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Improving the gap of Erdős-Pósa property for
minor-closed graph classes1

Fedor V. Fomina,2 Saket Saurabha,2 Dimitrios M. Thilikos b,3,∗

aDepartment of Informatics University of Bergen PO Box 7800, 5020
Bergen, Norway

bDepartment of Mathematics, University of Athens, Panepistimioupolis, GR-15784
Athens, Greece.

Abstract

Let H andG be graph classes. We say thatH has the Erd̋os-Pósa property forG if for
any graphG ∈ G, the minimum vertex covering of allH-subgraphs ofG is bounded by
a functionf of the maximum packing ofH-subgraphs inG (by H-subgraph ofG we
mean any subgraph ofG that belongs toH). In his monograph “Graph Theory”, R. Diestel
proves that ifH is the class of all graphs that can be contracted to a fixed planar graph
H, thenH has the Erdös-Pósa property for the class of all graphs (with an exponential
bounding function). In this note, we give an alternative proof of this result with a better
(still exponential) bounding function. Our proof, for the case whenG is some non-trivial
minor-closed graph class, yields a low degree polynomial bounding functionf . In particular
f(k) = O(k1.5).

Key words: Erdős-Pósa property, treewidth, graph packing, graph covering

1. Introduction

Given a graphG we denote byV (G) andE(G) its vertex and edge set respectively.
A graph classG is callednon-trivial if it does not contain all graphs. We use the
notationH ⊆ G to denote thatH is a subgraph ofG. We say that a graphG is a
G-subgraph of a graphG′ if G ⊆ G′ andG ∈ G.

1 This research has been done while the first two authors were visiting the Department of
Mathematics of the National and Kapodistrian University of Athens during October 2007.
2 Supported by the Research Council of Norway.
3 Supported by the Project “Kapodistrias” (AΠ 736/24.3.2006) of the National and
Kapodistrian University of Athens (project code: 70/4/8757).
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Let H be a class of graphs. Given a graphG, we define thecovering number ofG
with respect to the classH as

coverH(G) = min{k | ∃ S ⊆ V (G) ∀H∈HH 6* G − S}.

In other words,coverH(G) ≤ k if there is a set of at mostk vertices meeting any
H-subgraph ofG. We also define thepacking number ofG with respect to the class
H as

packH(G) = max{k | ∃ a partitionV1, . . . , Vk of V (G)

such that∀i∈{1,...,k}∃H∈H H ⊆ G[Vi]}.

Less formally,packH(G) ≥ k if G containsk vertex-disjointH-subgraphs.

A graph classH satisfies the Erdös-Pósa property for some graph classG if there
is a functionf (depending only onH andG) such that, for any graphG ∈ G,

packH(G) ≤ coverH(G) ≤ f(packH(G)). (1)

We say that a graphG can be contracted toH if H can be obtained fromG after
a series of edge contractions (thecontractionof an edgee = (u, v) in G results
in a graphG′, in which u andv are replaced by a new vertexve and in which for
every neighbourw of u or v in G, there is an edge(w, ve) in G′). We say thatH is
a minor ofG if some subgraph ofG can be contracted toH. We say that a graph
classG is minor-closedif any minor of a graph inG is again a member ofG. We
denote byM(H) the class of graphs that can be contracted toH.
Theorem 1 (Corollary 12.3.10 and Exercise 39 in [2])M(H) satisfies the Erdös-
Pósa property for all graphs if and only ifH is a connected planar graph.

According to the proof of Theorem 1, the bounding functionf(k) of Relation (1) is
exponential ink. Given a connected planar graphH and a graph classG we denote
by fH,G : N → N the optimal upper bounding function with the property that,for
any graphG ∈ G, Relation (1) holds whenH = M(H) (we know thatfH,G exists
because of Theorem 1).

For instance, according to the classic result of Erdös and Pósa [3] if H = K3 and
G contains all the graphs, thenfH,G(k) = O(k · logk). However, if we restrictG to
be a class of planar graphs, thenfH,G(k) = O(k) [4]. In this note, we conjecture
that this last fact extends whenH is any planar graph and whenG is any non-trivial
minor-closed graph class.
Conjecture 2 If G is a non-trivial minor-closed graph class, thenfH,G is a linear
function for any planar graphH.

The purpose of this short note is to prove that the above conjecture holds if we ask
for a polynomial bound forfH,G, thereby sharpening the result of Diestel in [2].
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2. The main result and the proof

Our main result is the following:
Theorem 3 LetH be for some planar graph and letH be the class of graphs that
are contractible toH. Let alsoG be a non-trivial minor-closed graph class. Then
there is a constantcG,H depending only onG and H such that for every graph
G ∈ G, it holds that

packH(G) ≤ coverH(G) ≤ cG,H · (packH(G))3/2.

The proof of Theorem 3 will be the immediate consequence of Lemmata 1 and 2
below. Before we state and prove them, we need first to define thenotions of tree
decomposition and treewidth.

Let G be a graph. Atree decompositionof G is a pair(T,X = {Xt}t∈V (T )) where
the following conditions hold.

• ∪u∈V (T ) = V (G)
• ∀e∈E(G) ∃t∈V (T ) : e ⊆ Xt

• ∀v∈V (G) T [{t | v ∈ Xt}] is connected.

Thewidth of a tree decomposition ismaxt∈V (T ) |X| − 1 and thetreewidthof G is
the minimum width over all the tree decompositions ofG.

Our first observation is the following.
Lemma 1 LetH be a connected planar graph and letH = M(H). Let alsoG be
a non-trivial minor closed graph class. Then, there is a constant cG,H , depending
only onG andH such that for any graphG, tw(G) ≤ cG,H · (packH(G))1/2.

Proof. Let k = packM(H)(G). During this proof, for any positive integert we will
denote byΓt the(t × t)-grid. Let

cH = min{r | H is a minor of the(r × r)-grid}

and notice that ifm = ⌈k1/2⌉+1, thenpackM(H)(Γm·cH
) > k. We conclude thatG

does not containΓm·cH
as a minor. From the main result in [1], there is a constant

cG depending only onG such thattw(G) ≤ cG · m · cH and the lemma follows.

For the proof of the next Lemma, we will enhance the definitionof a tree decom-
position(T,X ) as follows:T is a tree rooted on some noder whereXr = ∅, each
of its nodes have at most two children and can be one of the following

(1) Introduce node: a nodet that has only one childt′ whereXt ⊃ Xt′ and such
thatt′ is not an introuce node.

(2) Forget node: a nodet that has only one childt′ whereXt ⊂ Xt′ and such that
t′ is not a forget node.

(3) Join node: a nodet with two childrent1 andt2 such thatXt = Xt1 = Xt2.
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(4) Base node: a nodet that is a leaf oft, is different than the root andXt = ∅.

Notice that, according the the above definitions, the rootr of T is either a forget
or a join node. It is easy to see that any tree decomposition can be transformed to
one with the above requirements while maintaining the same width. From now one
when we refer to a tree decomposition(T,X ) we will presume the above require-
ments.

Given a tree decomposition(T,X ) and some nodet of T , we define asTt the
subtree ofT rooted ont. Clearly, ifr is the root ofT , it holds thatTr = T . We also
defineGt = G[∪s∈V (Tt)Xs] andG−

t = Gt − Xt.
Lemma 2 Let H be a connected planar graph and letH = M(H). Then for any
graphG, it holds thatcoverH(G) ≤ (tw(G) + 1) · packH(G).

Proof. Let (T,X ) be a rooted tree decomposition rooted onr with width at mostk.
We set up a labellingp : V (T ) → N ∪ {0} such that

p(t) = packH(G−
t ).

The following observations are direct consequences of the definitions.

Observation 1. Ift ∈ V (T ) is an introduce node witht′ as child, thenp(t′) = p(t).
This holds because thenG−

t′ = G−
t .

Observation 2. Ift ∈ V (T ) is an forget node witht′ as child, thenp(t′) ≤ p(t).
This holds because thenG−

t′ ⊆ G−
t .

Observation 3. Ift ∈ V (T ) is a join node witht1 and t2 as children, thenp(t1) +
p(t2) = p(t). This holds becauseG−

t1 andG−
t2 are disjoint graphs.

Observation 4. Ift ∈ V (T ) is a base node, thenp(t) = 0. This holds because then
Gt is the empty graph.

Observation 5.p(r) = packH(G). This holds because,Xr = ∅ and thusG−
r =

Gr = G.

Let t be a node ofT and lett1, . . . , tρ be its children (clearly,0 ≤ ρ ≤ 2). We say
that t is acritical node ifp(t1) + · · · + p(tρ) < p(t). From the Observations 1–4,
only forget nodes ofT can be critical. Given a nodet of T we defineR(t) as the
set of all critical nodes inTt. We omit the proof of the following claim.

Claim 1. For anyt ∈ V (T ), |R(t)| ≤ p(t).

Given a forget nodet, we denote its child byc(t). For any nodet ∈ V (T ), we
defineS(t) =

⋃
z∈R(t) Xc(z). The proof of the next claim is technical and is omitted

from this extended abstract.

Claim 2. For anyt ∈ V (T ), the setS(t) intersects all theH-subgraphs ofG−
t .
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Applying Claim 2, forTr = T we have thatS(r) meets allH-subgraphs ofG−
r =

Gr = G. From Claim 1,|S(r)| ≤ (k +1) ·p(r) = (k +1) ·packH(G) (Observation
5) and the lemma follows.
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1. Introduction and notations

Let G be agraphwith thevertex setV (G) and theedge setE(G). Unless otherwise
stated, we follow [12] for definitions and notations. A path (or cycle) in a graphG
is called aHamiltonian path(or Hamiltonian cycle) if it contains every vertex of
G exactly once. A graph is calledHamiltonian if it has a Hamiltonian cycle. A
graph is calledHamiltonian connectedif every two vertices ofG are connected by
a Hamiltonian path. We useδ(G) to denote the minimal vertex degree ofG, and we
usedu,v to denote the distance between two verticesu andv.

The n-dimensional pancake graph, denoted by℘n, is a graph with the ver-
tex setV (℘n) = {a1a2 · · · an|a1a2 · · · an is a permutation of1, 2, . . . , n}, and
the edge setE(℘n) = {(a1a2 · · · ai · · · an, b1b2 · · · bi · · · bn)|a1a2 · · · an, b1b2 · · · bn

∈ V (℘n), 2 ≤ i ≤ n, wherebj = ai−j+1 if 1 ≤ j ≤ i andbj = aj if i < j ≤ n}.
The pancake graph is an instance of Cayley graphs [1].℘3 and℘4 are illustrated
in Fig. 1. It is easy to see that℘n is an (n − 1)-regular graph withn! vertices.
The pancake graph was introduced (and named) from the famous"pancake prob-
lem" whose answer is exactly the diameter of the corresponding pancake graph [5].
The diameter of℘n is bounded above by3(n+1)

2
[6]. It is still an open problem to

compute the exact diameter of the pancake graph. The pancakegraph is vertex sym-
metric [1], but not edge symmetric [9]. Some other properties of pancake graphs
can be found in [9–11].

For convenience, we use〈u〉i to denote theith leftmost digit of a vertexu,
i.e., 〈u〉i = ai if u = a1a2 · · · an, where1 ≤ i ≤ n. The edge(a1a2 · · · an,
akak−1 · · · a2a1ak+1ak+2 · · · an) is referred to as ak-dimensional edge, where2 ≤
k ≤ n. We useN (k)(u) to denote the neighbor of a vertexu ∈ V (℘n) which is

CTW08 - Università degli Studi di Milano, Gargnano (Italy), May 13-152008
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Fig. 1. Topologies of pancake graphs. (a)℘3 and (b)℘4.

connected tou by ak-dimensional edge, andE(k)(℘n) to denote the set of allk-
dimensional edges in℘n. It can be observed from Fig. 1 that℘4 consists of four
embedded℘3’s, denoted by℘(1)

4 , ℘(2)
4 , ℘(3)

4 , and℘(4)
4 . In general,℘n comprises

n embedded℘n−1’s: ℘(r)
n for 1 ≤ r ≤ n, where℘(r)

n is the subgraph of℘n in-
duced by those verticesu with 〈u〉n = r. For I ⊆ {1, 2, . . . , n}, we let℘I

n denote
the subgraph of℘n induced by

⋃
r∈I V (℘(r)

n ).

An interconnection network(network for short) is usually represented by a
graph where vertices represent processors and edges represent communication links
between processors. Study of the topological properties ofan interconnection net-
work is an important part of the study of any parallel or distributed system. The
pancake graph is suitable to serve as a network, because of its scalability and other
favorable properties, e.g., regularity, recursiveness, symmetry, sublogarithmic de-
gree and diameter, and maximal fault tolerance [1]. Since faults may occur to net-
works, it is significant to consider faulty networks. Many fundamental problems
such as diameter, routing, broadcasting, gossiping, and embedding were solved on
various faulty networks. Two fault models were adopted before. One is therandom
fault model[4, 7], which assumes that the faults may occur everywhere without any
restriction. The other is theconditional fault model[2, 3], which assumes that the
fault distribution is subject to some constraints, e.g., two or more non-faulty links
incident to each node. It is more difficult to solve problems under the conditional
fault model than the random fault model. No previous work on the pancake graph
considered the conditional fault model. If the random faultmodel is adopted,℘n

can tolerate at mostn−3 edge faults, while retaining a fault-free Hamiltonian cycle
[8]. We useF (⊆ E(℘n)) to denote the set of edge faults in℘n. For p 6= q, we
useẼp,q(℘n) to denote the set ofn-dimensional edges in℘n that connect℘(p)

n and
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℘(q)
n . Some known results of℘n are listed as follows.

