [1] Fischetti et al. pees$ a Branch and Cut
algorithm to solve the problem to optimality. The best sttart heuristic algo-
rithms for theGTSPare the following:

1. the Generalized Initialization, Insertion and Improernalgorithm by Renaud
and Boctor ([4]);

2. the Nearest Neighbor approach by Noon ([2]);

3. the Reinforcing Ant Colony System by Pintea et al. ([3]);

* Corresponding author.
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4. the heuristic algorithms by Fischetti et al. ([1]), whiate computed at the root
node of the branch-decision tree.

We propose a multi-start heuristic algorithm, which itesgly starts with a ran-
domly chosen set of nodes and applies a decomposition agptoahe problem
combined with improvement procedures. In a decompositigordahm, the prob-
lem is subdivided into two subproblems. According to thesifcation introduced
by Renaud and Boctor ([4]), there are two ways of decomposia@itbblem. One
possibility is to select the nodes to be visited, and thersttant a cycle that vis-
its the selected nodes; another possibility is to deterrthieeorder in which the
clusters are visited, and then construct the optimal cycle.

Our method combines these two approaches, alternatingvthevays of decom-
posing the problem and introducing also some randomnessdar ¢o explore a
greater solution space.

In particular, our approach considers a first phase to daterthe visiting order
of the clusters and a second phase to find the minimum cost.cybk visiting
order of the clusters is obtained as follows: we randomlyosleo with uniform
probability, one node in each cluster and then compute a €&$itfle solution by
using the Farthest Insertion approach, followed Ryapt improvement procedure.
Once the order of the clusters is fixed, the second phass:statBellman-Ford
algorithm is applied. It computes, in polynomial time, tHerest cycle which
visits exactly one node in each cluster. This phase givesveseeof nodes, which
can be different from the one obtained at the end of the firgs@hThus, we apply a
2-opt improvement procedure to the new sequence, allowirigaage in the order
of the clusters. If the order of the clusters is changed, viptyagain the Bellman-
Ford algorithm in an iterative way. Otherwise the curremtison cannot be further
improved, so we start again with a set of nodes, randomlyerh@ath uniform
probability, one from each cluster. However, we also apyodabilistic step: with
probability p each node in the chosen set is substituted by the node condisg
to the same cluster in the best solution found so far. Ourcgmpriteratively repeats
these steps until a stop condition is reached (e.g., timi&lim

The algorithm was tested on a set of benchmark instancemedtthy a clustering
procedure introduced by Fischetti et al. ([1]) applied wtamces from the TSPLIB
library. These instances are generally used to test theegiti of the algorithms
for theGTSP

The results obtained by our approach are compared with tt@alpsolutions ob-
tained by a Branch-and-Cut algorithm presented in [1]. Mosgowve compare our
results with those obtained by the best state-of-art hsugkyorithms. The results
show that our approach is competitive with the other haaragorithms, finding
the optimal solution for th&3.8% of the instances in less thafi seconds, and for
the 100% of the instances in short computing times.
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1. The Swapping Problem

The Swapping Problem (SP) was first introduced by Anily anddia(1992) on
general graphs. In the problem that they defined, each veft@xiven graph may
initially contain an object of a known type, and it may be a&ssted with a de-
sired object of a different type. The initial and final arrangents are assumed to
be balanced, namely that the total number of objects of eguhis equal in both
arrangements. A single vehicle of unit capacity is avaddblr shipping objects
among the vertices. The SP is to compute a shortest routetsaictine vehicle can
accomplish the rearrangement of the objects while follgwims route.

The original SP has many variations. For example, we canealdfie problem on
different graph structures, such as a line, a circle, a ttee,a general graph; and
also consider various capacities of the vehicle: one uvartesfinite capacity:, or
infinite capacity, i.e., thencapacitated SP

In this research we focus on the uncapacitated SP on a lineraadircle, and we
present polynomial-time exact algorithms for each. Foritiear track we present
anO(nlogn)-time exact algorithm, and for the circular track, @an>*logn)-time
exact algorithm, where is the number of vertices on the graph.

Tables 1-3 summarize the known complexity results for thé@Ehe unit capacity,
finite capacity, and infinite capacity cases. The tablesissent the results for the
known Stacker Crane Problerand theDial-a-Ride ProblemThese two problems
can be seen as special cases of the SP, where there is onlyiboé each object
type, thus each product has a specific destination. Witrecd$p the unpacacitated

* Corresponding author.
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Table 1
Results for the Unit Capacity Cask € 1). [from Anily et.al. (2006)]

] | Swapping Problem Stacker Crane Problem

| Graph Structure]]  Preemptive | Non-Preemptive]  Mixed || Preemptive [ Non-Preemptive] Mixed
Line Polynomial?] Polynomial! Polynomial?] Polynomial Polynomial Polynomial
Circle -[16] Polynomial®! Polynomial®] Polynomial'6!
Tree NP-hard?! NP-hard?>10] NP-hard Polynomial NP-hard NP-hard
General NP-hard?! NP-hard?] NP-hard?! NP-hard NP-hard!!] NP-hard
Table 2
Results for the Finite Capacity Case$ 1)
’ H Swapping Problem H Dial-a-Ride Problem ‘
’ Graph StructureH Preemptive\ Non—Preemptive\ Mixed H Preemptive\ Non—Preemptive\ Mixed ‘
Line NP-hard NP-hard NP-hard!®] NP-hard
Circle NP-hard NP-hard NP-hard NP-hard
Tree NP-hard NP-hard NP-hard || NP-hard®! NP-hard®! NP-hard
General NP-hard NP-hard NP-hard || NP-hard NP-hard®! NP-hard
Table 3

Results for the Uncapacitated SP
Graph StructureH Swapping Problem H

Dial-a-Ride Problem

Line Polynomial'5! Polynomial

Circle Polynomiaf Polynomial

Tree

General NP-hard NP-hard!4:17]
* This work.

case (Table 3) it can be seen that the SP on a general graphhamPas it gen-
eralizes the Traveling Salesman Problem. The complexith@iincapacitated SP
on a tree is still an open problem.

1.1 The linear track

For the linear track case we develop an algorithm, whichwallto specify general
initial and terminal positions for the vehicle. Next we lise three key elements of
the algorithm:

e We use thaninimally balanced partitiomefined by Anily et.al. (1999) to deter-
mine the line-segments which the vehicle traverses loaded.

e \We prove that every optimal tour must contain one of two dpeleasic routes.

e We find the minimal total length to be added to the basic rautarder to make
it a feasible solution.

We also present a simplified algorithm, of complexityn), for the case that the
initial and terminal positions of the vehicle are at the emdts.

140



1.2 The circular track

In the circular track case we first prove that in the optimduson the vehicle

either covers all the circumference, or it leaves one irtieencovered. For the
second case, for each interval the problem reduces to the &Riree. For the first
case, we perform a transformation of the given circle to atktear tracks (with

more tham stations each). On these linear tracks we can solve thegmolising

the SP on a line.
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1. Introduction

In the design of large interconnection networks severabfachave to be taken
into account. A usual constraint is that each processor easohnected to a lim-
ited number of other processors and the delays in commimncatust not be too
long. Extensively studied network topologies in this cahteclude graph products
and bundles. For example the meshes, tori, hypercubes ame agictheir general-
izations are Cartesian products. It is less known that sonfiekwewn topologies
are Cartesian graph bundles, i.e. some twisted hypercup@sded multiplicative
circulant graphs [15]. Other graph products, sometimegudifferent names, have
been studied as interesting communication network topesdé, 13, 15].

Furthermore, an interconnection network should be farant. Since nodes or
links of a network do not always work, if some nodes or linke &ulty, some

information may not be transmitted by some of these nodeks.liTherefore the
(edge) fault-diameter has been determined for many impbrtetworks recently
[7,8,12,16]. The concept of fault-diameter of Cartesiardpat graphs was first
described in [11], but the upper bound was wrong, as shownyXx and Hou

who corrected the mistake [16]. An upper bound for the fdidtmeter of Cartesian
graph products and bundles was given in [2, 3]. Also an uppan® for the edge
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fault-diameter of Cartesian graph products was given inaph bundles were
first studied in [14].

We generalize the result of [4] for two factors to Cartesiaapgrbundles. As &-
edge connected graph remains connected if uptd edges are missing, we study
the diameter of a graph with any permitted number of edgesteldl We show that
the edge-connectivity of Cartesian graph bur@leith fibre F' over the base graph
B, is at least:» + kg, and we give an upper bound for the edge fault-diameter of
Cartesian graph bundles in terms of edge fault-diameterseofibre and the base
graph. We also show that the bounds are tight. For detagq,13e

2. Preliminaries

Definition 1 Let B and F' be graphs. A grapld: is a Cartesian graph bundle with
fibre F over the base graph if there is agraph map : G — B such that for each
vertexv € V(B), p~1({v}) is isomorphic toF’, and for each edge = uv € E(B),
p~'({e}) is isomorphic toF O K.

More precisely, the mapping : G — B maps graph elements ¢f to graph
elements ofB, i.e.p : V(G) U E(G) — V(B) U E(B). In particular, here we
also assume that the vertices@fare mapped to vertices @ and the edges of
G are mapped either to vertices or to edgesBofWe say an edge € E(G) is
degeneratéf p(e) is a vertex. Otherwise we call itondegenerateThe mapping
will also be called th@rojection(of the bundlgZ to its base3). Note that each edge
e = ww € F(B) naturally induces an isomorphism : p~'({u}) — p~'({v})
between two fibres. It may be interesting to note that whiig well-known that a
graph can have only one representation as a product (uprtrpbism and up to
the order of factors) [10], there may be many different griahdle representations
of the same graph [17]. Here we assume that the bundle repa¢isa is given.
Example 1 It is less known that graph bundles also appear as computexdep
gies. A well known example is the twisted torus on Figure 1. Canegaph bundle
with fibre C, over base” is the ILIAC IV architecture.

&

<~ 5
=
.!!,-,i!,
[ O—+L |

Fig. 1. Twisted torus: Cartesian graph bundle with fiGreover base”.
Definition 2 Theedge-connectivitpf a graphG, A(G), is the minimum cardinality
over all edge-separating sets (. A graphG is said to bek-edge connectedf
MG) > k.

Definition 3 Let G be ak-edge connected graph and< a < k. Then we define

145



thea-edge fault-diametesf GG as

Du(G) = max {d(G \ X) | X € E(G),|X| = a}.

Note thatD, (G) is the largest diameter among subgraphs efith a« edges deleted,
henceD,(G) is just the diameter of?, (G). Fora > k, the edge fault-diameter of
k-edge connected graph does not exist. In other wa@pd§;’) = oo as some of the
graphs are not edge-connected.

3. Edge Fault-diameter of Cartesian graph bundles

Theorem 1 Let ' and B be kr-edge connected anklz-edge connected graphs
respectively, and- a Cartesian graph bundle with fibr& over the base grapls.
Let \(G) be the edge-connectivity 6f. Then\(G) > kp + kg.

Theorem 2 Let ' and B be kr-edge connected anklz-edge connected graphs
respectively) < a < kr, 0 < b < kg, andG a Cartesian bundle with fibré over
the base grapiB. Then

Dorv11(G) < Du(F) + Dy(B) + 1.

Next example shows that the bound in Theorem 2 is tight.
Example 2 LetG = P,OP,. GG is a graph bundle with fibef' = P, over the base
graph B = P,. Then fora = b = 0 we have

Da+b+1(G> =3,

Dy(B)+D,(F)+1=1+1+1=3.
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1. Introduction

We call partition of the integer a sequence = (A1, \s, ..., \,) such that\; >
Ao > ... > N, and>?_; \; = n. The spectrum of\ is defined bysp(\) =
{A1, A2, ..., Ay} Consider an-vertex graphG = (V, E) and leth = (A,...,\,)
be a partition ofn. A decomposition ofz for A, called a\-decomposition, is a
partition{V;,...,V,} of V such that for alll <i < p, we have|V;| = )\, and the
subgraph of7 induced by any subséf is connected. Such a partitidn, ..., V,
of V' is called a(G, \)-partition. The grapltz is said decomposable if and only if
for all partition A of n the graphy is decomposable fox.

Respectively in 1976 and 1977, Gyori [1] and Lovasz [2] havenshthat anyn-
vertexk-connected grapty is decomposable for all partitions= (\,..., ;) of

n which containk integers. However their proofs do not yield any polynontiade
algorithm. Differents results have been done for partisutases. For a state of the
art see [3]. In [4] it has been shown a polynomial algorithmdeciding if a tripode
(three chains linked to one vertex of degree 3) is decompesab

In this paper we focus on trees with a large diameter. We hgtE) the diameter
of the treeT’. We show that for all partitiorh = (\,...,\,) of n with |sp(\)| >
«, any n-vertex treel” with diameterD(7') = n — « is A-decomposable. This
structural result provides an algorithm to decide if-gertex treel” with diameter
D(T) = n — a is decomposable with time complexity ().

2. Structural results

Proposition 1 below is based on Lemma 1 whose proof is nongivéhis abstract.

* Corresponding author.
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Lemma 1l Let I be a set of natural integers such thatC {1,...,n — 1} and

|I| = o — 1. For all partition A = (A, Aa, ..., \,) of n such that|sp(\)| > «,

there exists a permutatiom,, ..., m, of A such that for alll < i < p we have
am &L

Proposition 1 Consider an-vertex treel’ = (V, E) with diameterD(T) = n —

a. The treeT" is decomposable for all partitions = (A, A2, ..., A,) of n with

[sp(V)] > a.

Proof. We first compute a chain of — o + 1 vertices(xg, =1, . . ., ©,_o) With time
complexityn®®?. The graphF = (Vi, Er) such thatVy = V andEp = E —
{[zo, 1], [T1, 23], . . ., [Tn—a—1,Tn_o]} IS @ fOrest composed af — o + 1 trees each
one containing one vertex of the chdiry, z1,...,z, ). Forall0 < i <n — «

, we noteA; the set of vertices of the tree containing the vertexWe intend
to show that for all partitiol\ = (A1, Ag,..., A,) of n with |sp(\)| > «, there
exists a {',\)-partition V3, V4, ..., V, of V(G) with the following property : for
all0 < i < n— a,there existg € {1,...,p} such thatd; C V;. Then, for all
0 <i < n — «athe vertices of the tree induced bly are included in one of the sets
of the (I",\)-partitionV;, V5, ..., V,,. Such a{",\)-partition is called aT’,\)-clean
partition (see Figure 1).

//‘\\ //‘\\ //‘\\ /‘\\ //‘\\ //‘\\
ANA Al \ ANA
O OO

/ \ / \ / \ / \ / \ / \

/ \ / \ / \ / \ / \ / \
// o \ /[ X1\ [/ T9 \ / //Ii+1 \ [ Tp—a\
fooN foN
/ \ / \ \ \

Ao A Ay Ay A,

Vi

V3

Vs

Fig. 1. A treeT with diameterD(T') = n — a and a [',p)-clean partitionV, V5, V3

Consider the set of natural integefPs= U;—;"{>"_, |4;|} and the set of natural
integers/ = {1,...,n} \ P. We call P the set ofpossible integerand the set
of forbidden integersBy definition, P and I give a partition of{1,...,n}, with
ne€ P,|P|=n—a+1land|/| = a— 1. By Lemma 1, there exists a permutation
m,...,m, Of A such that foralll <i <pwe haveZ§:1 7; € P. This permutation
yields a (I’,\)-clean partition ofl”.C

Notice that the Proposition 1 is tight. Indeed, consider r@egera. Let n =
> ¢! 2. Consider the partition = (2,4,6,...,2a — 2) of n. We havelsp()\)| =
a — 1. Then-vertex treel’ = (V, E) with diameterD(7') = n — « in Figure 2 is
not decomposable for the partitionsince for alli € {1,...,a — 1}, if the vertex
xo € V;, of size2i, then one of the vertice§f, . .., f;} will be isolated and there
IS no part of sizd in A.

3. Algorithmic results

By Proposition 1 any tre& = (V, E') with diameterD(T') = n — « is decompos-
able for all partition\ with |sp(\)| > «. To decide ifT" is decomposable, one must
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fl f2 fa—l

Fig. 2. A treeT" with diametem — «

check wether it is decomposable by all other partitionshig $ection, we present
an algorithm doing so in time®(®), First we consider the case of a single partition.
Proposition 2 Consider an-vertex treel’ = (V, E) with diameterD(T') = n — «.
LetA = (A1, g, ..., \,) be apartition ofn . Deciding if the tred’ is decomposable
for the partition\ can be done with a time complexit§(*).

Proof. If |sp(\)| > «, then by Proposition 1, we know th@tis decomposable for
A. Suppose now thagp(\)| < a—1. We noteuy, us, . . ., u,—1 thea —1 vertices of
T that do not belong to the chainy, x4, . .., z,_,). We intend to generate all the
(T',\)-partitions. We start with the empty setd/, ..., V, of the (I’,\)-partition.
The first step of the process consists in generating all tissiples set$; which
will contain at least one of the vertices, . . ., u,_;. First we construct a set con-
taining the vertex:;. We noteV;, this set. The size of the s&}, can be equal to at
mosta—1 values. For each value, we netthis size ofl/;, . We choose the other ver-
tices of{us, ..., u,_1 } which will belong toV, . There exist&~~! possible subsets
of {us, ..., us_1}. FOr each subset of {us, ..., u,_1}, we add the vertices ¢f in
V.- ThenV;, = {u;}US. Considery = min{: € {0,...,n—a} : A;NV;, # 0}.Let
d=max{i € {0,...,n—a}: A;NV;, #0}. Adding the vertices,, zy11,...,2q

in the subset/;, is a necessary condition (but not sufficient) for the sublymaii’
induced byV;, to be connected. A this step, we must verify if the sub-gréfph io-
duced byV;, is connected. This can be done in ti@én). If it is the case and if we
have|V;,| < cthen we addV;, | — c vertices inV;, from the chaingz,, ..., z,) and
(xq,...,Tn_q), Dy preserving the connexity. There are at most) possibilities.
The number of such possible sets containing the veutide thusO(a2%~'n).

Given such a set containing the vertice we remove the vertices choosen (Bg)
from the tre€l’. We obtain a forest’. From the forest’, we search all the possibles
setsV; containing at least one of the remaining vertiegesThus the number of
. .. - . 2
possible set¥; containing at least one of the vertices . . . , u,—1 is O(a®2* n®).

At this stage, We have to generate all the possible iset®ntaining none of the
verticesu,, . .., u,_1. Letp’ the remaining partition. The partitigrt contains the
integers ofp which have not been used during the first step of the process. L
S be the set of vertices which belong to the sétgontaining at least one of the
verticesuy, . .., u,_1. Let R be the subgraph af induced byl — S. The subgraph

R is a forest with at most connected components, each one being a chain. Thus
deciding if R is decomposable for the partitiphis equivalent to solving a-subset
sum problem, withe < n andn coded in unary. By dynamic programing we can
decide if R is decomposable for the partitignin time n°(®). Thus we can decide
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if T is decomposable for the partitionin time n°(®).0
Theorem 1 Consider an-vertex treel’ = (V, E') with diameterD(T) = n — «.
Deciding if the treel” is decomposable can be done with time complexity).

Proof. By Proposition 1, we know that the tréeis decomposable for all partition

of n with |sp(\)| > «. Thus it remains to study the partition®f n with [sp(\)| <

«a — 1. Consider an integet and an integetv. The number of partitiona of n
with |sp(\)| < a—1is O(an?*) and we can generate them with a time complexity
O(an?**1). By Proposition 2 deciding if the treE is decomposable can be done
with time complexityn®(®). O
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Abstract

Lately, a lot of research has been done®@probe graphs. In this paper we focus on
chordal-bipartite probe graphs. We prove a structural result thati§ a bipartite graph
with no chordless cycle of length strictly greater than 6, tieis chordal-bipartite probe
if and only if a certain “enhanced” grapB* is a chordal-bipartite graph. This theorem is
analogous to a result on interval probe graphs in [13] and to one adaharobe graphs
in [8].