Lemma 1.([8]) |Ẽp,q(℘n)| = (n − 2)! for all 1 ≤ p 6= q ≤ n, wheren ≥ 3.

Lemma 2.([8]) ℘n−F is Hamiltonian as|F | ≤ n−3, and Hamiltonian connected
as|F | ≤ n − 4, wheren ≥ 4.

Lemma 3.([8]) Suppose thatu, v ∈ V (℘n) and〈u〉n 6= 〈v〉n, wheren ≥ 5. For
any I ⊆ {1, 2, . . . , n} and |I| ≥ 2, if ℘(r)

n − F is Hamiltonian connected for all
r ∈ I and|Ẽi,j(℘n) − F | ≥ 3 for all i, j ∈ I andi 6= j, there exists a Hamiltonian
path betweenu andv in ℘I

n − F .

Lemma 4.([8]) Suppose thatu, v ∈ V (℘(r)
n ) andu 6= v, where1 ≤ r ≤ n and

n ≥ 4. If du,v ≤ 2, then
〈
N (n)(u)

〉

n
6=

〈
N (n)(v)

〉

n
.

2. Results

First, we show two properties for℘n.

Lemma 5. Suppose thate1, e2 ∈ E(℘4) ande1 6= e2. There exists a Hamiltonian
cycle in℘4 − {e2} that containse1.

Lemma 6. Suppose thats, t ∈ V (℘n), 〈s〉1 = 〈t〉1, ands 6= t, wheren ≥ 4. For
every(x, y) ∈ E(℘n) with {x, y} ∩ {s, t} = φ, there exists a Hamiltonian path
betweens andt in ℘n that contains(x, y).

As a consequence of these lemmas, we obtain our main theorem.It is the first
result on the fault tolerance of the pancake graph under the conditional fault model.
Assuming that there were two or more non-faulty edges incident to each vertex,
we show that℘n contained a fault-free Hamiltonian cycle, even if there were up to
2n − 7 edge faults, wheren ≥ 4.

Theorem 1.℘n − F is Hamiltonian if|F | ≤ 2n − 7 andδ(℘n − F ) ≥ 2, where
n ≥ 4.
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Digraph Embedding onTh
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abstract An upward embedding of a digraph (directed graph) on the plane or a surface is
an embedding of its underlying graph so that all directed edges are monotonic and point
to a fixed direction. Such embedding in some literature is called upward drawingwithout
crossing of edges. Upward embedding testing on the plane and sphere are NP-Complete
problems (cf. [6, 8]). In this paper we study the problem of upward embedding of digraphs
on the horizontal torus which we refer to it byTh. We shall present a characterization of
all digraphs that admit upward embedding onTh. We also show that it is not possible to
find a polynomial time algorithm for upward embedding testing of a given digraph onTh.

1. Introduction

An upward embedding of a digraphD on an embedded surfaceS is an embedding
of its underlying graph on the surface such that all arcs are represented by mono-
tonic curves that point to a fixed direction. A necessary condition for a digraph to
have an upward embedding on a surface is that it has no directed cycle–it is acyclic.
In this paper we deal with upward embedding on a special embedding of ring torus
which we call it horizontal torus and refer to it byTh.

There are major differences between graph embedding and upward embedding of
digraphs. For instance, all genus one orientable surfaces are topologically home-
omorphic to a ring torus, which in turn, from the point of viewof graph embed-
ding is equivalent toTh. But a digraph with an underlying graph with genus one,
may have an upward embedding on the vertical torus, and may fail to have an up-
ward embedding on the horizontal torus (cf., [4]). While the question that whether
an undirected graph has an embedding on a fixed surface has a polynomial time
algorithm [5, 10], there exist polynomial time algorithms for upward embedding
testing of some special cases such as three connected [1], single source [2, 9], and
outerplanar [11] on the plane. Also there exists a polynomial time algorithm for
upward embedding testing of three connected single source digraphs [3] on the
sphere. However, in general, upward embedding testing on the plane and also on
the sphere is NP-Complete [6, 8].

CTW08 - Università degli Studi di Milano, Gargnano (Italy), May 13-152008



Fig. 1. An SNP-digraph

There is a polynomial time algorithm to decide whether a single source and single
sink digraph has an upward embedding onTh [4]. In this paper we shall present a
characterization of all digraphs that admit upward embedding onTh. We also show
that it is not possible to find a polynomial time algorithm forupward embedding
testing of a given digraph onTh.

2. Main results

In this section after introducing some definitions and notations we present the main
results. Here in this paper by equivalence relationR and horizontal torusTh we
mean those defined in [4]. By a digraphD we mean a pairD = (V,A) of vertices
V , and arcsA. A sourceof D is a vertex with no incoming arc. Asink of D is
a vertex with no outgoing arc. BySNP-digraphwe mean a digraph that has an
upward embedding on the sphere but it has no upward embeddingon the plane. A
single source and single sink SNP-digraph is depicted in Figure 1

Dolati et al. [4] showed that an acyclic digraph has an upwardembedding onTh if
it has exactly one source, exactly one sink and the underlying graph of the subdi-
graphs induced on equivalence classes of its arcs with respect to the relationR are
planar so that at most one of them is an SNP-digraph.

In the following we show that by adding new arcs, if necessary, any digraph that
admits upward embedding onTh can be extended to an acyclic digraph which sat-
isfies the above conditions.

Theorem 1. A digraph has an upward embedding onTh if and only if by adding
new arcs, if necessary, it can be extended to an acyclic single source and single
sink digraph whose subdigraphs induced on the equivalence classes of its arcs with
respect toR are planar and at most one of them is an SNP-digraph.

Now we want to show that it is not possible to find a polynomial time algorithm
for upward embedding testing of a given digraph onTh. To this end we define the
source-in-graphof a digraphD which we refer to it bySI(D), as follow:

suppose thatD = (V,A) is a digraph. Let{si1 , . . . , sim} be the set of its sources

12



Fig. 2. A digraphD and itsSI(D)

whose outgoing arcs are more than one . To build theSI(D) from D, we add the
set of vertices{s′i1 , . . . , s′im} and the set of arcs{(s′ij , sij)|j = 1, . . . ,m} to it (see
Figure 2).

By Theorem 1 we solve one of the open problems that presented in[4], by the
following we solve another open problem about upward embedding onTh in the
same reference.

Theorem 2. Suppose thatD is a digraph andD′ is a single source and single sink
SNP-digraph whose source and sink ares′ and t′, respectively. LetS and T be
the set of sources and the set of sinks ofSI(D) respectively.D has an upward
embedding on the sphere if and only if there exists′ ∈ S and t′ ∈ T so that the
resulting digraph from identifying sourcess ands′ and identifying sinkst andt′ of
D′ andSI(D) has an upward embedding onTh.

Corollary 1. It is not possible to find a polynomial time algorithm for upward em-
bedding testing of a given digraph onTh.
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1. Abstract

We address the problem of orienting the edges of an undirected graph so as to
minimize the sum of the distances between a given set of origin-destination pairs
in the resulting directed graph. The problem originates from the design of Per-
sonal Rapid Transit (PRT) networks. We consider an Integer Linear Programming
(ILP) formulation with variables associated with the orientation of the arcs, and
variables associated with the arcs in the paths in the directed graph between origin-
destination pairs. Given that the direct solution of this natural formulation is im-
practical even for small instances, we propose a branch-and-cut approach based on
Benders decomposition, reporting preliminary experimental results on arising from
PRT networks.

2. Motivation and previous work

This work is motivated by the requirements to design optimal, large scale Personal
Rapid Transit (PRT) networks for entire urban areas. PRT is aninnovative type of
public transport [1], with the first system planned to operate in public by the end of
2008 at the new terminal 5 of London-Heathrow airport. PRT iscomposed of a fleet
of fully-automated and electrically-driven vehicles for up to 6 passengers, running
on a dedicated network of one-way guide-ways with small dimensions. Similar
to Taxis, PRT vehicles are available on-demand and 24 hours aday. The access
stations are off-line, ensuring that all vehicles can reachtheir pre-programmed des-
tinations without transfers or intermediate stops. PRT is seen as a truly sustainable
urban mobility alternative that offers high-quality, emission-free and low energy-
usage transportation which is accessible to and affordablefor all social groups. This
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is why PRT has been chosen as the exclusive transport system within the sustain-
able, completely energy self-sufficient city of the Masdar (“The Masdar-Initiative”,
Dubai, United Emirates), covering a 5x5 kilometers area with approximately 100
stations and 40 kilometers of guideways. Capacity limits of PRT systems is a crucial
issue and is vital to the feasibility of large-scale networks. In principle, exceeding
of capacity limits can be avoided in three ways: (i) by reducing headways between
vehicles, (ii) by an intelligent, congestion-avoiding vehicle routing, (iii) by an net-
work that is optimized for a-priory known trip demand patterns. The present work
is concerned with the last option, defining models in order tofind an optimized
layout for a non trivial PRT network: starting from a networkof initially undirected
links, travel costs and a demand matrix between origin- and destination-nodes, the
proposed method will orient all the links so as to minimize the travel costs in the
resulting directed network.

Due to the obvious similarities between PRT and Automated Guided Vehicle sys-
tems (AGV), many previous works originate from AGV applications: Kaspi et
al. [4] and Langevin et al. [5] solved instances taken from the AGV systems, us-
ing ILP models for the capacitated version and solving them by branch and bound.
However, this approach becomes impractical when one considers dense networks
with a large number of origin-destination (OD) pairs. Johnson and Pieroni [6] men-
tioned a branch-and-price approach for solving the uncapacitated version, but with-
out giving any detailed description of the method.

3. Problem formulation and complexity

Let G = (V,E) be an undirected graph, with a lengthℓe and a capacityce = ci,j

associated with each edgee = {i, j} ∈ E. Moreover, letR ⊆ {(i, j) : i, j ∈ V, i 6=
j} be a set of origin-destination pairs, with a demanddr associated with each origin-
destination pairr = (sr, tr) ∈ R. We let anorientationof G be a directed graph
D = (V,A) such that each arc(i, j) ∈ A corresponds to an edge{i, j} ∈ E and,
for each edge{i, j} ∈ E, at most one of the arcs(i, j) and(j, i) is in A. We address
the problem of finding an orientationD of G, along with a path inD joining each
source-destination pair, so as to minimize the weighted sumof the lengths of these
paths, where the weight of the path joining each origin-destination pairr is equal
to its demanddr, and the length of each arca = (i, j) is equal toℓa := ℓi,j. In the
capacitated version, we have the additional constraint that, for each arca = (i, j)
of D, the overall demand of the origin-destination pairs whose path uses arca does
not exceed the arc capacityca := ci,j. Note that, if the capacity constraint is not
imposed, the problem simply calls for an orientation of the edges ofG so that the
weighted sum of the shortest-path distances between origin-destination pairs in the
resulting directed graphD is minimized.

Although the problem has been addressed previously in the literature, we could not
find any explicit statement about its complexity. First of all, note that, in case the
capacity constraint is imposed, even finding a feasible solution to the problem is
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easily seen to be difficult.
Proposition 1 Testing if the problem considered has a feasible solution isNP-
complete.

Proof.In casece = 1 for e ∈ E, the problem has a solution if and only ifG contains
|R| edge-disjoint paths, one fromsr to tr for r ∈ R. This is well known to be NP-
complete.
On the other hand, in case the capacity constraint is not imposed, finding a feasible
solution is easy, though not entirely trivial.
Proposition 2 ([2]) In case the capacity constraint is not imposed, testing if the
problem considered has a feasible solution can be done in linear time.

Proof. Without capacity constraint, the problem has a solution if and only if there
exists an orientation of the edges ofG such that, forr ∈ R, there exists a directed
path fromsr to tr. This can be tested in linear time by the algorithm in [2].
(The algorithm in [2] can also be applied to a mixed graph, in which some of the
edges are already oriented.) The above results, based on well-known facts, leave
open the complexity of the problem without capacity constraints. This is easily
settled by using an old (and not-so-well-known) result by [3].
Proposition 3 The problem considered is NP-hard even in case the capacity con-
straint is not imposed.

Proof. In [3], it is shown that the following problem is NP-complete: given G =
(V,E), find an orientationD of G of diameter2, i.e., such that each node can be
reached from each other node by a path with at most two arcs. Given an instance
of this problem, we define the instance of our problem (without the capacity con-
straint) on the sameG in which R := {(i, j) : i, j ∈ V, i 6= j}, i.e., every ordered
pair of nodes is an origin-destination pair, all demandsdr := 1 and all edge lengths
ℓe := 1. Note that, for each of the|V |(|V | − 1)/2 node pairs(i, j), considering the
two origin-destination pairs(i, j) and(j, i), in every orientationD of G one of the
paths will have weight1, whereas the other one will have weight at least2. This
proves that the optimal value of our problem is at least3/2|V |(|V | − 1). Moreover,
the optimal value is exactly3/2|V |(|V |−1) if and only if there exists an orientation
of diameter2, which shows that by finding an optimal solution to our problem we
can solve the problem of [3].

The natural ILP formulation of our problem is the following.For convenience, let
A denote the set of the possible arcs arising from orientations of the edges inE.
Moreover, for a nodei ∈ V , let δ+(i) andδ−(i) denote, respectively, the set of arcs
in A exiting from and entering inV . The ILP formulation contains binary variables
xa ≡ xi,j, equal to one if the arca ≡ (i, j) ∈ A is present inD, i.e., if edge{i, j}
is oriented from nodei to nodej, and binary variablesyr

a ≡ yr
i,j, equal to one if the

path joining originsr to destinationtr uses arca ≡ (i, j) ∈ A. The model reads:

18



min
∑

r∈R

∑

a∈A

drℓay
r
a, (1)

xi,j + xj,i ≤ 1, ∀{i, j} ∈ E, (2)

∑

a∈δ+(i)

yr
a −

∑

a∈δ−(i)

yr
a =





1, if i = sr

−1, if i = tr

0, otherwise

, ∀i ∈ V,∀r = (sr, tr) ∈ R, (3)

yr
i,j ≤ xi,j, ∀(i, j) ∈ A,∀r ∈ R, (4)

∑

r∈R

dryr
a ≤ ca, ∀a ∈ A, (5)

xa, y
r
a ∈ {0, 1}, ∀a ∈ A,∀r ∈ R. (6)

Constraints (2) impose thatD is an orientation ofG. Equations (3) guarantee that
the arcsa with yr

a = 1 define a path fromsr to tr in D, whereas inequalities (4) link
they and thex variables. Finally, the capacity constraints (5) are not present in the
uncapacitated version.

4. Solution approach and preliminary results

Even without the capacity constraints (5), the direct solution of ILP (1)-(6) by a
general-purpose ILP solver quickly becomes impractical asthe size ofG grows.
On the other hand, in the uncapacitated version, if constraints (4) are removed, the
problem decomposes into|R| + 1 independent subproblems. Based on this, in our
approach we solve the Linear Programming (LP) relaxation ofthe ILP by a Ben-
ders decomposition approach, with a Master Problem with thex variables along
with auxiliary variablesβr expressing the weighted length of the path fromsr to tr
in D, the objective function being

∑
r∈R βr. The constraints of the Master Problem

are (2), along withoptimality constraintsof the formβr ≥ aT x + b andfeasibility
constraintsof the formaT x ≥ b that are originated from the solution of the Slave
Problems. The latter, one for each origin-destination pairr ∈ R, are defined by ob-
jective function (1) (without the summation overr) and constraints (3) and (4), the
value of thex variables being fixed by the current solution of the Master Problem.
Rather than adding Benders’ cuts in a standard way, we addPareto-optimalcuts
using the procedure defined by Magnanti and Wong [8].

In our preliminary experimental results we considered realistic instances of the un-
capacitated version of the problem, associated with a grid network in which50%
of the nodes are stations, and each ordered pair of stations is an origin-destination
pair in R. Moreover, the edge lengthsℓe are uniformly distributed in[0.5, 1.5] and
the demandsdr are uniformly distributed in[0, 50]. In the table above, we compare
the times to solve the LP relaxation (1)-(6) by a direct approach as a single LP
(columnDirect) and by our approach based on Benders decomposition (Bend), im-
posing a time limit of one hour. We also report the optimal LP value (LP val) and
the time required by the linear-time algorithm by [2] (Tarj), that finds a feasible
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Instance |V |/|R| Direct Bend LP val Tarj Heur

Grid5x5 25/156 1 4 10563.605 0 13658.12

Grid6x5 30/210 3 7 20417.285 1 25649.4

Grid6x6 36/306 9 11 32241.3 2 41978.9

Grid7x6 42/420 24 23 47637.86 3 67605.18

Grid7x7 49/600 66 48 63329.925 5 89069.78

Grid8x7 56/756 143 107 94863.065 10 136386.09

Grid8x8 64/992 290 167 136226.865 19 191177.26

Grid9x8 72/1260 534 374 165318.37 27 252931.22

Grid9x9 81/1640 970 561 211137.705 42 314165.59

Grid10x9 90/1980 2980 895 28515.275 52 408750.55

Grid10x10 100/2450 Tlim 1064 371514.9 83 559278.14

Grid11x10 110/2970 Tlim 3661 469287.495 139 800488.2

solution without taking into account the objective function, along with the associ-
ated heuristic value (Heur). The table shows the faster increase in the LP solution
time taken by the direct approach with respect to ours, and the fact that the heuris-
tic solution quality is not terribly bad (considering that this is essentially a random
feasible solution), with a gap with respect to the LP value ofabout40%.

In the full paper, we will report results on larger instances, considering heuristic
and exact enumerative algorithms based on the LP relaxation.

Together with our model we are developing a PRT micro-simulator with the aim
to test and compare the effectiveness of our approach using dynamic vehicle mod-
els. Our future work will be focused on (i) collecting and solving real-world PRT
instances; (ii) solving the problem with capacity constraints, still by Benders de-
composition by using additional auxiliary variables; and (iii) solving the problem
with additional constraints that may arise in PRT applications, such as limits on the
number of arcs that can be present inD.
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1. Routing in VLSI Design

Modern, highly complex integrated circuits cannot be designed without the use of
methods of discrete mathematics: tools based on efficient algorithms are needed
to cope with the ever more demanding requirements of a highlyautomated design
process [1]. VLSI (very large-scale integrated) design combines many classical
combinatorial optimization problems with practical applications, and usually huge
instance sizes.

In the talk, we look at the VLSI routing problem, i.e. the taskof connecting differ-
ent points (metal shapes on the chip called pins) within the chip area by wires
so that they are electrically equivalent. Traditionally, this problem is solved on
an incomplete 3-dimensional grid graph. The graph is obtained from a complete
grid structure in the area by removing parts that are reserved for internal circuit
structures, power supply, or already wired parts. These removed areas are called
blockages as they have to be avoided by the wires placed during routing. Pins and
blockages of such a chip are placed so that they are aligned tothis grid structure,
and wiring follows the edges between adjacent grid vertices. The grid pitch, i.e. the
spacing between two parallel lines, is chosen so that specific rules (called design
rules) regarding minimum distance and spacing between wires are satisfied.

Next to this grid graph, an instance of the routing problem consists of a list of
nets. A net is a collection of pins that have to be connected bymetal wiring.
Different nets have to be connected by disjoint paths. The problem at hand thus
amounts to finding vertex disjoint Steiner trees for each net. Due to the size of ac-
tual instances—a grid graph with more than1011 vertices, millions of nets—this
problem is decomposed into smaller problems, that are then solved sequentially.
Each net is divided into two-point connections (possibly byadding Steiner points),
and then solved by constructing shortest paths between themsuccessively. These
resulting shortest-path problems on a grid graph are computationally tractable also
from a practical perspective by specialized versions of Dijkstra’s algorithm and
sophisticated data structures [2].
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(a) (b) (c)

Fig. 1. Examples of minimum distance and minimum length violations: In (a) the distance
between a wire and pin is not sufficient. In (b) and (c) we have two incident edges which
both do not have the required length. To achieve a valid wiring at least oneof the edges
must be long enough.

However, in recent technologies, blockages and pins of circuits, some of which
need to be connected by routing, have become a lot smaller than the grid pitch.
As a result, pins that form source and target of a path are no longer alligned with
respect to a possible routing grid; we call theseoffgrid. Adjusting the routing grid
by making it finer results in two major problems: the size of the grid itself would
become intractable in memory, and even more important, the minimum distance
and spacing rules avoided by using a routing grid with ’built-in’ sufficient spacing
would have to be taken into account explicitely. This would result in an unaccept-
able increase in runtime.

1.1 Offgrid-Pinaccess

A tractable solution to the routing problem with offgrid sources and targets, is to
still use the grid graph for the larger distances to be covered, and to locally con-
struct small paths from the respective pins to nearby grid points. However, simply
connecting a pin to the nearest point(s) on the grid-graph usually results in infea-
sible wiring due to the restrictions on minimum length and spacing for the wiring
(see Figure 1).

Therefore, we developed an algorithm that computes simple paths from pins to grid
points not violating any design rules. The main idea behind this approach is to first
identify and remove parts of the pin where starting a wire would cause a violation
with the pin itself regardless of its length. Then, from the remaining parts of the
pin we construct paths in each direction respecting the minimum lengths in order
to avoid design rule violations until we reach an ongrid point.

After deleting the paths that result in minimum distance errors to other wires al-
ready present or blockages, the endpoints of the remaining paths are passed as
source resp. target points to the ongrid path search. When an ongrid path between
such points has been found, we simply have to look up the corresponding offgrid
paths and append one of them.
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Fig. 2. Circuits placed on the chip area. Circuits with equal geometric shapesare high-
lighted, these are combined into the same equivalence class. Note that some circuits of the
same class are mirrored (on the left).

2. Equivalence Classes of Circuits

Generally speaking, an integrated circuit maps a boolean function to hardware.
As such, it consists mainly of transistors that have been placed on the chip area
in earlier steps of the VLSI design process. A single building block that maps a
simple boolean function by some transistors is called circuit, and in other words,
the routing problem has to connect the pins of these smaller circuits. A circuit can
be seen as a collection of pins and blockage that is placed within close proximity
on the chip area.

Although we have millions of circuits placed on huge chips, each of them contain-
ing several pins that have to be connected, there actually are only a few thousand
different prototype circuits. As a result, the same configuration of pins and block-
ages can be found on many different locations on the chip area, possibly rotated
or mirrored (see figure 2 for an example). Since also the non-circuit blockages,
e.g. resulting from the power supply, are very uniformly placed, we are able to ex-
ploit this local redundancy by collecting geometrically equal areas and circuits into
equivalency classes.

The benefit of these classes is that we now do not have to compute offgrid paths
for millions of pins separately anymore. Instead it now suffices to work on the pins
of only one representative circuit of each class. All paths for pins of other circuits
can be easily deduced from the already constructed ones. This of course results in
runtime improvents and becomes absolutely necessary when applying sophisticated
and time consuming methods to construct offgrid paths.

On the other hand, these classes have to be computed as well. This poses a new
problem, namely how to collect the circuits into classes, and we designed a sweep-
line approach to do so efficiently.

With this approach, there are several trade-offs involved:

• Computing large classes results in fewer offgrid paths to be constructed, but
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many of these paths become infeasible as some blockage information has to be
omitted to create these large classes. Also, the problem on deciding which block-
age information to include and to exlude in the creation of the classes has to be
solved.

• Computing fine-grained classes, e.g. by taking all blockage information into ac-
count, results in a high number of classes and thus in a high number of offgrid
paths to be constructed.

3. Conclusions

In the talk, we discuss several issues involved in gridless detailed routing, the inter-
face between gridded and gridless approaches, and provide solutions to avoid many
of the problems posed in the context of computer aided designof the latest chips.
We especially focus on the trade-off given by first grouping similar structures into
classes in order to avoid unnecessary computations during pinaccess versus the cost
of computing the classes and coping with incomplete information.
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1. Introduction

Connecting a given set of points with minimum total length is akey problem in
VLSI design. The wires are allowed to run in two perpendicular directions. Mini-
mum Steiner trees minimize the total wire length. Manhattannetworks impose an
additional constraint. In contrast to Steiner trees they must contain ashortestpath
between each pair of points. Given a setP of n points in the plane, aManhattan
networkof P is a network that contains a rectilinear shortest path between every
pair of points ofP . A minimum Manhattan networkis a Manhattan network of
minimum total length. See Figure 1 (a) and (b) for an example.
It is unknown whether it is NP-hard to construct a minimum Manhattan network.

The best approximations published so far are a combinatorial 3-approximation al-
gorithm in timeO(nlogn) by Benkert et al. [1], and an LP-based 2-approximation
algorithm by Chepoi et al. [2]. Kato et al. [4] proposed a2-approximation with run-
ning timeO(n3), however the proof of the correctness seems to be incomplete[1].
Seibert and Unger [5] presented an approximation algorithmand claimed that it
yields a1.5-approximation. As remarked by Chepoi et al. [2] both the description
of the algorithm and the performance guarantee are somewhatincomplete and not
fully understandable.
We present a new combinatorial 3-approximation for this problem in timeO(nlogn).
In contrast to the approximation of Benkert et al. [1] our algorithm and also the
analysis of the approximation ratio is quite easy. We will discuss similarities and
differences below.
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(a) (b) (c) (d) (e)

Fig. 1. (a) A Manhattan network. (b) A minimum Manhattan network. (c)-(e)Different
staircase boundaries for the same staircase.

(a) (b) (c) (d) (e)

Fig. 2. (a) to (d) The four different cases of staircases. (e) Edgesinserted by the sweep
steps.

2. Definitions

Each pair of pointsp andq spans a unique closed axis-parallel rectangleR(p, q)
with p andq as corners. We call two pointsp, q ∈ P (w. l. o. g.px ≤ qx andpy ≤ qy)
x-neighboredif there is no further pointr with px < rx < qx andy-neighbored if
there is no further pointr with py < ry < qy. Obviously for twox-neighbored
pointsp andq a minimum Manhattan networks needs to contain line segmentsof
length|py − qy|.