Key words: Probe, bipartite, chordal.

1. Introduction

Let G = (V, E) be a finite, undirected, simple graph. We say that ventésees”
vertexv if uv € E. AsetX C V is astablesetinG if forall u,v € X, (u,v) ¢ E,
i.e., no vertex inX sees another vertex ik. A graphG is abipartite graph if its
vertices can be partitioned into two disjoint stable déts X U Y. We will refer
to this as the “black/white” bipartition of the vertices.

A sequencguy, ..., v,) of distinct vertices is gathin G if (v;,v;11) € FE for

1 < i < n—1. A closed path(vq,...,v,,v;) is called acycleif in addition
(v,,v1) € E. A chordof a cycle(vy, ..., v,,v1) is an edge between two vertices
of the cycle that is not an edge of the cycleclordlesscycle C,, is a cycle which
contains no chords and hasvertices anch edges.

A graph G is achordal graphif it contains no induced chordless cydig,, for
n > 4. A graphG is achordal-bipartitegraph if it is a bipartite graph and it contains
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no induced chordless cyci&,, for n > 6. (Note that just as a chordal graph may
contain triangles, a chordal-bipartite graph may contawordless 4-cycles.)

Let % be a graph class. A graghis called & -probegraph if its vertex set can be
partitioned into two subsetd; (probes) andV (non-probes), wheré/ is a stable

set, and one can add @ a set of edges between pairs of non-probes such that the
resulting graph is ire’. More formally, G is €’-probe if there exists a completion

E' C{(u,v) | u,v € N, u # v} such thatG’ = (V, E U E’) is in €. Recogniz-

ing whether or notz is a ¢-probegraph is known as thaon-partitionedprobe
problem.

In the partitionedversion of the probe problem, the partitionofinto probes and
non-probes is given and fixed. Tipartitioned % ’-probe problem is a special case
of the ¥’-sandwich problem [6].

Interval probe graphs were first introduced by Zhang [13] studlied further in
[7,10-12]. Chordal probe graphs were investigated in [8]acitaracterization and
recognition algorithm was given in [2] for both the partited and non-partitioned
versions. Other probe classes are to be found in [3].

In this paper, we focus on the partitioned version of cholidpartite probe graphs.
In particular, we prove a structural result thatAfis a bipartite graph with no

chordless cycle of length strictly greater than 6, ttiers chordal-bipartite probe
if and only if a certain “enhanced” grapB* is a chordal-bipartite graph. This
theorem is analogous to a result on interval probe graph&3pdnd to one on

chordal probe graphs in [8]. We believe it may also shed layhthe more general
case. We conclude the paper with open questions.

2. Motivation: chordal probe graphs

Let G = (V, E) be a graph whose vertices have been partitioned into & st
probes and a stable s&tof non-probes. The following was proved in [8]:
Lemma 1 If G is a chordal probe graph with respect to the partitiénu NV, then
probes and non-probes must alternate on every chordleds.cyc

In the specific case of a chordless 4-cycle with eddeéc, cd, da, this means that
either{a, c} are probes an¢b, d} are non-probes, or vice versa. Moreover, suppose
that{a, c} are probes, then any possible chordal probe completi@nwbuld be
forced to contain the addition of an edigé which Zhang [13] called aenhanced
edge Theenhanced grapli:* = (P U N, £E*) is defined to be the graph obtained
from GG by adding all enhanced edges from all chordless 4-cycles.

Theorem 1 LetG be a graph containing no induced chordless cyclgsor £ > 4.

If G has a probe/non-probe partition in which probes and non-peoalternate on
every chordless 4-cycle, then the enhanced gi@pis a chordal completion aof.

Lemma 1 together with Theorem 1 prove the next corollary.
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Corollary 1 If G'is aCy-free graphs fok > 4, thenG is chordal probe if and only
if G* is chordal.

This also gave an alternate proof of a result of Zhang [13].
Corollary 2 If G is an interval probe graph, the@™* is chordal.

3. Chordal-bipartite probe graphs

We now turn our attention to the probe problem for chordabhite graphs. Our
goal will be to obtain a result in the same spirit as Cor. 1 indage of a bipartite
graph that has no chordless cycles of size strictly grehgar 6.

Let B = (P, N, F) be a bipartite graph whose vertex set partitioned iA{probes)
and N (non-probes), wheréV is always assumed to be a stable set. Note that in
the case of a bipartite grapB, the “black/white” bipartition of the vertices and
the “probe/non-probe” bipartition of the vertices are gelig different! Moreover,

if B is connected, then the completion edges between non-prabidsave one
endpoint white and the other black, in order to maintain tipattite property.

We begin by stating some necessary properties due to Beualy, [&]. The reader
may wish to reconstruct a proof.

Lemma 2 If B is a chordal-bipartite probe graph with respect to the paotit
P U N, then on every chordless cycle of lengilt in B the following must hold:
(1) every probe sees at most one other probe, (2) there isaat tne edge of the
cycle whose endpoints are probes.

Lemma 2 implies, in particular, that (1) on a chordless cylodge is no consecutive
triple of probes, and that (2) there must be at least two jpdicensecutive probes,
due to the parity of a bipartite graph. Moreover,

Remark 1 In the specific case of a chordless 6-cy€Clg there are exactly 2 non-
probes, one white and one black, opposite each other, and essilpge chordal-
bipartite probe completion aB must contain the added edge joining them.

We will call this forced edge &i-enhanced edgeThus, with respect to a given
probe/non-probe partition, we define tbeenhanced graptB* to be the graph
obtained fromB by adding all bi-enhanced edges from all chordless 6-cycles

We are now ready to state our main result.

Theorem 2 Let B be a bipartite graph that contains no chordless cy€lg for
k > 6. If B has a probe/non-probe partition in which probes and non-psoatisfy
the property in Remark 1 on every chordless 6-cycle, thers a chordal-bipartite
completion ofB.

Similar to the case of chordal probe graphs, Lemma 2 togetiterTheorem 2
immediately prove the next corollary.
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Corollary 3 If B is aCj-free bipartite graph fok > 6, thenB is chordal-bipartite
probe if and only ifB* is chordal-bipartite.

An overview of the proof of the Theorem 2 can be found in theeaoiix.

4. Open questions

In Section 3, we prove that the properties of Lemma 2 chariaetehordal-bipartite
probe graphs in the case where the given graph contains mdless cycles of size
greater than 6. Do these properties characterize chordaitibe probe graphs in
the general case, or are there further conditions needed?

On the algorithmic side, given a probe/non-probe partitba bipartite graphs,
how do we most efficiently find the bi-enhanced edges, thduid B*? What is
the complexity of recognition of chordal-bipartite probejghs, even in the case
where there are no chordless cycles of size greater than 6?
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In the capacitated:-ring-star problem (G:RSP) a set of customers has to be vis-
ited bym vehicles initially located at a central depot. Each vehp@dgorms a route
or ring that starts and ends at the depot and is characterized bydaredrset of
customers andonnection pointsThese connection points are selected among a set
of predefined sites called ti8teinerpoints. Besides, there is alsstar associated
to each vehicle. Thstar of vehiclet is a set of pairs of the forrfu, v) whereu is a
customer and is a customer oBteinerpoint belonging to theing of ¢. In the latter
situation, we say that is connectedo v. Customers in theing-star(i.e., ring or
star) of ¢ are said to be covered hyand their quantity is limited by the capacity of
the vehicle which is assumed to be the same for the entire Neet, a solution for
the GnRSP can be viewed as a setwofing-stars covering all customers. Routing
costs incur for every pair of consecutive sites iing, while connection costs incur
for every connection defined bystiar. The cost of a solution is then given by the
sum of all routing costs plus all the connection costs induzgits m ring-stars.
The CnRSP asks for a solution with minimum cost and can be easilysio be
NP-hard since it generalizes tAgeaveling Salesman Proble(i SP).

The GnRSP was introduced by Baldacci et al. [1] who describe an egidin
in the design of large fiber optics networks. The authors @sed abranch-and-
cut (BC) algorithm for the problem and reported experimentsrehiestances of
moderate size were solved in reasonable time. To the bestrdmmwledge, this
is the only exact algorithm available for thex@®SP. On the heuristic side, Maut-
tone et al. [2] proposed an algorithm combining GRASP (GyeRdndomized
Adaptive Search Procedure) and Tabu Search which obtaioed splutions for
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the same instances tested in [1]. The literature also amtaisults for thdring-
Star Problem(RSP) and its variations [3, 4]. The RSP can be viewed asctestr
case of the @G RSP where a single uncapacitated vehicle is available. ©attrer
hand, thevVehicle Routing-Allocation ProblefyY RAP) presented by Beasley and
Nascimento in [5] is a generalization of ther® SP where customers may remain
unattended, though this situation is penalized in the dlbgéunction. Special at-
tention has been paid to instances of the VRAP where only ehebe is at hand,
the so-callecsingle Vehicle Routing-Allocation Problg61.

In this work we propose an integer programming formulation the GnRSP
based on &et coveringnodel and develop Branch-and-pricg BP) algorithm to
solve it exactly. We decided to investigate the adequacyloicn generation to the
CmRSP, encouraged by the success of this approach for théceleSspacitated
Vehicle Problem (CVRP), that can be interpreted as a speas& of the CmRSP. In
particular, the @ RSP is suited to cope with CVRP applications where customers
can be served indirectly by displacing themselves to a sitered by one of the
m routes. The best results reported in the literature comughe exact solution
of the CVRP were obtained by a robustanch-and-cut-pric§ BCP) algorithm
proposed in [7]. BCP algorithms embed cutting planes ananeolgeneration in a
standard branch-and-bound procedure for solving IntegegrBmming (IP) prob-
lems. One of the key ingredients of the BCP algorithm desdrih [7] refers to the
relaxation to the pricing (column generation) problem. Ppheing problem arising

in the set covering model for ther@RSP asks for a single capacitated ring-star
with minimum reduced cost. Through polynomial reductionslving a variant of
TSP with Profits [8], called Profitable Tour Problem [9], oraa @asily show that
this pricing problem is\V'P-hard. Thus, different ways to relax the pricing problem
to a more tractable one are investigated here.