Almost all approximation algorithms for minimum Manhattannetworks use stair-
cases, but the definition of a staircase is not standardized.To get a clearer definition
we define only one of four symmetric cases of a staircase shownin Figure 2. We
define the staircase type as shown in Figure 2 (a).
Definition 1 A staircaseconsists of a sequence of points(v1, . . . , vk) and twobase
pointsbx, by. For each sequence pointvi, i = 1, . . . , k, thex-base pointbx is thex-
neighbored point in the third quadrant ofvi. They-base pointby is they-neighbored
point in the third quadrant ofvi. Two points belong to the same staircase if they have
the same base points.

Our algorithm partitions the global Manhattan network problem into disjoint local
Manhattan network problems for staircases by inserting edges which separate the
staircases of each other. That is, we construct a boundary for each staircase which
is defined as follows:
Definition 2 A staircase boundaryfor a sequence(v1, . . . , vk) of a staircase with
base pointsbx andby is defined in the following way: For any consecutive sequence
pointsvi andvi+1, 1 ≤ i ≤ k − 1, the staircase boundary contains a shortest path
between the two points. Furthermore, the staircase boundary contains a shortest
path betweenv1 andbx and betweenvk andby.
The area contained in the staircase boundary is calledstaircase area.

The boundary of a staircase is not unique. See Figures 1 (c) to(e) for examples of
staircase boundaries.
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3. A 3-Approximation of Minimum Manhattan Networks

Our3-approximation algorithm for minimum Manhattan networks proceeds in two
steps. In the first step we compute a basic set of edges in each of the two dimensions.
These edges ensure that only sequence points of staircases remain unconnected to
the appropriate base points and that the edges constitute a staircase boundary with
staircase area of size at most the one of the staircase area defined by edges of a
minimum Manhattan network. In the second part we compute Manhattan networks
for the staircases. The general approach to partition the problem in a set of Manhat-
tan network problems for staircases is used by all combinatorial approaches (see
for example [1], [3] or [4]). We now describe our approach in more detail. We
first examine the points from bottom to top. For twoy-neighbored pointsp andq
considered by this sweep we insert the horizontal boundary edges of the rectangle
R(p, q) into our network. Afterwards we perform an analogous sweep from left to
right. See Figure 2 (e) for an example of such a sweep in the twodirections. The up
to now identified edges contain a boundary for each staircase. We now identify all
staircases and compute for each staircase a Manhattan network. On that behalf we
use the standard 2-approximation stated for example by Gudmundsson et al. [3].
Altogether, we obtain a Manhattan network for the input points. See Algorithm 1
for a detailed description.

Algorithm 1 MANHATTAN NETWORK APPROXIMATION

Require: A setP ⊆ R2 of points.
1: SetCR = ∅ andMN = ∅.
2: Sweep over the points ofP bottom-up. Letp be the currently considered point

andq be the previously processed point. Add toCR the horizontal edges of
R(p, q).

3: Sweep over the points ofP from left to right. Letp be the currently considered
point andq be the previously processed point. Add toCR the vertical edges of
R(p, q).

4: for all StaircasesSC do
5: Let MSC be a Manhattan network of the staircaseSC given the staircase

boundary.

6: SetMN = MN ∪ MSC.
7: end for
8: return MN ∪ CR.

The difference to the approach of Benkert et al. [1] lies mainly in the first step.
Whereas we include for pairs ofx-neighbored pointsp andq both horizontal edges
of R(p, q) into our network, they first include only one of the two edges.Unfor-
tunately, these edges do not guarantee a partition into two disjoint areas for which
they can bound the edge length to be inserted separately. Thus, they have to insert
further edges. This complicates both the analysis and the algorithm in comparison
to our approach.
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Our scan procedure yields a 3-approximation outside of staircases and minimizes
the staircase areas. Thus, together with the standard 2-approximation for staircases
we get a 3-approximation altogether. The analysis of this algorithm is tight. Alto-
gether, we get the following theorem:
Theorem 1 For a point setP ⊆ R2 the MANHATTAN NETWORK APPROXIMA-
TION algorithm computes a Manhattan network with total lengthat most3 times
the length of a minimum Manhattan network forP in timeO(nlogn).
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We consider the classical Minimum Graph Coloring Problem (Min-GCP). Given
a graphG = (V,E) and an integerk, a k-coloring of the graphG is a mapping
c : V → {1, . . . , k}, s.t.c(i) 6= c(j),∀{i, j} ∈ E; Min-GCP consists in finding the
minimumk such that ak-coloring exists. Min-GCP is NP-hard [5].

Constraint Programming (CP) is a natural choice as a method forchecking if ak-
coloring exists, since constraint propagation can be exploited quite effectively [1].
Standard CP lacks efficient mechanisms to guide the search towards the optimal
region, and to derive effective bounds on the minimumk. For this reason, hybrid
methods that integrate CP with standard mathematical programming techniques
have been recently investigated; amongst them, two promising hybrid approaches
are (i) the exploitation of Semidefinite Programming relaxations into Constraint
Programming, and (ii) the so–called Constraint Programming-based Column Gen-
eration. We have applied both hybrid approaches to the Min-GCP obtaining inter-
esting results and new insights for integrating the SDP-relaxation into the CP-based
Column Generation approach.

The idea of using SDP relaxations within a CP approach to combinatorial optimiza-
tion problems has been introduced in [9] for the stable set and the maximum clique
problems. There is a wide literature on SDP relaxations of the Min-GCP (e.g., see
[3]). Here we propose to use the solution of the SDP relaxation of Min-GCP in or-
der to devise effective branching rules within the CP code, breaking ties carefully.
The SDP relaxation gives for every pair of vertices the likelihood of coloring them
with the same color. We observe that in the case of Min-GCP we deal not with bi-
nary variables as in [9], but with integer variables. Different rules for choosing the
next vertex to color and the color to assign to it are experimented.

The CP-based Column Generation framework has been introducedin [4] for solv-
ing a crew scheduling problem, and it was motivated by the need to model complex
numerical and logical constraints. The main idea of CP-basedColumn Generation
is that the pricing subproblem is formulated as a Constraint Satisfaction Problem
(CSP) and is solved using Constraint Programming. A regular Column Genera-
tion formulation of Min-GCP is introduced in [7], where the master is a classical

CTW08 - Università degli Studi di Milano, Gargnano (Italy), May 13-152008



set partitioning problem, and the pricing is a maximum weighted independent set
problem. In our CP-based formulation, the pricing subproblem is to find a maximal
independent set with a weight greater than a given thresholdτ , corresponding to
find a negative reduced cost variable to enter the basis of themaster problem. To
make CP efficient in solving the pricing subproblem we use two accelerating tech-
niques introduced in [6]: the first technique consists in using a randomized breaking
ties strategies into the CP solver, and the second in using an adaptive thresholdτ
that changes throughout the iterations of Column Generation.

Since CP-based Column Generation solves the linear relaxations of the integer mas-
ter problem, to solve exactly Min-GCP we need to implement a branch-and-price
algorithm. In branch-and-price, we are faced with the problem of devising effective
branching rules. For Min-GCP, an effective strategy is to select at every branching
node a couple of vertices(i, j) that are not adjacent, and to either force them to
take the same color or to take different colors [7]. This is equivalent to formulate
two new graph coloring problems: the first resulting from merging vertexi andj
into an additional vertexij and deleting eventual parallel edges, and the second in
adding an edge between vertexi andj. This branching rule allows a recursive use
of the same CP-based Column Generation algorithm, but to be effective the couple
of vertices(i, j) must be chosen carefully. This is the same issue faced with the CP
formulation, and that we have solved with the hybrid CP-SDP approach. Therefore,
our new idea is to use again the SDP relaxation of Min-GCP to devise an effective
branching rule for the branch-and-price algorithm.

For the experimental campaign, we focus on the instances of Min-GCP that are
very challenging for existing exact methods, like DSATUR [2], branch-and-cut [8],
and regular branch-and-price [7]. In particular these methods spend plenty of com-
putational time in closing the gap between fractional and integer solutions. Among
such instances, Mycielski graphs, although of small size, are particularly challeng-
ing, and hence have been chosen as the first benchmark set. Computational expe-
rience shows that our hybrid CP-SDP approach outperforms known exact methods
on Mycielski graphs. The second set of benchmark are the(n, p) random graphs,
with n vertices andp expected density; these graphs have bigger size than My-
cielski graphs and for most of them the chromatic number is still unknown. On
random graphs, the CP-based Column Generation outperforms the hybrid CP-SDP
approach, since it is able to fully exploit the linear lower bounds. In particular,
with the CP-based Column Generation we were able to close two open instances
(DSJC125.9 and DSJC250.9) and to improve the lower bound of other four in-
stances (DSJC125.5, DSJC250.5, DSJC500.9, DSJC1000.9). At thetime of writ-
ing, the hybrid SDP-CP-based Column Generation is under testing and validation,
but preliminary results suggests that this new hybridization approach is indeed in-
teresting.
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1. Introduction

Wavelength Division Multiplexing (WDM)is a dominating technology in contem-
porary all-optical networking. It allows several connections to be established through
the same fiber links, provided that each of the connections uses a different wave-
length. A second requirement is that a connection must use the same wavelength
from one end to the other in order to avoid the use of wavelength converters which
are costly or slow. In practice, the available bandwidth is limited to few dozens, or
at most hundreds, wavelengths per fiber and the situation is not expected to change
in the near future. It is therefore impossible to serve a large set of communication
requests simultaneously. It thus makes sense to consider the problem of satisfying a
maximum profit subset of requests, where profits may represent priorities or actual
revenues related to requests. In our model, requests are undirected, which corre-
sponds to full-duplex communication. We describe a requestby its connection path
and its profit, and formulate the problem in graph-theoreticterms as follows:

MAXIMUM PROFIT PATH COLORING PROBLEM (MAX PR-PC)
Input: a graphG, a set of pathsP, a profit functionw : P → R and a number of
available colorsk.
Feasible solution: a set of pathsP ′ ⊆ P that can be colored withk colors so that
no overlapping paths are assigned the same color.
Goal: maximize

∑
p∈P ′ w(p).

1 Research supported by PENED 2003 project, cofinanced 75% of publicexpenditure
through EC – European Social Fund, 25% of public expenditure throughMinistry of Devel-
opment – General Secretariat of Research and Technology of Greece and through private
sector, under measure 8.3 of Operational Programme “Competitiveness” inthe 3rd Com-
munity Support Programme. We also acknowledge funding from the NationalTechnical
University of Athens, through PEBE 2007 Basic Research Support Programme.
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Here we study MAX PR-PC in rings with undirected requests and we present a
2-approximation algorithm.

While the cardinality version of the problem (MAX PC) has been studied by several
researchers [1, 3], MAX PR-PC has been considered in rather few papers [4–6].
Both MAX PR-PC and MAX PC areNP-hard even in simple networks such as rings
and trees; this can be shown by an immediate reduction from the corresponding
color minimization problem (see e.g. [1]).

MAX PR-PC in chains is also known as the “weightedk-coloring of intervals” prob-
lem, which can be solved exactly as shown by Carlisle and Lloyd[4]. In [6] an algo-
rithm based on linear programming and randomized rounding with approximation
ratio 1.49 for MAX PR-PC in rings is presented. Let us note here that, although
the algorithm in [6] achieves a better approximation ratio,the algorithm presented
here is purely combinatorial, therefore faster and easier to implement. Li et al. [5]
study a version of MAX PR-PC where requests are not routed in advance, that is,
an appropriate routing and coloring is sought. They also assume directed requests
and edge capacities that must be obeyed and present a2-approximation algorithm
for rings.

2. Match and Replace for MAX PR-PC

In this section we present an algorithm for MAX PR-PC in rings. MAX PR-PC in
chains can be solved exactly inO(km logm)) time, using algorithm [4].

In our algorithm, we employ a popular technique used for rings, namely to choose
an edgee and remove it from a ring. We call this algorithmMatch and Replace;
details are given in Algorithm 2. We denote the profit of a set of pathsP with
w(P ) =

∑
p∈P w(p). Given a set of pathsP, the set of paths inP that are colored

with the same colori is called thei-th color classof P; we useP(i) to abbreviate
this notion.
Theorem 1 Match and Replace is a2-approximation algorithm.

Proof. Let OPT be the value of any optimal solution of the ring instance,OPT c

be the value of any optimal solution of the instance constrained to path setPc and
OPT e be the value of any optimal solution of the instance constrained to path set
Pe. Recall that

OPT ≤ OPT c + OPT e . (1)

Let SOLc be the value of the solution obtained in step 2 of the algorithm (chain
subinstance solution), andSOL be the value of the final solution. Clearly,

SOL = SOLc + w′(M) (2)

wherew′(M) is the sum of the weights of the edges that belong to the matchingM
computed in step 5. The instance(G − e,Pc, w) is solved optimally in step 2.
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Algorithm 2 Match and Replace
1: Pick an arbitrary separation edgee of the ring. LetPe be the set of paths that

use edgee andPc = P \ Pe.
2: Color the instance(G−e,Pc, w) optimally, using the Carlisle-Lloyd algorithm

for MAX PR-PC in chains.
3: Let Pc(i) be thei-th color class ofPc, 1 ≤ i ≤ k (note that some color classes

may be empty).
4: Construct a weighted bipartite graphH = (S ∪ Pe, E), with S =

{Pc(i) : i = 1, . . . , k}. For every pair(Pc(i), q) ∈ S × Pe, define path set
Pc(i)

q such thatPc(i)
q ⊆ Pc(i) and∀p ∈ Pc(i)

q, p and q overlap (that is
Pc(i)

q consists of those paths inPc(i) that overlapq). If w(q)−w(Pc(i)
q) > 0

then we add edge(Pc(i), q) toH with weightw′(Pc(i), q) = w(q)−w(Pc(i)
q).