Our approach to relax the pricing problem is similar to thiatiging ¢-routes for
the CVRP [7]. Basically, g-route is a relaxation of a route that admits repetition
of vertices. In a similar fashion, we adopt a relaxed prigingblem that searches
for arelaxed ring-stari.e., aring-star where vertices are allowed to be repeated in
thering and/or in thestar. Unfortunately, the dual bound obtained by linear relax-
ation becomes weak with this relaxed pricing. It can be impdoby avoiding the
occurrence of:-cycles cycles with length less or equal kg inside therings. The
prohibition of k-cyclesin paths and its use in the relaxation of discrete optimiza-
tion problems is not a novelty. Examples where this idea watied can be found

in [10] for the TSP and in [11] for th®esource Constrained Shortest Path Prob-
lem The elimination oft-cyclesin g-routes was used to solve tkehicle Routing
Problemin [12]. The success of this idea relies on the fact that, fioalsvalues of

k, the elimination oft-cycles can be done without changing the complexity of the
algorithm that computes the pathsgroutes. To eliminaté-cycles fromrelaxed
ring-stars we used théabel setting algorithm(LSA) [13] following the idea of
Irnich and Villeneuve [11] to solve thdon-elementary Shortest Path Problem with
Resource Constraints arkdcycle Elimination11, 14]. By prohibitingk-cycles we
avoid some vertex repetitions in theg, but not in thestar. To get rid of some
repetitions in theing-star we can represent all vertices of theg-starin a string
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in some predefined order, and forbid the occurrenck-ojycles in the string. As
this structure is not actually facycle, we call it ak-stream. We observed that the
prohibition of k-streams was important not only to augment dual bounds,Ibot a
to improve the overall performance of theanch-and-pricealgorithm. When we
forbid 3-streams instead &f-cycles, the number of instances solved at optimality
raised of almost 100%. Moreover, the running time was redluoca average, in
40%. This was made possible through a clever implementatiohedfibel setting
algorithmto identify uselespaths.Uselesgaths arging-starsthat are dominated
with respect to cost and can be discarded during the execotithe LSA. Differ-
ently from the routine presented in [11], our implementati® based on a deter-
ministic finite automaton, which reduceddf% the time spent to solve the pricing
problem.

Conclusions.We proposed aet coveringP model for GnRSP andoranch-and-
price algorithms to solve this model. The key point in developingtsalgorithms
is how to solve the pricing problem, which J¢P-hard. To obtain a faster code,
we relaxed the pricing problem in different ways and, thfoegperimentation, we
investigated which of these variants of the algorithm leadsbetter performance.
We end up with éranch-and-pricecode for the @RSP, calledBP3sA, which
we proved to be competitive with laranch-and-cutalgorithm proposed earlier.
This was achieved through a careful implementation of ther&hm which solves
the relaxed pricing problem via a deterministic finite auddom. We also noticed
that theBP3sA and BC do not dominate each other and some instances are bette
suited for one or the other algorithm. This suggests thatéxéstep in this research
should be the development obeanch-and-cut-and-pricalgorithm combining the
two techniques.
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1. Introduction

Clustering is a fundamental optimization problem and is resiteely studied due
to the wide range of applications including data mining aradhramatical biology.
Classical clustering methods [10] partition a given set ohfsoin R™ into & clus-
ters so as to minimize some dissimilarity measure betweeddba points and the
"center" of the cluster they have been assigned to.

Since in a number of applications the main issue is to pantithe points according

to their co-planarity rather than to their distribution.tvtheir cluster centers, there
has recently been a growing interest for clustering w.ubspaces [13]. In this

work we address the interesting case in which all the sulespa@ hyperplanes.

There are two main variants of the Hyperplane Clustering lBrnol{HCP) depend-
ing on whether the numbérof hyperplanes is known a priork{HCP) or whether
it has to be minimized subject to some maximum error tolezgdiin HCP).

Although there is some related work in computer sciencecfatjirol [8] and com-
putational geometry [2, 9, 12] oltHCP, the only discrete optimization-based ap-
proach for the MN HCP that we are aware of was proposed in [4] for piecewise
linear model fitting with applications to line segment détacin digital images
and time series modeling.

The MIN HCP is defined as follows: Given points{d, ds, ..., d,} in R" and a
maximum allowed tolerance> 0, determine a minimum numbérof hyperplanes
H; = {d@ | a e R"az; = b;},j = 1,...,k, such that each point lies withite
deviation from the hyperplane it is assigned to, where th@elglane parameters

.....
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If we view each data point;, 1 < i < m, as thei-th row of a matrix4A € R™*",
then the hyperplane parameters must simultaneouslyysatisk b + ¢ anda; 7 >
b—e forall1 <i < m.When more than one hyperslab of Wiq‘%n is needed to
cover all the points the resulting linear system containinggirs of complementary
inequalities is clearly infeasible. From now on the subdgepmnts that can be
assigned to a same hyperplane withirs called anh-clusterif the (sub)system
composed by the above complementary inequalities withahees is feasible.

Note that MN HCP is NP-hard since it is already NP-complete to decide hdret
a set of points in the plane (= 2, k = 2) can be covered exactly Bylines € = 0)
unless P=NP [11].

2. Column generation approach

In this work we make a first step towards an exact algorithnsédving the MN
HCP by developing a column generation approach. We propsseavering for-
mulation for the master problera{P). Given the sefS of all possible h-clusters
(or feasible subsystems), for eack S we consider a binary variablg such that
ys = 1 iff the corresponding h-cluster appears in the solution. TheM(P) in
which we minimize the number of hyperplanes can be formdlatefollows:

min >y,
SES
s.t.

seS

ys € {0,1}  VseS,

where D;, = 1 if subsystem (h-clustery contains row (pointy and D;; = 0
otherwise.

Since the number of feasible subsystems can be exponentialthe number of
rows for a given set of inequalities, we work with a repreagwe small subset
S" C S. Generating an appropriat® is a critical issue that will be discussed later.

By solving a linear relaxation aMP (with just the nonnegativity constraints on
they,) for a givenS’ we obtain a feasible solution to the relaxed problem and & dua
valuew; for each constraint ioMP. The setS’, is expanded only if the reduced
cost of a feasible subsysteshgiven by:

p
Cory = 1 — ZDis’wi (2)

i=1

that is to be added to it, is negative. Negative reduced adsbhns are obtained by
solving the pricing subproble®P:
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p

min (1 = Y w;D;) = 1 — max Zp:wiDi (3)

i=1 i=1

s.t.
—e— M1 —-D;) <AZ¥ - Vi=1,...,p 4)
AZ—b< e+ M(1— D) Vi=1,....p (5)
| [2=1 (6)
D; € {0,1} Vi=1,...,p,

where the)M is a large enough constant so that when= 0 constraints (4)-(5)
are inactive.D; = 1 forces the point to be assigned to hyperplane iff they lie
within +e deviation from it. Due to constraint (6), which is needed void the
trivial solution = 0, the pricing subproblem is mixed integer nonlinear program
(MINLP) with a nonconvex constraint.

Note that the objective function (3) with constraints (8)-&mounts to a weighted
version of the M\x FS [5], in which given an infeasible system we look for a
feasible subsystem with the largest total weight. SineexNF S is NP-hard to solve
even approximately and we have the additional nonconvestant (6), thePP

is particularly challenging and we need a heuristic thatlmrepeatedly applied to
produce feasible subsystems (columns) on the fly.

2.1 Solving the pricing subproblems

To generate an initial set of colum®s, we have extended the randomized thermal
relaxation (RTR) for M\x FS proposed in [3], so as to deal with weighted pairs
of complementary inequalities and the normalization (&e #e full paper for a
description.

Since the computational load of our extended RTR can be awifest for large-
sized systems, we propose and investigate alternativengrsubproblems where
trivial solutions are avoided in different ways (with diféat norms).

l-norm pricing subproblem@Given that|| 7 ||<| # |2, Substituting (6) with
| ¥ ||o= 1 we obtain an upper bound for the optimal valué?9?. By using the .,
norm we get a MINLP which can be linearized by reformulating ||.= 1 with
the help of binary variableg € {0,1}" as# > 1 — 2(1 — @), "1 = 1, wherel is
ann-dimensional vector of ones.

Relaxed Pricing SubproblemHere we optimize over the region sandwiched by
putting the largest sized cuboid in a unit spheroid. Theltesuformulation is a
MILP with the additional binary variables v € {0, 1} and the added constraints

- 1 - -
)i — 1, F<(l——)0+1, W1+ 1> 1.

- Um

> 1+

L
T Vm
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3. Computational results

We implemented the column generation approach within thé3gIframework,
using the MINLP solver BONMIN [6] for solving the 2-norm priwy subproblem
and CPLEX for the other MILP pricing subproblems.

Our algorithms were tested on realistic random instancesedisas real world
data. The results provided by the column generation (CG)aabrwith the three
alternative methods for pricing were compared with thogsenébin the literature
and those obtained by a greedy procedure (where feasildgstelns are extracted
iteratively till no rows are left).

For small-sized instances (up to = 150), CG tends to provide better solutions
than the greedy in shorter or comparable CPU time. For |asiged instancesi{ >
500), we obtain better solutions but at the cost of increased GE &s a larger
number of feasible subsystems (columns) needs to be geddwaachieve a small
duality gap. Detailed results will be provided in the coniglarticle.