5: Find a maximum weight matchingM in H.
6: for eachedge(Pc(i), q) ∈ M do
7: uncolor all paths inPc(i)

q and color pathq ∈ Pe with color i.
8: end for

Therefore, taking also into account Eq. 2 we have that

OPT c = SOLc ≤ SOL . (3)

Let SM be the subset ofS consisting ofPc(i)’s that are matched byM . Similarly,
let Pe,M be the paths inPe that participate inM . Finally, letK be the set of thek
most profitable paths ofPe. We will now show that

OPTe = w(K) ≤ SOL . (4)

For the sake of analysis we will examine a solutionSOL′ thatMatch and Replace
would have computed if it had chosen a matchingM ′ of a subgraphH ′ of H in
step 5. Bipartite graphH ′ has the same node set and the same edge weight function
asH, but only a subset of the edges ofH, namely for every pair(Pc(i), q): edge
(Pc(i), q) is in H ′, if w(q) − w(Pc(i)) > 0 andq ∈ K. Let M ′ be a maximum
matching inH ′, and letSM ′ andPe,M ′ be defined analogously forM ′ as forM .
Similar to Eq. 2

SOL
′ = SOLc + w′(M ′) . (5)

Note thatSOLc = w(S) and also thatw′(M ′) = w(Pe,M ′)−∑
(P (i),q)∈M ′ w(Pc(i)

q)
= w(Pe,M ′) − ∑

(Pc(i),q)∈M ′ [w(Pc(i)) − w(Pc(i)
¬q)] = w(Pe,M ′) − w(SM ′) +∑

(Pc(i),q)∈M ′ w(Pc(i)
¬q), wherePc(i)

¬q consists of these paths inPc(i) that do
not overlap withq. Equation 5 may then be rewritten as follows:SOL′ = w(S \
SM ′)+w(Pe,M ′)+

∑
(Pc(i),q)∈M ′ w(Pc(i)

¬q). We observe thatPe,M ′ ⊆ K and there-
fore w(Pe,M ′) + w(K \ Pe,M ′) = w(K), so the last sum can be expanded in the
following way:

SOL′ = w(S \ SM ′) + w(K) − w(K \ Pe,M ′) +
∑

(Pc(i),q)∈M ′

w(Pc(i)
¬q) . (6)

Observe also that for anyPc(i) 6∈ SM ′ and q 6∈ Pe,M ′ , there must be no edge
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between them inH ′, hencew(Pc(i)) ≥ w(q). Moreover,w(S \ SM ′) andw(K \
Pe,M ′) are sums with the same number of terms because|K| = |S| = k and
|SM ′ | = |Pe,M ′ |. These observations imply thatw(S \ SM ′) − w(K \ Pe,M) ≥
0, therefore Eq. 6 yieldsSOL

′ ≥ w(K). SinceH ′ is a subgraph ofH, M ′ is a
matching also forH, probably not a maximum one, thereforew′(M) ≥ w′(M ′)
which implies, from Eq. 2 and 5, thatSOL ≥ SOL′. Combining this last inequality
with SOL

′ ≥ w(K) we obtain Eq. 4. By Eq. 3 and 4,SOL is an upper bound on
bothOPTe andOPTc, which together with Eq. 1 givesSOL ≥ OPT

2
.

Computing a solution for the chain subinstance takesO(kmlogm). GraphH has
O(m) nodes (we assume thatk < m) and O(km) edges, therefore maximum
weighted matching ofH takesO(m2(k + logm)) time. Therefore the total time
complexity isO(m2(k + logm)). ♦
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1. Introduction

In this paper, the problem of allocating radio resources to users in the downlink of
an OFDMA telecommunication system in the multi-cell scenario is addressed.

Orthogonal frequency division multiple access (OFDMA), based on multi-carrier
technology, has been widely accepted as the most promising radio transmission
technology for next generation wireless systems due to its robustness to channel
distortions and granular resource allocation capability.

In a multi-carrier system the transmitted bitstream is divided into many differ-
ent substreams that are sent over many different sub-channels, called sub-carriers.
OFDMA systems envisage the assignment of a number of sub-carriers and the rel-
ative transmission format to users on the basis of the experimented link quality.
Interference phenomena limit the number of users transmitting on the same radio
resources, i.e., sub-carriers. The transmission power required by each user to trans-
mit on a given resource depends on theset of usersassigned to that resource. The
objective is to assign radio resources so as to minimize the overall transmission
power while providing a given transmission rate to each user(hence, satisfying
some fairness criterion among users).

∗ Corresponding author.
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OFDMA supports differentiated quality-of-service through the assignment of a dif-
ferent number of sub-carriers to different users. Moreover, for fixed or portable ap-
plications where the radio channels are slowly varying, an intrinsic advantage of
OFDMA over other multiple access methods is its capability to exploit the multi-
user diversity embedded in diverse frequency-selective channels. In fact, propaga-
tion channels are independent for each user and thus the sub-carriers that are in a
deep fade for one user may be good ones for another.

Several papers have recently focused on the problem of optimum channel alloca-
tion of OFDMA cellular systems, and some of them have also considered the joint
scheduling-allocation problem [1–4].

In this work, the problem of allocating sub-carriers in the downlink of an OFDMA
system in a multi-cell scenario is addressed. A complexity analysis for general and
particular cases is given and solution methods are proposed. In particular, exact and
heuristic algorithms based on minimum cost network flow models are provided.

2. Problem statement

The allocation problem we address here can be described as follows. We are given
a set ofm radio resources, the sub-carriers, and a set of users. The users are parti-
tioned intok cellswhere each cellh containsnh users,1 ≤ h ≤ k. For each user
i, we denote byc(i) the cell of useri. If we set a certain target spectral efficiency
ηi for useri, the transmission requirements correspond to a certain number of sub-
carriersri = Ri/ηi, whereRi is the transmission rate required by useri, andηi is
set in a such a way thatri is integer.

In general, users belonging to different cells can share thesame sub-carrier, while
interference phenomena do not allow two users in the same cell to transmit on the
same sub-carrier. However, the power required for the transmission on a given sub-
carrier increases with the number of users transmitting on that sub-carrier. More
precisely, letSj be the set of users which are assigned to (i.e., that are transmitting
on) the same sub-carrierj. The transmission powerspi(j) requested by users inSj

on sub-carrierj satisfy the following system.

pi(j) = Ai(j) +
∑

ℓ∈Sj

ℓ6=i

B
c(ℓ)
i (j)pℓ(j) i ∈ Sj

pi(j) ≥ 0 i ∈ Sj

(1)

where Ai(j) and B
c(ℓ)
i (j) are given data taking into account the target signal-

interference-ratio, the channel gain of useri on sub-carrierj, and the channel gain
between useri and the base station of cellh 6= c(i) on sub-carrierj.

In the following, given the setSj of users transmitting on sub-carrierj, we denote
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by Tj(Sj) the transmission power required byj, i.e.,

Tj(Sj) =
∑

i∈Sj

pi(j).

Note that powerpi(j) increases as the interference term increases and that the in-
terference term depends on the set of users, other thani, which are assigned to the
same sub-carrier. Note also that, System (1) could not have afeasible solution. On
the other hand, if only useri is assigned sub-carrierj, i.e., the interference term is
null, thenpi(j) = Ai(j).

A feasible radio resource allocationconsists in assigning sub-carriers to users in
such a way that(i) for each useri, ri sub-carriers are assigned to it,(ii) the users
in the same cell are not assigned to the same sub-carrier,(iii) given the setSj of
users assigned to sub-carrierj, System (1) has a feasible solution, for all the sub-
carriersj. The problem, that we call Cellular Radio Resource Allocation Problem
(CRP), consists of determining a feasible radio resource allocation that minimizes
the total transmission power, i.e., the sum of the transmission powers required by
all the users. Note that, a necessary condition for a CRP instance to be feasible is
m ≥ max{maxi{ri}, maxh{nh}}.

We show that CRP is, in its general form, strongly NP-hard. If weare using the
expressions of System (1) to compute the transmission powers required, we may
prove that CRP is strongly NP-hard even when there are only 3 cells and the sub-
carriers are identical (i.e., data do not depend on the specific sub-carrierj). It is
worthwhile to note that relaxing those expressions by allowing more general power
consumption models, it is possible to show that CRP is stronglyNP-hard even when
there are only two radio resources.

3. A heuristic approach for CRP

When the transmission powerTj of any subcarrierj can be decomposed in a certain
way, illustrated hereafter, CRP can be solved exactly in polynomial time.

SupposeTj is comprised of a fixed cost part depending on the set of assigned users
Sj plus aconvexvariable cost part which depends only on the number|Sj| of users
assigned to resourcej. In particular, letfij ∈ R+ be the fixed cost of assigning user
i to resourcej andgj(·) a convex function representing the variable cost part. Then
the transmission power required by resourcej, when a setSj of users is assigned
to it, is:

Tj(Sj) = gj(|Sj|) +
∑

i∈Sj

fij. (2)

When the transmission powers are of the form illustrated in (2), it is possible to
formulate CRP as a minimum cost flow problem on a special networkG, and hence
to efficiently solve it.
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Since any feasible flow onG provides an assignment of users to sub-carriers, we
can heuristically use the same approach in the general case by approximating the
expressions of the transmission powers in System (1) in order to obtain a cost struc-
ture satisfying Equation (2). Such an approximation process may produce an as-
signment which is not necessarily feasible in the original problem (since a set of
users assigned to a resource may require negative power values). However, infeasi-
bilities can be dealt with by suitable modifications of the derived assignments.

Preliminary computational experiments on instances with 7cells 16 resources and
28 users (each requiring 4 resources) show that a heuristic derived by the approach
described above is able to obtain quite good solutions in fewmsec. In fact, the
quality of the solutions, from the point of view of the total transmission power,
is comparable with that obtained by a branch&bound algorithm based on a MILP
formulation after few minutes of computation.
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1. Introduction

In a graphG = (V,E), a subset of edgesM ⊂ E is called amatchingif no two
edges ofM share a common vertex. With each edgee ∈ E, we associate a weight
we ∈ R, and for a subsetS ∈ E, we setw(S) :=

∑
e∈S we as its weight. The aim of

the Maximum Weight Matching Problem is to find a matchingM∗ with maximum
weight over all matchings.

An algorithm that for all graphs returns a matchingM whose weightw(M) is at
most a factor ofρ away from the weightw(M∗) of an optimal matching is said
to have an approximation ratio ofρ. We present a local, distributed algorithm that
constructs a matching with(1 − ε) approximation ratio for anyε > 0, and that
results in an approach with polylogarithmic expected running time.

For this algorithm, we use the standard local message passing model [3]. The net-
work is an undirected graphG = (V,E), and two nodesu, v ∈ V in the network
are adjacent, i.e.(u, v) ∈ E, whenever there is a bidirectional communication chan-
nel connectingu andv. For simplicity, we assume a synchronous communication
model: time is divided into rounds, and in each round, every node can send a mes-
sage to each of its neighbors inG.

Such local algorithms are specifically useful in a large-scale distributed commu-
nication network settings such as the internet and wirelesssensor networks. They
respect the limitations of each node in the network only being able to communicate
with its direct neighbors in the network. Solving optimization problems on these
graphs by first collecting the topology at a central processing point, computing a
solution, and then reporting this solution to the nodes again leads to a high commu-
nication overhead, both in terms of time and message size. Moreover, by the time a

∗ Corresponding author.
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centralized solution is computed and reported back, the topology may already have
changed.

Given a matchingM ⊂ E, we define another matchingS ⊂ E \ M to be an
augmentation(for M ). For such an augmentationS, we denote byM(S) ⊂ E all
edges inM , that have a vertex in common with an edge fromS. It is easy to see
that(M \ M(S)) ∪ S again forms a matching inG, and we say that this resulting
matching is obtained by augmentingM with S. We denote by gainM(S) = w(S)−
w(M(S)) the gain of augmentingM with S. The size of an augmentation is the
number of edges contained inS. Considering the setM(S) ∪ S ⊂ E, we call an
augmentationS connectedif M(S) ∪ S is a single component inG.

For a subsetV ′ ⊂ V of nodes, we useG(V ′) to denote the subgraph induced
by V ′ in G. Furthermore, a subset of nodesI ⊂ V is called independent set if
G(I) contains no edges. We call such a setmaximalif it cannot be extended by
additional nodes. LetΓr(v) be the set of nodesu ∈ V which have distance at most
r from v ∈ V .

2. The l-Augmentation Graph G′

The algorithm presented works on a structure that we callaugmentation graph, and
which is defined and locally constructed as follows.
Definition 1 Thel-augmentation graphG′ = (V ′, E ′) (of a graphG with respect
to a matchingM ) is defined as the intersection graph of connected augmentations
of size at mostl in G: The nodesV ′ of G′ are all connected augmentations of size at
mostl, and two such augmentations are connected by an edge if they have at least
one node (fromG) in common.