As far as alternative pricing methods are concerned, ther@mPP requires on
average a smaller computing time than the relaxed/andorm ones. We are cur-
rently experimenting speedup strategies where we alebettveen different pric-
ing subproblems. Future work includes devising branchurg to reach optimality
as well as developing a heuristic to refine the solution glediby the CG in which
points consistent with more than one h-cluster are possaalgsigned.
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1. Introduction

In this paper, we consider the Tactical Berth Allocation Reob(TBAP) with Quay
Cranes Assignment as presented in [4].

The authors take into account two decision problems arisicgntainer terminals,
which are usually solved hierarchically by the terminalnplers: the Quay Crane
Assignment Problem (QCAP), which assigns to incoming shipsreainQC pro-
file (number of quay cranes per working shift), and the Berth Atmn Problem
(BAP), which consists of assigning and scheduling inconsinigps to berthing po-
sitions. QCAP and BAP are strictly correlated, because asdi@C profiles affect
ship handling times, which impact on the berth allocatiomede two problems are
integrated in TBAP and the resulting combined problem iseblat the tactical
level. For more details on container terminal operatioresy@fer the reader to [7],
[6] and [8].

In [4] a compact formulation of the problem is presenteda.é@rmulation with a
polynomial number of variables and constraints. Giver- | N| ships with time
windows on the arrival time at the terminatl, = | M| berths with time windows on
availability, a planning time horizon discretized |iH | time steps, a seb, of fea-
sible QC profiles defined for every shige NV, and the maximum number of quay
cranes available in the terminal, the aim is to find a feasiblagnment of ships to
berths, a feasible scheduling and a feasible QC profile mss&gt for every ship,
in order to maximize the total value of selected profiles.

In this work, we propose a Dantzig-Wolfe reformulation oé tbompact model
presented in [4], whose linear relaxation exhibits a poarelobound. Our refor-
mulation results in a combination of feasible berth and Q€lgasnents, called
berth sequenced he resulting model has an exponential number of variaduhels
is solved via Column Generation (cf. [3]), which yields totbetdual bounds but

* Corresponding author.
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requires the optimal solution of the pricing problem.

We propose a network model to reduce the pricing subprobteamtElementary
Shortest Path Problem with Resource Constrains (ESPPRC)eddpy [1]. The
main difficulty of this formulation is that the number of fdale QC profiles which
can be assigned to ships is huge, although polynomially éeedirand the solution
of the pricing problem on the resulting network might be iagdical.

The set of feasible QC profiles is proposed by practitiontes;main intuition of
our approach is that only a restricted subset of QC profiledgribmtes to the op-
timal solution. Therefore, we propose a two stage columregdion algorithm
which, at the first stage, builds berth sequences over atsobQ€ profiles and, at
the second stage, adds improving QC profiles to the netwodemo

Reduced cost arguments adapted from [2] are used to idemtifgiping and use-
less profiles. More specifically, we investigate reduced casable elimination, a
promising technique to reduce the number of variables iniatgger linear pro-
gram (cf. [5]). In particular, a non-negative integer vateacan be eliminated when
its reduced cost, with respect to a feasible dual solutivceeds the duality gap.

2. Extensive Formulation

We use the concept of berth sequence, which represents antiadjy ordered
(sub)set of ships in a berth with an assigned QC profile.

Let QF be the set of all feasible sequenedsr berthk € M, including the empty
sequence, which means that bettis not used.

Let z* be the decision variable which is 1 if sequence QF is used by bertlk
and 0 otherwise. The extensive TBAP formulation is the foitm:

max Z Z Ufzf 1)

keEM reQk

st D> yrab=1 Vi € N, (2)
keM reQk
SN M <@ Vh € H, (3)
keM reQk
Sok=1 Vk € M, (4)
reQk
ke 0,1} Vr € QF Yk € M. (5)

where:wk is the value of sequeneec QF; ¥ is 1 if shipi in sequence € Q* and

0 otherW|seqﬁ’“ is the number of QCs used by sequence QF at time steph; Q"

is the number of QCs available at time step

The valuev® of a sequence € Q" is given by the sum of the values of the profiles
assigned to ships served by the sequence:

F =33 VP \PE (6)

i€EN peP;
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wherev? is the value of profile € P, and)\ﬁfC is a parameter which is 1 if profile
p € P;isin sequence € O and 0 otherwise.

Equations (2) are ship-cover constraints, (3) are QCs cgpamnstraints and (4)
are convexity constraints. The objective function (1) maixes the total value of
chosen sequences.

Identical restrictions on subsets.We now assume that feasible subsetshave
identical requirements (i.e. berths have identical aditg’s time windows): con-
sequentlyQf = Q Vk.

Let z, be the decision variable which is 1 if sequemce (2 is chosen and 0 other-
wise. The extensive formulation is now defined as follows:

max Y vz (7)
reQ)
st Y Yz =1 Vi e N, (8)
resd
St < Q" vh e H, ©)
reQ
Z Z. =m, (20)
reQ
z, € {0,1} Vr e Q. (11)

Parameters and constraints are the same as in (1)-(5),tdrcépe indexk which
has disappeared.

Note that the integer linear program defined by (7)-(11) skesmnly sequences,
without assignment to berths. However, as berths are asstoriee identical, this
assignment can be done post-optimization, arbitrarilyheuit loss of generality.

3. Two-stage Column Generation

The linear relaxation of (7)-(11), called Master ProblenP(Mhas a huge number
of columns (variables), as it is defined on the space of alliiidasequences. We
define the Restricted Master Problem (RMP) on a sufiset () of columns and

we solve it by column generation.

Let [, 1, mo] be an optimal dual solution to an RMP, wherec R™ is the dual
vector associated to ship-cover constraintsy8}, 0 is the dual vector associated to
capacity constraints (9) and € R is the dual variable associated to the aggregated
convexity constraint (10).

The reduced cost of a sequencis:

Up = Up — Z T5Yir — Z th:} — To (12)

iEN heH

wherer; represents the dual price of serving ship sequence andy, represents
the dual price of using an additional quay crane at time step
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Thepricing problem(or subproblen

~ h
max {v,} = max {v, — Tilir — =T 13
TEQ\Q/{ } TEQ\Q,{ ZEENZ y h§EH,UhQ} 0 (13)

identifies a column™* with maximum reduced cost. if.- > 0, we have identified a
new column to enter the basis;yif- < 0, we have proven that the current solution
of RMP is also optimal for MP.

In the pricing problem, the decisions which have to be made(@rwhether ship

i is in the sequence or not (represented by varighle (ii) whether profilep is
used by ship or not (represented by variabM. which is implicitly involved in
the pricing problem through, = >,c v >, p, v A7), (iii) the order of ships in the
sequence (implicitly represented by variaigg.

By defining a networkG(N, A), which has one node for every shipc N, for
every profilep € P, and for every time step € H, and whose arcs have transit
time equals to the length of the profile, we can reduce thengriproblem to an
Elementary Shortest Path Problem with Resource Constr&SiBRPRC). The size
of this network grows polynomially with the number of shipgrking shifts and
QC profiles; however, in the worst case (unbounded time wusdithe network is
complete and has |N|? arcs. Consequently, since ESPPRC is a NP-Hard combi-
natorial problem, its solution on such a big network is ingpical.

We therefore propose to build the network by considering allemsubse?’ C P,

of QC profiles for every € N, and to solve the MP over this restricted subset. We
remark that this operation prevent us to find a valid dual bioainthe end of the
column generation algorithm. In order to fix this, we add atfiaial QC profile

for each shig, which has the highest profile valig, the shortest duratiof) and

the smallest QC utilization among all feasible QC profilasstup: in P, \ P/. The
solution of the pricing with this additional profile is nowpgr-optimal and thus we
are able to compute a valid dual bound (UB) for the MP.

Thanks to this bound and to a feasible primal solution (LB),caa@ compute a
duality gapg = UB — LB. We can now eliminate all variableg. with a reduced
cost strictly smaller thar-¢g. Since not all\ variables have already been generated
(indeed none of the. € P, \ P! is), we adapt the method recently proposed by
[2] to compute a valid bound on their reduced cost. Remarkalnly QC profile

in P; could be eliminated from the pricing subproblem with thipagach. When

a profile in P! is eliminated, all the corresponding profiles are elimiddtem the
master as well. Among the remaining QC profiles, we selecstiset of profiles
with strictly positive reduced cost and we iterate the eriiiocess. In this sense the
column generation process has two stages: firstly, bertesegs are built consid-
ering a subset of QC profiles and, subsequently, promisingp@€les are added
to the model.
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1. Introduction

In this paper, we address the problem of developing simpleeffitient algorithms
for problems on chordal graphs. Many applications deal wéity large graphs; in
this case an adequate representation affects not only tfermpance of the algo-
rithm but also makes the implementation easier.

We present a compact representation for chordal graphsd@&esaving computer
storage significantly, the representation provides aulthdiinformation of the struc-
tural properties of the graph that leads to more efficierdrédgms for solving prob-
lems for the family.

2. Representing Chordal Graphs

A graphd is said to bechordalwhen every cycle of length 4 or more has a chord
(an edge joining two non-consecutive vertices of the cydasic concepts and
properties of chordal graphs can be found in Golumbic [3] Bladr and Peyton
[1]. All graphs are supposed to be connected.

In [1], Blair and Payton stated that a total ordering of the mma cliques of the
graph, say, Q-, . .., Q,, has therunning intersection propert{RIP) if for each
clique@;, 2 < j </, there exists a cliqug;, 1 <i < j — 1, such that),; N (¢, U

Q2U...UQj-1) CQ;.

For anyRIP ordering of the maximal cliques, a trég,, can be constructed making
each clique); adjacent to garentclique @, identified by the expression above.
Observe that anyRIP ordering numbers each parent before any of its children.

* Corresponding author.
I Supported by grants 306893/2006-1 and 473603/2007-1, CNPzj|.Bra
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Moreover, the set of tre€k,, equals the set of clique-trees@f A clique-tree can
be a representation of a chordal graph.