For each such augmentation, we call the node with the lowest identifier its repre-
sentative (inG). Note that any nodeu ∈ V may represent multiple augmentations
from thel-augmentation graph. Every node only needs to construct theconnected
augmentations it is part of and communicate the augmentations it represents. There-
fore, in order to locally constructG′, each nodev ∈ V needs to have knowledge
aboutΓO(l)(v) in G which it can obtain inO(l) communication rounds.

Any communication inG′ is now mapped to the representatives inG, and passing
a message along a single edge inG′ takesO(l) rounds inG. We now restrict our
attention to thisl-augmentation graphG′ = (V ′, E ′). In total, we have|V ′| =
O(n2l).

3. An Algorithm to Improve a Matching

Starting with an empty matching, we iteratively call Algorithm 3 a certain number
of times in order to improve the current matching.

After having constructed thel-augmentation graph based on the matchingM given
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Algorithm 3 IMPROVEMATCHING

Input : G = (V,E), weightswe, e ∈ E, matchingM in G, l ∈ N
Output : MatchingM ′ in G

1. Constructl-augmentation graphG′ = (V ′, E ′)

2. A := ∅

3. V (1) := V ′

4. for t := 1 to ⌈log 2l
2n⌉ do

6. W := {v ∈ V (t) | Γ1(v) ∩ {u ∈ V (t) | gain(u) > 2 · gain(v)} = ∅}(∗)

6. Calculate maximal independent setI in G′(W )

7. A := A ∪ I

8. V (t+1) := V (t) \ Γ1(I)(∗)

9. endfor

10. M ′ := M augmented by augmentations represented inA
(∗) Here,Γ1(.) is taken w.r.t.G′.

as input, the loop (4.–9.) constructs a setA of augmentations. By construction,
the setI that is added toA each time is an independent set. Therefore, the setA
constructed in Algorithm 3 is an independent set inG′, and we can augmentM by
the local augmentations contained inA in parallel. We obtain:
Theorem 1 [4] Let TMIS(m) denote the time needed to locally construct a maximal
independent set on a graph withm nodes.
Then, Algorithm 3 can be realized by a local, distributed approach that requires
O(l + log (l2n) · TMIS(n

O(l))) communication rounds.

For the analysis of Algorithm 3, we look at the difference betweenw(M) and
w(M ′), in other words, the gain ofA. In particular, we are interested in the im-
provement with respect to an optimal solutionM∗.

For this overall gain, we can state the next theorem, which follows an idea presented
in [1] and that is adapted to the local, distributed setting in [4].
Theorem 2 Receiving a matchingM as input, Algorithm 3 returns a matchingM ′

with

w(M ′) ≥ w(M) +
1

8l
·
(

l − 1

l
w(M∗) − w(M)

)
,

whereM∗ is a matching of maximum weight inG.

4. A (1 − ε)-Approximation Algorithm

As a corollary to Theorem 2, we would like to point out that, starting withM = ∅,
a single invocation of Algorithm 3 results in a local approach that yields a constant
factor approximation of the Maximum Weight Matching problem for anyl > 1.
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Moreover, settingl = O(1/ε) and invoking Algorithm 3O(1/ε) times (ε > 0)
results in a local(1 − ε)-approximation algorithm:
Theorem 3 [1, 4] Let l ∈ N. Calling Algorithm 3O(l) times returns a matching
M of weight at least(1 − O(1/l)) · w(M∗).

The overall number of rounds needed to obtain such a solutionis thenO(l2 + l ·
log (l2n) · TMIS(nO(l))).

5. Conclusions

The presented Algorithm 3 yields a local, distributed algorithm that constructs a
(1 − ε)-approximation of a Maximum Weight Matching in a graph, and does so in
O( 1

ε2 ·logn·TMIS(nO(l))) communication rounds. Taking, e.g., the well-known local
algorithm of Luby [2] with randomized time ofO(logn) to compute a maximal
independent set, we can obtain anO( 1

ε3 log
2n) randomized time algorithm.
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Molecular phylogenetics studies the hierarchical evolutionary relationships among
organisms (also calledtaxa) by means of molecular data (e.g., DNA or protein se-
quences). These relationships are typically described by means of weighted trees, or
phylogenies, whose leaves represent taxa, internal vertices the intermediate ances-
tors, edges the evolutionary relationships between pairs of taxa, and edge weights
the evolutionary distances(i.e., measures of the dissimilarity) between pairs of
taxa [6]. Molecular phylogenetics provides several criteria for selecting one phy-
logeny from among plausible alternatives [3]. One of the most important criteria
is the Minimum Evolution (ME) criterion [8, 11, 12]: it states that, given a setΓ
of n taxa and the correspondingn × n symmetric matrixD = {dij} of evolution-
ary distances, the optimal phylogeny forΓ is the one whose sum of edge weights,
estimated fromD, is minimal. The biological justification at the core of the ME
criterion is based on the fact that, in absence of convergentor reverse evolution [2],
the true phylogeny ofΓ has an expected sum of edge weights smaller than any other
possible phylogeny compatible withD.

Phylogenies satisfying the ME criterion are determined by solving aMinimum Evo-
lution Problem(MEP), generallyNP-Hard [3], which can be stated as follows.
Consider an connected, unweighted, undirectedphylogenetic graphG = (V, E),
whereV = Ve ∪ Vi is the set of vertices.Ve is the set ofn leavesrepresenting the
n taxa inΓ, andVi the set of(n − 2) internal verticesrepresenting the common
ancestors. By analogy,E = Ee∪Ei is the set of3

2
(n−1)(n−2) edges,Ee is the set of

external edges, i.e., the set of edges with one extreme being a leaf, andEi is the set
of internal edges, i.e., the set of edges with both extremes being internal vertices. A
phylogenyT of the setΓ is any spanning treeT of G such that each internal vertex
has degree three, and each leaf has degree one. DenoteE(T ) as the set of edges of a
phylogenyT , T as the set of all the possible(2n−5)!! phylogenies ofΓ (wheren!!
is the double factorial ofn) [6], and assume that a weight functionf : E(T ) → ℜ
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CTW08 - Università degli Studi di Milano, Gargnano (Italy), May 13-152008



is given. Denotew as the(2n − 3)-vector of edge weights associated toT , and let
L(T,w) be thelengthof T , i.e., the sum of the associated edge weights. Then, the
minimum evolution problem consists in:

min
(T,w)

L(T,w) s.t.f(D, T,w) = 0,T ∈ T ,w ∈ ℜ(2n−3)
0+ (1)

wheref(D, T,w) is a function correlating the distance matrixD with the phy-
logenyT and edge weightsw. Defining the functionf(D, T,w) means specifying
an edge weight estimation model, i.e., a model to compute edge weights starting
from the knowledge ofD andT [3]. Thus, a version of MEP is completely charac-
terized by specifying the functionsL(T,w) andf(D, T,w).

Several versions of MEP are known in the literature (see [3] for a recent survey),
each one characterized by its own set of assumptions on the functionf(D, T,w).
The most recent version is the Balanced Minimum Evolution (BME) problem [4, 5]
which is based on Pauplin’s edge weight estimation model [10]. Pauplin proved
that under this edge weight estimation model the length of a phylogenyT can be
computed as:

L(T ) =
n∑

i=1

n∑

j=1

2−τijdij (2)

whereτij is the number of edges belonging to the path between taxai andj in T .
Hence, solving MEP under Pauplin’s edge weight estimation model (i.e., solving
BME) means to minimize the function (2) with respect to all thepossible phyloge-
niesT in G. To the best of our knowledge, to date the only attempt at solving BME
is represented by heuristic approaches [5]. In the remaining of the paper, we show
an exact approach to tackle instances of BME exploiting the tree isomorphism [1]
and the combinatorial properties of the function (2) [7, 9, 13].

Several authours [7, 9, 13] studied the combinatorial properties of the function (2)
and evidenced the relationship between BME and the TravelingSalesman Problem
(TSP). Specifically, definedGΓ(Γ, E, w) as a complete, undirected, weighted graph
whose vertices are taxa inΓ and whose weightswij = dij, for all i, j ∈ Γ, the au-
thors proved that the length of the optimal solution of BME is equal to half-time
the length of the shortest hamiltonian circuit inGΓ. In other words, the shortest
hamiltonian circuit inGΓ identifies the way in which the taxa are ordered in the
optimal phylogeny [7, 9]. Note that, for any fixed hamiltonian circuitH in GΓ there
exist 2n−2 possible phylogenies having the taxa order identified byH. Hence, a
possible way to solve exactly an instance of BME would consistin enumerating
all those2n−2 possible phylogenies whose taxa order is identified by the shortest
hamiltonian circuit inGΓ. Note that, once the instance of TSP is solved, this ap-
proach has the benefit of reducing the space of solutions of BMEfrom (2n − 5)!!
to 2n−2. However, since the length of isomorphic phylogenies are equivalent, the
restriction of such enumeration only to non-isomorphic phylogenies would drasti-
cally decrease (see [6]) the dimension of the solution spaceof BME and improve
the overall running time of the algorithm. This is the fundamental idea of our enu-
merative algorithm whose pseudocode is reported in Figure 1.
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procedureBMESolver(Γ: set of taxa,D: distance matrix)
C ←SolveTSP(Γ,D);
T ∗ =NULL; minval = ∞;
for Any possible non-isomorphic phylogenyT do

for any pair of unassigned leavesi andj in T do Computeτij ;
TC ←AssignLeaves(C,T )
if minval ≥ L(TC) then minval = L(TC); T ∗ = TC

for Any clockwise shiftR of C onT do
TR ←AssignLeaves(R,T )
if minval ≥ L(TR) then minval = L(TR); T ∗ = TR

end for
end for
return T ∗ andminval

end-procedure

Fig. 1. BMESolver pseudo-code.

Given an instanceI of BME, denoteT ∗, respectivelyminval, as the optimal phy-
logeny of I, respectively the optimal length ofT ∗. Our algorithm starts solving
TSP onGΓ; the solutionC so obtained identifies the taxa order inT ∗. The algo-
rithm proceeds by enumerating all the possible non-isomorphic phylogenies fol-
lowing the algorithm described in [1]: for each non-isomorphic phylogenyT , the
algorithm assigns to each leaf a taxa as shown in Figure 2a; then it computes the
value (2) and the eventual minimum is stored. Since the TSP solution only identi-
fies the taxa order inT ∗, the next(n − 1) algorithm steps consist in a clockwise
rotation of taxa assignment to leaves (see Figure 2b) and thecomputation of the
corresponding new value (2). When all the possible non-isomorphic phylogenies
have been enumerated, the algorithm ends returning the optimal phylogeny found.

Preliminary computational results show the effectivenessof our algorithm for solv-
ing small and medium size instances.
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The problem Consider a connected undirected graphG = (V,E) with |N | = n
vertices and|E| = m edges, a linear cost functionc : E → N defined on the
edges and a quadratic cost functionq : E × E → N defined on the pairs of edges.
TheQuadratic Minimum Spanning Tree Problem(QMSTP) requires to determine
a spanning treeT = (V,X) minimizing the sum of all linear costs for the edges in
X plus all quadratic costs for the pairs of edges inX. Without loss of generality,
we assumeqij = qji andqii = 0 for all i, j ∈ N .

Let xi = 1 if edgei belongs to the solution,xi = 0 otherwise, andE (S) denote
the set of edges with both ends inS ⊆ V . A formulation for theQMSTPis:

min z =
∑

i∈E

cixi +
∑

i∈E

∑

j∈E

qijxixj (1)

∑

i∈E

xi = n − 1 (2)

∑

i∈E(S)

xi ≤ |S| − 1 S ⊆ V : |S| ≥ 2 (3)

xi ∈ {0, 1} i ∈ E (4)

TheQMSTPhas applications in network design, when interference costs between
links have to be considered. Despite its neat structure, it has been seldom considered
in the literature: two greedy algorithms have been proposedin [4] and compared
to a genetic algorithm in [5]. Two other genetic algorithms have been proposed to
solve a fuzzy variation of the problem [1, 2].

The QMSTPis NP-hard in the strong sense and not approximable (unlessP =
NP), even if ci = 0 for all i ∈ E andqij ∈ {0, 1} for all (i, j) ∈ E × E. The
number of solutions, given by Kirchoff’s theorem [3], sharply increases withn,
unless the graph is very sparse. It isnn−2 for complete graphs.∗ Corresponding author.
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The heuristic algorithms We have implemented three constructive greedy algo-
rithms and a Tabu Search. The constructive heuristics approximate the quadratic
objective function with a linear one, thus reducing theQMSTPto an auxiliaryMin-
imum Spanning Tree Problem(MSTP):

min z̃ =
∑

i∈E

c̃ixi subject to (2 − 4), with c̃i ≈ ci +
∑

j∈E

qijxj,∀i ∈ E

TheMinimum Contribution Method(MCM) estimates̃ci as the linear costci plus
the (n − 2) minimum quadratic costs betweeni and the other edges (notice that∑

j∈E qijxj includes exactly(n − 2) non-zero terms in all feasible solutions). The
rationale is that, ifi is selected, these edges are more likely to enter the solution.

The Average Contribution Method(ACM) estimates̃ci as the linear costci plus
(n − 2) times the average quadratic cost betweeni and the other edges:

c̃i = ci + (n − 2)

∑
j∈E qij

m − 1
(5)

TheSequential Fixing Method(SFM) updates step by step estimate (5). LetX ′ be
the current subset of chosen edges andF ⊆ E \ X ′ the current subset of unchosen
edgese which can be feasibly added toX ′, i.e. such that{e} ∪X ′ is acyclic. Then,
c̃i is the linear costci plus the quadratic costs betweeni and the edges inX ′, plus
the number of edges to complete a spanning tree times the average quadratic cost
betweeni and the edges inF .

c̃i = ci +
∑

j∈X′

qij + (n − 2 − |X ′|)
∑

j∈F qjk

|F | (6)

At the first stepX ′ = ∅, F = E \ {i} and (6) reduces to (5). TheACM and the
SFMhave been proposed in [4], with slightly different (and lessconsistent with the
underlying rationale) expressions forc̃i.

The Tabu Search algorithm is based on a natural neighbourhood: each move adds
a new edge and removes one of then′ ≤ n − 1 edges from the resulting loop.
Suitable data structures allow to scan, for each of the(m − n + 1) edges to be
added, only then′ edges which can be feasibly removed. Each move is evaluated in
O (1) by maintaining in memory coefficientDi = ci +

∑
j∈X qij for all i ∈ E. In

fact, when exchanging edgesi ∈ X andi′ ∈ E \ X, the objective function varies
by δii′ = Di′ − Di − 2qii′ . Since the update of coefficientsDi after performing
the chosen move takesO (m) time, the overall complexity of a neighbourhood
exploration isO (mn).

The tabu mechanism forbids recently removed edges to get into the solution and
recently added edges to get out of it. Of course, a tabu move improving the best
known result is performed anyway (aspiration criterion). Notice that (apart from
very sparse graphs) the number of edges out of the solution exceeds the number
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of edges inside it. To guarantee a comparable strength to thetwo tabus, the length
of the prohibition (tabu tenure) for the insertion is larger than that for the removal.
Moreover, the tabu tenures vary (inside suitable ranges) according to the results
of the search: they increase for each improvement in the objective function and
decrease for each worsening.

The exact algorithm We have also implemented a branch-and-bound algorithm
based on the relaxation of the quadratic objective functionto a linear approximated
one. The relaxed subproblem is, thus, aMSTP. For each edgei, the linear estimate
ĉi includes the linear costci, the quadratic costs with the already fixed edges and a
suitable number of cheapest quadratic costs with the unfixededges. This approxi-
mation differs from equation (6) for two features: 1) in the second term, the subset
of already fixed edges replaces the subset of already chosen ones; 2) in the third
term, the cheapest quadratic costs replace the average cost(as in theMCM).

The solution of the relaxed subproblem is a spanning tree, which, evaluated by the
original objective function, provides an upper bound at each node. An initial upper
bound is also given by theSFM followed by Tabu Search.

Branching is performed by fixing an edge in or out of the solution. The branch-
ing edge is the cheapest unfixed one which belongs to the solution of the relaxed
MSTP. The visit strategy combines abest-upper-bound-firststrategy (visit the open
branching node with the best upper bound) to the more usualbest-lower-bound-first
strategy (visit the open branching node with the best lower bound): the algorithm
starts with the former, switching to the latter when the upper bound does not im-
prove for a predefined number of branching nodes. The reason is that in the upper
levels of the branching tree the lower bound is often bad, whereas the heuristic
solution gives stronger information on the problem.

The computational results We have generated a benchmark of60 random in-
stances with different features, one instance for each combination of the following
features: size (from10 to 30 vertices by steps of5), density (33%, 67% or 100%),
linear costs (uniformly generated random integers in[1; 10] or [1; 100]), quadratic
costs (uniformly generated random integers in[1; 10] or [1; 100]). The experimen-
tal campaign has been performed on a2.2 GHz PC with3 GB of RAM and all
algorithms have been implemented in C language.

All greedy constructive heuristics run in less than one second. TheSFMobviously
outperforms the other ones, providing better or equal results in 57 cases out of60,
but only in4 cases this is also the best known result overall.

The Tabu Search runs for100 000 iterations with a tabu tenure varying in[3; 8] for
the edge removal and[5; 12] for the edge insertion. It is robust enough to make the
initialization heuristic nearly always irrelevant (of course, the number of iterations
required to find the best known result strongly depends on it). The computational
time ranges from less than one second (n = 10) to less than one minute (n = 30).

The branch-and-bound solves in less than one minute all instances withn = 10 and
all sparse instances (33% density) withn = 15, plus a single instance withn = 15
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and67% density. The other instances could not be solved in one hour,exhibiting
remarkable final gaps. In fact, the hardness of the problem sharply increases with
the number of edges. The same few optimal results and similarconclusions have
been obtained by applying CPLEX to the standard linearization of formulation (1-
4).
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Appendix
Theorem 1 TheQMSTP is NP-hard in the strong sense and not approximable
(unlessP = NP), even ifci = 0 for all i ∈ E and qij ∈ {0, 1} for all (i, j) ∈
E × E.

Proof Given an instance ofSAT, build the following instance ofQMSTP: graph
G = (V,E) has a vertexyi for each clause and a vertexxj for each Boolean vari-
able; an edge is given for each pair of vertices(yi, xj) such that literalxj or x̄j

appears in clausei and for each pair of vertices(xj, xj+1). The linear cost function
is identically zero, whileqee′ = 1 if e = (yi, xj), e′ = (yl, xj) and variablexj

appears affirmed in clausei and negated in clausel or viceversa;qee′ = 0 for all
other edges.

This instance ofQMSTPhas a solution of zero cost if and only if there is a spanning
tree such that all pairs of its edges have zero quadratic cost. The edges(yi, xj) can
be interpreted as the use of variablexj to satisfy clausei. Therefore, the zero cost
trees exactly correspond to the consistent assignments satisfying all clauses.

As the cost of any other feasible solution is≥ 1, any polynomial algorithm with
a constant approximation guarantee would necessarily find the optimal solution.
Hence,QMSTPdoes not belong toAPX .
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1. Introduction and main results

In [4] it was shown how one can combine integer characterizations for cycle and
path polytopes and Grötschel’s cardinality forcing inequalities [3] to give facet
defining integer representations for the cardinality restricted versions of these poly-
topes. Motivated by this work, we apply the same approach on the matroid poly-
tope. It is well known that the so-called rank inequalities together with the nonneg-
ativity constraints provide a complete linear descriptionof the matroid polytope
(see Edmonds [2]). By essentially adding the cardinality forcing inequalities, we
obtain a complete linear description of the cardinality constrained matroid poly-
tope which is the convex hull of the incidence vectors of those independent sets
that have a feasible cardinality. Moreover, we show how the separation problem for
the cardinality forcing inequalities can be reduced to thatfor the rank inequalities.
We give also necessary and sufficient conditions for a cardinality forcing inequality
to be facet defining.

Given a matroidM = (E, I) with rank functionr and a weightingwe ∈ R on the
elements, the maximum weight independent set problemmax w(I) :=

∑
e∈I we, I ∈

I can be solved to optimality with the greedy algorithm. Moreover, thematroid
polytopePI(E), that is, the convex hull of the incidence vectors of independent
setsI ∈ I, is determined by the so-called rank inequalities and the nonnegativity
constraints (see Edmonds [2]), i.e.,PI(E) is the set of all pointsx ∈ RE satisfying

∑
e∈F

xe ≤ r(F ) for all ∅ 6= F ⊆ E,

xe ≥ 0 for all e ∈ E.

Here, for anyI ⊆ E we setx(I) :=
∑

e∈I xe. The rank inequality associated
with F is facet defining forPI(E) if and only if F is closed and inseparable (see
Edmonds [2]).

∗ Corresponding author.
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Let c = (c1, . . . , cm) be a finite sequence of integers with0 ≤ c1 < c2 < · · · < cm.
Then, thecardinality constrained independent set polytopeP c

I(E) is defined to be
the convex hull of the incidence vectors of the independent setsI ∈ I with |I| = cp

for somep ∈ {1, . . . ,m}. The associated optimization problemmax w(I), I ∈ I,
|I| = cp for somep ∈ {1, . . . ,m} can be solved in polynomial time (for instance
with Lawler’s weighted matroid intersection algorithm [5]applied toM1 := M2 :=
M , see the item “Open Questions” on page 3).

Grötschel [3] gave a polyhedral analysis of the underlying basic problem of car-
dinality restrictions that enables us to provide a completelinear description of
P c
I(E). Given a finite setB and a cardinality sequencec = (c1, . . . , cm), the set

CHSc(B) := {F ⊆ B : |F | = cp for somep} is called acardinality homogenous
set system. Consequently, whenM = (E, I) is the trivial matroid, i.e., allF ⊆ E
are independent sets, thenI ∩CHSc(E) = CHSc(E). Thus, cardinality constrained
matroids are a generalization of cardinality homogenous set systems.

The polytope associated with CHSc(B), namely the convex hull of the incidence
vectors of elements of CHSc(B), is completely described by thetrivial inequalities
0 ≤ ze ≤ 1, e ∈ B, thecardinality boundsc1 ≤

∑
e∈B ze ≤ cm, and thecardinality

forcing inequalities

(cp+1 − |F |) ∑
e∈F

ze − (|F | − cp)
∑

e∈B\F
ze ≤ cp(cp+1 − |F |)

for all F ⊆ B with cp < |F | < cp+1 for somep ∈ {1, . . . ,m − 1}.
(1)

Result 1.In the full paper we will show by case-by-case enumeration that the sys-
tem

(cp+1 − r(F ))x(F ) − (r(F ) − cp)x(E \ F ) ≤ cp(cp+1 − r(F ))

for all F ⊆ E with cp < r(F ) < cp+1 for somep ∈ {0, . . . ,m − 1},
(2)

x(E) ≥ c1, (3)
x(E) ≤ cm, (4)
x(F )≤ r(F ) for all ∅ 6= F ⊆ E, (5)

xe ≥ 0 for all e ∈ E (6)

completely describesP c
I(E).

Of course, eachx ∈ P c
I(E) satisfiesc1 ≤ x(E) ≤ cm. The cardinality forcing

inequality CFF (x) := (cp+1−r(F ))x(F )−(r(F )−cp)x(E\F ) ≤ cp(cp+1−r(F ))
associated withF , wherecp < r(F ) < cp+1, is valid as can be seen as follows. The
incidence vector of anyI ∈ I of cardinality at mostcp satisfies the inequality, since
r(I ∩ F ) ≤ cp:
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(cp+1 − r(F ))χI(F ) − (r(F ) − cp)χ
I(E \ F )≤ (cp+1 − r(F ))χI(F )

≤ (cp+1 − r(F ))cp.

The incidence vector of anyI ∈ I of cardinality at leastcp+1 satisfies also the
inequality, sincer(I ∩ F ) ≤ r(F ) and thusr(I ∩ (E \ F )) ≥ cp+1 − r(F ):

(cp+1 − r(F ))χI(F ) − (r(F ) − cp)χ
I(E \ F )

≤ (cp+1 − r(F ))r(F ) − (r(F ) − cp)χ
I(E \ F )

≤ (cp+1 − r(F ))r(F ) − (r(F ) − cp)(cp+1 − r(F ))

= cp(cp+1 − r(F )).

However, it is not hard to see that some incidence vectors of independent setsI
with cp < |I| < cp+1 violate the inequality.

Result 2. In the most cases, namely ifcp > 0 and cp+1 < r(E), a cardinality
forcing CFF (x) ≤ cp(cp+1 − r(F )) is facet defining if and only ifF is closed.
Here we only show necessity. Assume thatF is not closed. Then, there is some
e ∈ E \ F such thatr(F ∪ {e}) = r(F ). Consequently,cp < r(F ∪ {e}) < cp+1,
and CFF (x) ≤ cp(cp+1 − r(F )) is the sum of the valid inequalities CFF∪{e}(x) ≤
cp(cp+1 − r(F ∪ {e})) and−xe ≤ 0. In the full paper we also give necessary and
sufficient conditions for the remaining cases (cp = 0 or cp+1 = r(E)).

Result 3.The separation problem for the cardinality forcing inequalities (2) can be
solved in polynomial time by tracing back to the separation problem of the rank
inequalities. To get an idea of the transformation, letx∗ ∈ RE be any nonnega-
tive vector. The separation problem for the class of cardinality forcing inequalities
consists of checking whether or not

(cp+1 − r(F ))x∗(F ) − (r(F ) − cp)x
∗(E \ F ) ≤ cp(cp+1 − r(F ))

for all F ⊆ E with cp < r(F ) < cp+1 for somep ∈ {0, . . . ,m − 1}.

When one assumes thatx∗ satisfies all rank inequalities (5), then one can show
thatx∗ violates the cardinality forcing inequality associated with F ′ if and only if
1
δ
x∗(F ′)−r(F ′) > ǫ for appropriateδ, ǫ > 0. The latter problem can be approached

with Cunningham’s separation routine for the rank inequalities [1].