These results allow us to propose a new representation éodahgraphs. Let: =
(V, E') be achordal graph, ard = {Q1, Q-, . . ., Q,} the set of maximal cliques of
G, with aRIP ordering. Thecompact representatioof G is the sequence of pairs

CR(G) =[(F},5), 6 =) =1,
suchthats; =0,5; =Q,;N(Q1UQU...UQ,_,) andP; = Q; — S;.

The most important advantage of the compact representatien compared with

the clique-tree representation is that several strucpuoglerties of the graph can be
deduced from it. Given a chordal gragtrepresented b§ R(G) = [(Fy, Se), - . ., (Ps, S2),
(P, Sy)], it can be proved that:

The/ maximal cliques of7 areQQ; = P, U Sy, ..., Q= P, US,.

The sequencg?, P4, ..., P] is a perfect elimination orderingpéo of G.

So, S3, ..., Sy are the minimal vertex separators@f

Thesetl’ =V — (S, US3U...U.S,) is the set of simplicial vertices @f.

There is an unique clique-tréé = (Vr, Er) of G such that the edges are the
pairs(Q;, Q;), for ¢ > j > 2, and: is obtained by

i =max{t | S; NP, #0}.

It is interesting to observe that a chordal graph can haveraegompact represen-
tations. As an example, |&€t be a chordal graph with™ = {a,b,¢,d,e, f, g, h}
andE = {(a,0), (a,¢), (a,d), (a,e), (a, ), (b,¢), (b,d), (b,e), (b, f), (e, ), (e, f),
(f,9),(f,h),(g,h)}. TWo correct compact representationg’bére

Chi(G) = [({g, p},{f}). ({e, [} {a, b}), ({a, b, ¢, d}, 0)] and
CRy(G) = [({e,d},{a,0}), ({a, b, e}, {f}), ({ . 9, 1}, D).

Another important advantage is the easy implementatioruefigs. We can con-
sider, for instance, thadjacency querythat tests whether two verticesandv are
adjacent. Ifu andv belong to the samg, then the vertices are adjacent. Otherwise,
letu € P, andv € P}, beingi > j. The vertices are adjacent if and onlyit S;.

3. Generating and Analyzing the Compact Representation

Based on the properties stated in Section 2, it is easy to@@aesimple and effi-
cient algorithm to obtain the compact representation.

Blair and Peyton [1] show that a maximal cardinality seaMR§ detect the max-
imal cliques of the graph searching them one after the otlergan prove the
same to dex-BFS with similar arguments. Based on this theoretical framéwor
we present, in [5], a simple algorithm that determines theimal cliques, the
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minimal vertex separators and the clique-tree. In ordereterthine the minimal
vertex separators of a chordal graph, it is sufficient toleista the intersection of
each pair of maximal cliques adjacent in the clique-treee détermination of the
maximal cliques of the graph can be accomplished explohirgéoof the graph.
The algorithm presented in [3] analyzes the vertices asdppgar in th@ea How-
ever, the same result can be obtained performing an inguctimstruction of the
graph; in this way we are able to build, at the same time, tiggeltree and, conse-
guently, to determine the minimal vertex separator§ oAs this algorithm provide
every partial result needed to establish the representatiis possible to modify it
to obtain, also in linear time&; R(G). Other algorithms that determine the minimal
vertex separators can be found in the literature [2, 4].

We can evaluate the storage needs of the representatiorg Bein >-,_, ,[S;|,

the representation takes+ o memory positions, against+ 2m of the traditional
representation by adjacency sets. Notice that, since amalniertex separator is
always a monotone adjacency setl m. Even when the edges are not represented
twice, the compact representation is better.

Sinceo is not directly related to the number of edges of the graph,iiiteresting
to establish the actual benefit of the compact representdtiis not difficult to see
that good cases happen when there are few maximal cliqués igraph and, for
eachq);, |S;| < |P;| —this corresponds to a smallerThe best case is the complete
graph, since its traditional representation with- n(n — 1) positions is reduced
to n positions. Bad cases happen when the chordal graph has aniamgeer of
maximal cliques, for instancefatree.

However, it is possible to establish a more precise evanaln order to do that, we
must study the spent and saved memory positions for eachhmbglique, on each
representation. This study is presented in the extendeel papng with examples
of the behavior of the compact representation for some krmwhblems of chordal
graphs.
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When a cancer is diagnosed, physicians can prescribe @adidgrapy sessions
whose the aim is to destroy the tumor(s) by exposing it toatamhs while pre-
serving the healthy organs and tissues located in the rawlifeld. Nowadays, to
deliver radiations, most hospitals use a multileaf coltonaThe arm of the colli-
mator can fully circle around the patient and stop at cerdaigles. These angles
give several possible radiation angles in such a way thatgbssible to place the
tumor at the epicenter of the radiations and the organsddadatthe radiation field
are different for each angle (so they receive a smaller dasethe tumor(s)).

To establish a radiation therapy plan three steps are needed

(1) Determining the different radiation angles.
(2) Computing an intensity function for each angle.
(3) Modulating the radiation to obtain the required intéesifor each angle.

Every function computed in step (2) is encoded as an integémxd of sizeM x N
whose entries correspond to elementary parts of the radibgam (calledixels;

the value of each entry,,, of the matrix gives the required dose for the correspond-
ing bixel.

Here we assume that the two first steps are completed. So,ceween integer
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matrix I for each angle, and we have to modulate the radiation sircectmponent
of the multileaf collimator that sends radiation is a linaecelerator which can only
send a uniform radiation. Actually we have to decompose tagir/ as a linear
combination of binary matrices where the ones mean thattiads do get through
and the zeroes that radiations do not get through. The zerdles binary matrices
used in the decomposition are generated by the metalli@$eaf/the collimator
which can block the radiations and are placed between thati@isource and the
patient. The machine has a left leaf and a right leaf for eaahof the matrices we
consider. Thus each row of any binary matrix used in the d@osition consists of
a certain number of consecutive zeroes (correspondingetbikels blocked by the
left leaf), then a certain number of consecutive ones anthfiaaertain number of
consecutive zeroes (corresponding to the bixels blocketthdoyight leaf). Hence,
the matrices used in the decomposition/dfave to satisfy the consecutive ones

property.

Formally, the problem of modulating the radiation can béestas follows: Given a
matrix I of sizeM x N with non-negative integer entries, we seek a decomposition
of I as a weighted sum of binary matrices having the consecuties property.
Moreover, the coefficients of the decomposition are resiico be non-negative
integers. This is due to the fact that the linear accelecaomnot send a smaller dose
than 1 cGray, which corresponds to have a one in the decotigro$dur objective

is to minimize the total sum of the coefficients. This cormeg® to minimizing

the totalbeam-on timgwhich is highly desirable for medical reasons. We call this
problem theminimum beam-on timgroblem (BOT).

Efficient methods to solve this problem were found by manyeunst [1-3, 5]. We
now briefly describe one solution approach. We first definedifierence matrix
A = (Ony) OF sizeM x (N +1) BY 0y := Gyn — binn—1, Wh€I€i,0 = iy ny1 := 0.

If §,., > 0 we know that, for at least,,, time units, the radiation has to pass
through bixel(m, n) and not through bixelm, n — 1). To achieve this the left leaf
in the m-th row has to be placed in positionfor at least,,,, time units. So, the
positive entries of the matrid give a lower bound on the time during which the
left leaves have to be in a certain position. Similarly, tegative entries oA give

a lower bound on the time during which the right leaves havbean a certain
position.

LetnowA™* = (o;f ) andA~ = (9, .) be the matrices of sizk/ x (N + 1) defined
by o := max{0,A,,,} andd, , = max{0, —A,,,}. These matrices describe the
unavoidabldeaf positions. The maximum row sum af" (or A~) gives a lower
bound on the optimal beam-on-time. It turns out that a deasitipn of / with
beam-on-time equal to this lower bound (and hence an optieebmposition)
can be found by matching the first left leaf positionAn with the first right leaf
position inA~, the second with the second,. and so on. Each row is processed
independently from the others. This algorithm is calledstamdard decomposition
algorithm It has complexityO(M N + K M) whereK is the number of matrices
output by the algorithr.

4 Note thatK = O(M N) so the algorithm runs i (M N + M?N).
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We investigate variants of BOT with additional constraimgioe matrices used in
the decomposition. Constraints appearing in the applicatiolude the interleaf
motion and interleaf distance constraint. The former qaivst says that the end of
a left leaf cannot be located at the right of the end of a rigat bf an adjacent row
(in other words leaves in adjacent rows cannot “overlapie BOT under this con-
straint was previously studied by, e.g., Baatar, Hamachegdit and Woeginger

[3].

Fig. 1. The interleaf motion constraint forbids such leaf configurations.

The interleaf distance constraint is new and says that gtartie between the ends
of two left (or two right) leaves can not be bigger than a gertanstant.

i

Fig. 2. The interleaf distance constraint for a constaat2.

The problems are formulated, after an idea of Baataal. [3], by introducing a
M x (N + 1) non-negative integer matri¥’ describing theextraleaf positions.
The decomposition is implicitly described by the pair of nws A* + W and
A~ + W (via the standard decomposition algorithm).

Baataret al.[3] propose a complicated algorithm to solve the resultgvith com-
plexity O(M?N + K M) (they only consider the interleaf motion constraint). Here
for both constraints, we prove that finding an optimal decositppn amounts to
finding a maximum value potential in an auxiliary networkiwiititeger arc lengths.
This leads to cleaner, more efficient algorithms. We give(&/ N + K M) algo-
rithm to solve the problem under the interleaf distance tang. We also give
aO(Mlog(M)N + KM) algorithm for the problem under the interleaf motion
constraint and hence improve on t¢M?2N + K M) algorithm of Baataet al.
Moreover we can show the problem can still be solve@{d/log(M)N + KM)
time when both constraints are considered simultaneoWhbelieve that our al-
gorithms are asymptotically optimal.
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Abstract

We discuss two formulations of the Pattern Minimization Problevian] introduced by
Vanderbeck, andGG| obtained adding setup variables to the cutting stock formulation
of Gilmore-Gomory. LetzL” (u) (2LL(u)) be the bound given by the linear relaxation
of the former (the latter) under a given vector= (uj) of parameters. We show that
zEP(u) > 2L (u), and provide a case where the inequality holds strict.

Key words: Cutting Stock, Integer Decomposition, Linear Relaxations

1. The Problem

Let 7 be a set of one-dimensional part types to be produced byngutlentical
stock items of given length. Letw; < w (let d;) denote the length (the demand)
of part typei € I. In the 1-dimensional Cutting Stock Probletir@SP) one wants
to produced; parts for each € I minimizing the number of used stock items.
A solution to the 1-CSP gives a set of cutting patterns | easbribéng a distinct
way of packing part types af into a single stock item | and the number of times
each pattern is replicated (activation level). In the Pattinimization Problem
(1-PMP), see [5], a solution that uses a minimum number of myitHatterns is
searched among all those with a minimum numbeof stock items, where* is
given by a preliminary solution of the relevartCSP.
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In general, thel-PMP is considerably hard [1]. A non-linear integer forntida

[ Kan] can easily be derived from the 1-CSP compact assignmentirf¥jdelere,
x;; is the number of items of part typeobtained from a stock item cut according
to patternj, z; is the number of times patterpis used, andy; is a 0-1 variable
indicating whether patterpis used at all, or not:

[Kan] min Z Yj (1)
j=1
S 2y = d; iel (2)
j=1
il
sz <z 4)
j=1
2 >0 iel,j=1...2" (7)
0<y; <1 j=1...z" (8)
zij, 25,y; integer i€l j=1...2" 9)

A lower bound to Kan] is given by the optimal value of an associated bin-packing
problem, obtained by settingg = 1,V:, or by a lower bound to this value [3].
These bounds are however too weak for an effective use vathranch-and-bound
algorithm.

2. Reformulations and lower bounds by linear relaxation

Reformulating Kan] by discretization, see [6], gives tighter bounds to tHeMP.
Indeed, different master formulations can be drawn fréfas}], depending on the
set of dualized constraints. In [5], the author describe$MP master formulation
[Van obtained by dualizing (1) and (3), or equivalently, fronsctetization of the
polyedron defined by (2) and (4)-(8).

An alternative master formulatio®[G], very close to that of Gilmore and Gomory
for the 1-CSP [2] with the addition of fixed setup costs, dexifrem discretizing
the polyedron defined by (2), (6) and (7).

Both formulations | an] and [GG] involve variables associated to cutting patterns.
Since the sei( of all the feasible cutting patterns grows exponentiallyhia num-
ber of part types, column generation procedures are ratjtiresolve the linear
relaxations Van®?] and [GG*'] of respectively [an] and [GG]. In fact, such
column generation algorithms are very similar to each osirece both formula-
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tions lead to the same pricing problem. Therefore the qualithe bounds pro-
vided by the linear relaxationd/in*?"] and [GGL'] remains a crucial aspect of
the design of an effective exact algorithm.

In [5] the Author discards formulatior{G], and develops a branch-and-price al-
gorithm for [Van]: he argues in fact thati{an’"] results from the dualization of
fewer constraints of/f an] than [GGLT], and therefore, by Lagrangian theory, the
former must be stronger than the latter.

We notice however that one getgdn] and [GG] by mere dualization of K an]
only if the upper bound,, to the activation level of thé-th cutting patternk € K,

is set to the trivial value*. But both [ an] and [GG] use specific upper bounds
instead of the trivial value*, and indeed their properties strongly depend on those
ug. The main purpose of this note is then to bring the attentiotihe crucial role of
thewu,’s and to show that, in order to find a good and practical eXgotréhm, for-
mulation [G] should not in principle be discarded. In fact, 1§’ (u) andz.L5 (u)
denote the optimal value of programgdn’?] and [GGLT], for u = (up)rek-
Then

Proposition 1 254" (u) < 2£E(u), and the inequality holds strict for some vector
u € R/ of upper bounds to the activation level of cutting patterns.
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1. Extended Abstract

During the last two decades, there has been a growing iniarége developing of
location models on networks, with particular attentionhe tocation of extensive
facilities, such as paths or trees. Almost in all cases, titerm used are theninsum
criterion, according to which the sum of the distances frdintha vertices of the
network to the facility is minimized, and thminimaxcriterion, that is, the distance
from the facility to the farthest vertex in the network is mmized. The present
paper investigates the problem of locating a path-shapziityavith the minsum
criterion without restrictions on the length of the patharterplanargraphs. Ex-
amples of such a problem include the location of pipelinegceation routes, mass
transit routes or routing a highway through a road netwanld, @ublic transit lines.
An optimal path for this problem is also referred to anedian pathand we will
refer to the problem under study as the Median Path ProbleRP)M

In the literature, the median path problem was widely stiad#en there is a re-
striction on the length of the path. In fact, on general neksdhis problem is
NP-complete [3, 5, 11]. In particular, in [5] it is shown thats NP-Complete on
planar graphs with vertex degree less than or equal to 5e\@8jiprovides the same
result on rectangular grid graphs. In [11] it is shown thattfedian path problem
with length at most equal to a given constant, is NP-hard derplanar graphs,
but in [7] it is actually shown that the same problem is NPdharen on the class
of cactus graphs. Nevertheless, [11] provides a pseudapwiial time algorithm
for the solution of MPP with restricted length on seriesgtlat graphs. Moreover,
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if the graph is unweighted, the above algorithm has an ovimad complexity of
O(n'logn), wheren is the number of vertices of the graph.

For MPP with restricted length on general networks difféckrections were inves-
tigated: in [7] a metaheuristic approach was presentedej2iisuggests a branch-
and-cut algorithm. Finally, a number of papers have ingestid the problem of
locating median paths with restricted length on trees aficiexiit polynomial time
algorithms were provided (see, e.g., [1, 4,5, 8, 10]).

Since also MPP without length restrictions is NP-hard oregaimetworks [5], this
problem was mainly studied on trees, as well [9, 10, 12]. Boltést of our knowl-
edge, MPP without length restrictions has not been studiay networks with
cycles.

In this paper we study this problem on the class of outerplgraphs. Notice that,
if we consider a biconnected outerplanar graphthe solution is trivial, since a
median path without restrictions on the length is simplyegiby the path passing
through all the vertices on the outercycle@f On the other hand, this is not true
if we consider the case of finding a median path between twal foral vertices
in a biconnected outerplanar graph. Actually, this wiltwut to be a special case
of our more general problem for which we will provide an algan, linear in the
number of vertices of the graph. In this paper we considentbee general class
of connecteduterplanar graphs (or, simply, outerplanar graphs). tiqudar, we
focus our attention on the case in which equal weights aigraes to the edges of
G, while nonnegative weights are associated to the vertités o

Given an outerplanar graghi = (V, E), with |V'| = n, it can be suitably decom-
posed into blocks and bridges [6] and it can be representedieg? = (Vr, Er),
whereV7 is the set of blocks and bridges Gf There is an edge between two ver-
tices of 7 if they share a cut vertex i&@. We call7 the representation treef G.

In our algorithm we roo7” at any block or bridgd?, and we denote the resulting
rooted tree byZy. In order to provide an algorithm for the MPP @ we need a
preprocessing phase for computing some quantities. Weiexipé structure of the
representation tree @f both in the preprocessing and in the algorithm.

In the preprocessing phase, we visit the tee bottom up, level-by-level, and
compute some quantities associated both to its edges awedriises. Unlike the
preprocessing usually implemented for median path loogtimblems on trees,
here the particular structure of each vertexZgf (i.e., a block ofG) requires a
more complex procedure to compute the necessary quantities

After the preprocessing, the algorithm works by rooting ¢beresponding repre-
sentation tre€/ at any block or bridged and visits7 top down by a breadth-
first-search. For each vertexc V' the algorithm computes the minimum sum of
the distances of a path from a vertexAhto vertexu. Among all the paths found
so far, the algorithm selects the one with the minimum surheflistances?(H).
This procedure is repeated by rootifigat every possible block or bridge. Among
all the pathsP(H ), the optimal pathP* for MPP corresponds to the one with the
minimum sum of the distances.

Let & be the number of blocks and bridgesGh We prove that, for a givert,
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the preprocessing phase appliedZip runs inO(n) time, implying that the time
complexity of the preprocessingds(kn).

We also prove that, for a gived, P(H) can be found irO(n) time. Hence, the
overall time complexity for solving MPP i@ (kn).

In addition, as a byproduct of our main algorithm, we provédinear time pro-
cedure to find a median path without restrictions on its lerxgtween two fixed
vertices in a biconnected outerplanar graph.
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1. Introduction

This paper could be named “The Return of Dynamic Programnon@ptimiza-
tion of Capacitor Allocation in Power Distribution Netwotkdndeed, it revisits
some forty years old ideas that seem to have been forgottée sxrea of capacitor
sizing and placement in power distribution networks.

As energy travels from generation plants to customerstredatresistance in trans-
mission and distribution lines causes dissipation of gnérgesetechnical losses
are large fees on electric power systems; typical figuretofises in the literature
amount to around 7% of total energy production, 2% in trassion and 5% in
distribution [1]. Loss reduction can be seen as a hiddercsaeirenergy.

Capacitor allocation is a cost-effective way to decreasselo power distribution
networks. They can provide local reactive power that regudeehnical losses by
avoiding part of the reactive energy flows in power lines. Bpgmal capacitor

allocation problem searches to find out the best places aed &r capacitors in
distribution networks. The objective function for the plexi reflects a compromise
between cost of capacitors and energy savings along a guepdyback period.

Techniques to unveil the best alternatives for capacitocation in distribution
networks have been developed for more than 50 years. Dursgikties mathe-
matical programming technigues were blooming; among tliymamic program-
ming. A lot of research effort was applied to model problemsuch a way that
it could be addressed as a dynamic programming problem—ficchaan optimal
solution could be easily found. Capacitor allocation in podistribution networks
did not stay aside from the tide. With some simplifying asptions, Duran [2]
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proposed an approach based on dynamic programming to findad®olutions to
the problem.

Most electric distribution networks operate with a radiahfiguration. Using a
graph terminology, a distributiofeederis a tree rooted at a distribution substation
that provides a unique path from the substation to each load.prhe main sim-
plifying assumption adopted by Duran [2] was that thesestdEenot have lateral
branches. Under this assumption, he showed that the capalidcation problem
could be represented as a one-dimensional dynamic progragyproblem. When
the lateral branches are considered, his formulation séemesjuire more dimen-
sions, one for each lateral branch, what precludes thecapioih of the technique
for real scale distribution networks.

In the following decades after the contribution of Duranif#&ny approaches based
on heuristics were proposed to solve the capacitor allmegtioblem in radial dis-
tribution networks. To name a few, Baran and Wu proposed aidteumethod
guided by the solution of a mixed integer programming probf8, 4]; Gallego et
al. adopted tabu search [5]; Mendes et al. proposed a hyenédtg algorithm [6].

This paper revisits the ideas of Duran [2]. It shows that iittther examination
their simplifying assumptions are not necessary; dynamaggamming can be ap-
plied to find optimal solutions for capacitor allocation i@at scale distribution
networks. The chief concept is to project the multidimenalalynamic program-
ming formulation into an equivalent one-dimensional repreation. Ideas and data
structures borrowed from network flows optimization algons allow implemen-
tation of the new approach.

2. Problem Discussion

Technical losses in a secti@gnof a power distribution line can be computed as the
product of the square of electric currents flowing in the biyeghe equivalent resis-
tance of the section. Currents can be decomposedrifpbase componen(sp;,)
andquadrature components,,). The in-phase component is associated with the
active powerP,, also named “useful power", because it is the power used to pro
duce work, light and heat; the quadrature component is egedavith thereactive
power(Q), a consequence of the electric physics that flows back attdifopower
lines without being actually “consumed".

Figure 1 shows a simplified diagram of a distribution feedle in-phase compo-
nent can be computed as, = %, whereV, is the voltage at the first upstream
node—for a graph representation of a distribution netwdelage refer to [7]. The

quadrature component can be computedas= %:. Losses in the sectioh are
computed ag, = Tk%' wherer, is the resistance of sectidn

Losses in power lines can be reduced by installing capaoitg) of adequate size
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Fig. 1. Schematic Diagram of a Power Distribution Feeder.

at some nodes of the distribution network. These capacmeide local reac-

tive power(@¢; and, consequently, reactive curreits, in opposite direction of
2

the quadrature components. This~ r;, L+

%W when a capacito€; is
installed at nodé;, downstream from sectioh

The objective of the capacitor allocation problem can beesged as

Minees |3 F(C) 4 a3 n S 3 gy D H @)y

i€Sc teT keN jeA, (Vk)?

whereS¢ is the set of capacitors for possible allocation in the nekw(C;) is the
cost of a capacitof’;, o, is the value of energy during intervalr, is the duration
of intervalt, T is the set of time intervalsy is the set of nodes in the distribution
network, A, is the set of arcéj with origin at nodek, r; is the resistance of afgj,
Py; is the total active power flow in arcj and@);; is the total reactive power flow
in arckj. All solutions must satisfy power flow equations, electrmanstraints and
specific operational goals [6].

The dynamic programming approach (DP) proposed by Duraag@jciatestages
to the nodes of the distribution networgontrol variableat a nodek to the ca-
pacitive reactive powerdfc;) injected at the node argtateto the total capacitive
power flowing in the arc immediately upstream from a néd# there is only one
arc downstream from each node, it leads to a one-dimendidnaroblem. If there
are more than one arc downstream from the nodes, this DP agpreeeds addi-
tional dimensions, one for each lateral branch; in theses;@®mputing a solution
for real feeders with many arcs downstream from their nosles iimpossible task
(thousands of lateral branches is a common instance). $hahy DP has been
long forgotten as a technique to solve the capacitor ali@cgroblem.

The paper proposes a concept that complements the origieas iof Duran [2].

Instead of increasing the dimension of state variables &hedditional down-

stream branch, it proposes to design very simple seconghirpiaation problems

that give the optimal array of capacitors for the whole sdirahches downstream
from a node. Adoption of this concept allows projecting thehtem into a one-

dimensional DP problem. In doing so, it allows to rescue DR dschnique to

solve real capacitor allocation problems.

Remind that DP finds a global optimum to the problem, what git@sspecial
appeal compared to heuristic approaches.
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1. Introduction

We investigate a problem from the area of competitive lecatvhere two compet-

ing providers, the leader and the follower, sequentialicplfacilities into a market
in order to maximize their revenue. It is assumed that all etitors provide the

same type of good or service. Hence the user preference aphbessed solely in
terms of distances to the locations of the servers. In ouragcethe distances are
induced by an underlying edge weighted graph.

The benefit of each competitor is measured by the size of intg, p&., the total
demand (or weight) of the users connecting to the compefitee providers act
in a non-cooperative way and only aim at maximizing their dnefit. Once the
leader has chosen his position, the follower is able to deter an optimal location.
Hence the follower’s reaction is predictable, which thelkyacan take into account
when he makes the initial decision.

2. Problem Definition

Consider an undirected gragh= (V, E') with positive edge lengthé: £ — N*.
An edge of the graph can be considered as an infinite sebiafs A point = on
edgee = (u,v) is specified by the distance from one of the endpoints ahd the
remaining distance is derived from the invariat, x) + d(x,v) = d(e). Notice
that the set of points of a graph includes the set of nodespditts which are
not nodes are callethner points In the sequel we will usé: (ande) both for
denoting the graph (the edge) and for denoting all of its {sp&s the meaning will
become clear from the context. In the sense of these coasinies the edge length
functiond is extended to a distance functidn G x G — N{ defined on all pairs
of points. Nonnegative node weights VV — N7 specify the demand of users who
are always placed at nodes of the graph.

Let X, Y C G be finite sets of nodes or points, specifying a server planeofeéhe
leader or follower player, respectively. The distance o$aru to a point setV/ is
d(u, M) := min,,ep d(u, m). A useru prefers the follower itl(u,Y) < d(u, X).
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By w(Y < X) :=>{wu) | du,Y) < d(u, X) } the total weight of the follower
party is denoted.

Letr,p € N. Leader and follower are allowed to plaeer r facilities, respectively,
into the graph. LeX,, C G be a set of X,,| = p points. Let

w, (X)) 1= g}g)é w(Y, < X))
Yy |=r

be the maximum influence amyelement follower placement can gain over a fixed
leader placement,. An absolute(r, X, )-medianoidof the graph is any séf. C G
of |Y,| = r points whereu (Y, < X,) = w,(X,) is attained. Let

Wy 1= )Iélé% w, (X))
[ Xpl=p
An absolute(r, p)-centroid of the graph is any seX, C G of |X,| = p points
wherew,(X,) = w,, is attained. The notiondiscrete(r, X, )-medianoidanddis-
crete (r, p)-centroid are defined similarly, with the server sets restricted toesod

X,, Y, C V rather than points.

Previous Results

The (r, p)-centroid andr, X,,)-medianoid problems have been introduced in [1].
The discreter, p)-centroid on a path is solvable in polynomial tifbépn*) while
the absolutér, p)-centroid on a path and the discrétep)-centroid on a spider are
NP-hard [4].

3. Absolute(r, p)-centroid on a path

Let P = (vy,...,v,) the input pathw: V' — N the node weights]: £ — N, be
the edge lengths.

For arbitrary real numbers,y € R we denote byr ~ y := max{z — y,0}
the asymmetric difference. With each leader positionkjgwe associate a vec-
tor (01(X,), . .., 02,(X,)) whered;(X,) := w;(X,) — w;_1(X,) is the incremental
gain of placing theth follower. Hencew, (X,) = >I_, 6:(X,). Sinced,(X,) >
... > 09(X,), finding w,.,, can be considered as arsum minimization problem
[2]. The authors reduce in a general frameworgum optimization problems to
minisum problems. In our context we defingeduced weightéfor 2 € N)

2p

WP (X,) = Y ((0il(X,) = wina (X)) = 2)

=1
and establish the following result:
Lemma 1 (Reduction from r-sum to minisum) There is a suitable € N such
that each optimum under minisum functiof®) is also an optimum under-sum
functionw,.
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In order to evaluate an optimum af*) for a given parametetr ¢ N we use a
dynamic programming approach. Assume the path is populategimentally with
leader servers from left to right. Lét(w, W) =: R denote the rightmost feasible
leader position of placing servers such that(®) restricted to the intervdD, R]
does not exceet’. Then, foranyr = 1,...,pandWW =0,...,w(P),
. JWo, W): Wo+W =W and
RO (m+1,W) = max{x UJ((Z) <R(Z))(7T,W0),x) S } :

We can assume w.l.0.g. that there is always placed a leatter aghtmost node,, .
(Otherwise, add a dummy node with suitable weight to the,@attl increment by
one.) Taking this into respect, the®)-optimum weight can be derived from the
outcome vectoR*) (p, -) of the dynamic programming table by

minw® (X,) = min{ W | R (p, W) > d(v1,v,) }
a corresponding leader server placem&ptcan be derived from maintaining the
positions during the dynamic program.

In order to compute the desired result it suffices to complites@-optima for
z € [0,w(P)] and output a placemeni, wherew, (X,) is minimal.

Lemma 2 (Solvingr-sum problem) The problem of determining,., and a cor-
responding leader placemeni, (i.e., wherew,(X,) = w,, is attained) can be
solved in pseudo-polynomial running tiregp - w(P)? - n?).

From this result we can derive a fully polynomial time appnoeation scheme (FP-
TAS) applying a standard scaling technique to the weighte@hodes [3].
Theorem 1 (Approximation) There is a FPTAS for absolute, p)-centroid on a
path.
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