Open questions.It stands to reason to investigate the intersection of two matroids
with regard to cardinality restrictions. It is well-known,if an independence system
I defined on some ground setE can be described as the intersection of two matroids
M1 = (E, I1) andM2 = (E, I2), then the optimization problemmax w(I), I ∈ I
can be solved in polynomial time, for instance with Lawler’sweighted matroid in-
tersection algorithm [5]. This algorithm solves also the cardinality constrained ver-
sionmax w(I), I ∈ I ∩CHSc(E), since for each cardinalityp ≤ r(E) it generates
an independent setI of cardinalityp which is optimal among all independent setsJ
of cardinalityp. Thus, from an algorithmic point of view the problem is well stud-
ied. However, there is an open question regarding the associated polytope. It is well
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known,PI(E) = PI1(E) ∩ PI2(E), that is, the non-cardinality constrained inde-
pendent set polytopePI(E) is determined by the nonnegativity constraintsxe ≥ 0,
e ∈ E, and the rank inequalitiesx(F ) ≤ rj(F ), ∅ 6= F ⊆ E, j = 1, 2, whererj

is the rank function with respect toIj. We do not know, however, whether or not
P c
I(E) = P c

I1
(E) ∩ P c

I2
(E) holds. So far, we have not found any counterexample

contradicting the hypothesis that equality holds.
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Introduction. It is necessary in many applications to compare objects represented
as graphs and to determine the degree of the similarity between them. This is often
accomplished by formulating the problem as the one involving the maximum com-
mon subgraph between the graphs being considered. We consider here theMaxi-
mum Common Edge Subgraph Problem (MCES)defined as follows. Given two
graphsG andH with |VG| = |VH |, find a common subgraph ofG andH (not
necessary induced) with the maximum number ofedges. Graphs are assumed to
be simple, finite and undirected. As usual, we denote byVG (resp.EG) the set of
vertices (resp. edges) of a given graphG.

The MCES problem was introduced by Bokhari in [1]. Since theMCES prob-
lem comes from parallel programming environments,G is usually referred to as
the task interaction graph, andH as theprocessors graph. Vertices inG represent
tasks (its edges join pairs of tasks with communication demands) and vertices inH
are processors, a pair of processors being joined by an edge when they are directly
connected. The problem consists in assigning, i.e. mapping, each task to one pro-
cessor in such a way that the number of neighboring tasks assigned to connected
processors is maximized.

The MCES problem is also of particular interest since it generalizesthe graph
isomorphism problem. Furthermore, the maximum common subgraph problems
has become increasingly important in matching2D and3D chemical structures [5].
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Note that if|VG| 6= |VH |, a suitable number of dummy vertices have to be inserted
into the smaller graph in order to obtain an instance ofMCES. If |VG| and |VH |
are not required to be equal, we obtain a problem which isAPX-hard, while the
MCES problem is only known to beNP -hard [3]. There have been many attempts
to devise useful algorithms forMCES. Some of them approximate the solution of
the MCES problem, while others give the exact solution for a specialized set of
graphs or graphs of moderate size. But most of the approaches to MCES propose
heuristic procedures intended for particular architectures [1, 2].

Our contribution. We present a new integer programming formulation for the
MCES problem and carry out a polyhedral investigation of this model. A num-
ber of valid inequalities are identified, most of which are facet-defining. Those
inequalities were incorporated to a branch&cut algorithm for theMCES problem.
We report on our computational experiments, which show the contribution of the
inequalities we found here.

A new integer programming formulation. The only polyhedral study of theMCES
problem so far was done by Marenco in [3, 4]. The integer programming formula-
tion presented by this author has variablesyik, for i ∈ VG, k ∈ VH , which are1
in a feasible solution ifi is mapped tok, and0 otherwise. Furthermore, his model
also has variablesxij, for ij ∈ EG, which are1 if exists kl ∈ EH such thati is
mapped tok andj to l, and0 otherwise. The main idea of our new model is to cre-
ate variables that represent the assignment of edges ofG to the edges ofH. More
formally, apart from variablesyik, we also include variablescijkl, for all ij ∈ EG

andkl ∈ EH which are1 if ij is mapped tokl, and0 otherwise. We present now
our monotonous integer programming model for theMCES problem.

max
∑

ij∈EG

∑

kl∈EH

cijkl (1)

∑

k∈VH

yik ≤ 1,∀i ∈ VG

∑

i∈VG

yik ≤ 1,∀k ∈ VH (2)

∑

kl∈EH

cijkl ≤
∑

k∈VH

yik,∀ij ∈ EG

∑

ij∈EG

cijkl ≤
∑

i∈VG

yik,∀kl ∈ EH (3)

∑

j∈N(i)

cijkl ≤ yik + yil,∀i ∈ VG,∀kl ∈ EH (4)

∑

l∈N(k)

cijkl ≤ yik + yjk,∀ij ∈ EG,∀k ∈ VH

cijkl ∈ {0, 1},∀ij ∈ EG,∀kl ∈ EH yik ∈ {0, 1},∀i ∈ VG,∀k ∈ VH (5)

Inequalities in (2) force that every vertex ofG is mapped to at most one vertex of
H; and that for every vertex ofH, there is at most one vertex ofG mapped to it.
Similar inequalities for edges are in (3). First inequalityin (4) forces that for a fixed
vertexi from G and a fixed edgekl from H, if some edge incident toi is mapped
to kl, theni is mapped either tok or to l. Second inequality in (4) is analogous.
Note that we work with the monotonous model since the proofs of facet-defining
inequalities are substantially easier than in the model given in [3]. This is because
the monotone polytope associated to the above formulation can be easily shown to
be full-dimensional.
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We present now some valid inequalities and facets that we found for the polytope
P given by the convex hull of the integer solutions of the integer programming
model (1)–(5). Using standard techniques from Polyhedral Combinatorics, we were
able to show that inequalities (3) and (4) from our model define facets. The next
theorem shows that a class of valid inequalities for the model given in [3], which
involves vertex degrees, is part of a broader family of facet-defining inequalities
in our model. To state this result we denote byN(i) the set of all neighbours of a
given vertexi.
Theorem 1 Let i be a fixed vertex fromG, k a fixed vertex fromH, I ⊆ N(i) and
K ⊆ N(k). Then, following inequalities are valid and define facets.

∑

j∈I

∑

l∈K

cijkl ≤ min{|I|, |K|}yik +
∑

p∈K

yip = |I|yik +
∑

p∈K

yip, if |I| < |K|. (6)

∑

j∈I

∑

l∈K

cijkl ≤ min{|I|, |K|}yik +
∑

p∈I

ypk ≤ |K|yik +
∑

p∈I

ypk, if |I| > |K|. (7)

It is worth noting that we obtained a facet that generalizes the result of Theorem 1.
For given edgesij in G, andkl in H, it bounds the number of edges inG incident
to ij that can be mapped to edges incident tokl in H.

In the next theorem we introduce a facet-defining inequalitywhere the benefit of
having an extended formulation including the variablescijkl becomes apparent.
More precisely, we are able to express the following very simple inequality which
can not be written in the model given in [3].
Theorem 2 LetG′ be an induced subgraph ofG andM a maximal matching inH.
If |VG′ | = 2p+1 andG′ has an hamiltonian cycle, then inequality

∑
ij∈EG′

∑
kl∈M cijkl ≤

p is valid. If |M | ≥ p + 1, then it defines a facet.

Using the following theorem that explores the structure of the graphs given as input
instances, we obtained better upper bounds for some instances.
Theorem 3 Let S be a fixed graph. Let furthermorekG (resp.kH) be the maxi-
mum number of edge disjoint subgraphs inG (resp. inH) such that each of those
subgraphs is isomorphic toS. If kG ≥ kH , then inequality

∑
e∈EG

∑
w∈EH

cew ≤
|EG| − (kG − kH) if |EG| ≤ |EH |, is valid.

Finally, we note that by lifting technique, we obtained a fewstronger valid inequal-
ities than presented in [3]. We omit them here due to space limitation.

Computational results. The polyhedral investigation described earlier was the
starting point of our branch and bound (B&B), as well as branch and cut (B&C)
algorithms. We used the same71 instances used by Marenco,16 of which are very
small, with less than10 vertices each. Other19 instances have20 vertices each,
9 instances have at least30 vertices. The largest instance has36 vertices. All the
graphs are quite sparse and present a high degree of symmetry, with most of them
being regular graphs.

We usedXPRESSas the Integer Programming solver and the MOSEL language
to code our programs. A fast polynomial time algorithm was designed to sepa-
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rate inequalities (6) and (7). Besides, a routine was implemented that separates the
inequality in Theorem 2, but only forp = 1 andp = 2. We also addeda pri-
ori in the model all the inequalities from Theorem 3 for whenS is ak-cycle and
k ∈ {3, 4, 5}. Finally, another feature of our algorihtm was the implementation of
a simple, though efficient, heuristic based on the solutionsof the linear relaxations
computed during the the enumeration.

Our B&C algorithm outperformed the standardB&B algorithm. Using ourB&C
algorithm, we managed to solve39 instances, compared to the 31 solved by Marenco.
Among the unsolved instances,19 have duality gap of at most10%, 11 have gap
between10 and20%, and2 have gap greater than20%. Our algorithm is quite fast.
Only few instances required more than10 minutes to be solved and the execution
time never exceeded14 minutes.

Conclusions.We showed that with our extended formulation which include vari-
ables that interlaces edges ofG with edges ofH, we gain on expressiveness with
respect to the model given in [3]. We carried out a polyhedralinvestigation of this
new model and presented some valid inequalities and facets.This study led to some
advance in obtaining the exact solutions to theMCES problem using Integer Pro-
gramming andB&C algorithm.
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1. Introduction

The mathematical programming formulation language is a very powerful tool used
to formalize optimization problems by means of parameters,decision variables,
objective functions and constraints. Such diverse settings as combinatorial, integer,
continuous, linear and nonlinear optimization problems can be defined precisely
by their corresponding mathematical programming formulations. Its power is not
limited to its expressiveness, but usually allows hassle-free solution of the prob-
lem: most general-purpose solution algorithms solve optimization problems cast in
their mathematical programming formulation, and the corresponding implementa-
tions can usually be hooked into language environments which allow the user to
input and solve complex optimization problems easily. It iswell known that several
different formulations may share the same numerical properties (feasible region,
optima) though some of them are easier to solve than others with respect to the
most efficient available algorithms. Being able to cast the problem in the best pos-
sible formulation is therefore a crucial aspect of any solution process.

When a problem with a given formulationP is cast into a different formulation
Q, we say thatQ is a reformulation ofP . Curiously, the term “reformulation”
appears in conjunction with “mathematical programming” over 400,000 times on
Google; yet there are surprisingly few attempts to formallydefine what a reformu-
lation in mathematical programming actually is [1, 7]. Furthermore, there is a re-
markable lack of literature reviews on the topic of reformulations in mathematical
programming [3]; and even more importantly, very few solution methods consider
reformulation-based algorithmic steps (usually, the reformulation is taken to be a
pre-processing step) [6]. Although some automatic relaxation software exists [2],
there is no equivalent for general reformulations.

In this paper we propose a data structure for storing and manipulation mathematical
programming formulations, and several definitions of different types of reformula-
tions, all based on transformations carried out on the proposed data structure. A
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(non-exhaustive) list of known reformulations based on these definitions can be
found in [4].

2. A data structure for mathematical programs

We refer to a mathematical programming problem in the most general form:

min{f(x) | g(x) ⋚ b ∧ x ∈ X}, (1)

wheref, g are function sequences of various sizes,b is an appropriately-sized real
vector, andX is a cartesian product of continuous and discrete intervals. We letP
be the set of all mathematical programming formulations andM be the set of all
matrices.
Definition 1 Given an alphabetL consisting of countably many alphanumeric
namesNL and operator symbolsOL, a mathematical programming formulation
P is a 7-tuple(P ,V , E ,O, C,B, T ), where:

• P ⊆ NL is the sequence of parameter symbols: each elementp ∈ P is a param-
eter name;

• V ⊆ NL is the sequence of variable symbols: each elementv ∈ V is a variable
name;

• E is the set of expressions: each elemente ∈ E is a Directed Acyclic Graph
(DAG) e = (Ve, Ae) such that:

(a) Ve ⊆ L is a finite set
(b) there is a unique vertexre ∈ Ve such thatδ−(re) = ∅ (such a vertex is called

the root vertex)
(c) verticesv ∈ Ve such thatδ+(v) = ∅ are called leaf vertices and their set is

denoted byλ(e); all leaf verticesv are such thatv ∈ P ∪ V ∪ R ∪ P ∪ M
(d) for all v ∈ Ve such thatδ+(v) 6= ∅, v ∈ OL

(e) two weightingsχ, ξ : Ve → R are defined onVe: χ(v) is the node coefficient
andξ(v) is the node exponent of the nodev; for any vertexv ∈ Ve, we letτ(v)
be the symbolic term ofv: namely,v = χ(v)τ(v)ξ(v).

Elements ofE are sometimes called expression trees; nodesv ∈ OL represent an
operation on the nodes inδ+(v), denoted byv(δ+(v)), with output inR;

• O ⊆ {−1, 1}× E is the sequence of objective functions; each objective function
o ∈ O has the form(do, fo) wheredo ∈ {−1, 1} is the optimization direction
(−1 stands for minimization,+1 for maximization) andfo ∈ E ;

• C ⊆ E × S × R (whereS = {−1, 0, 1}) is the sequence of constraintsc of the

form (ec, sc, bc) with ec ∈ E , sc ∈ S, bc ∈ R: c ≡




ec ≤ bc if sc = −1

ec = bc if sc = 0

ec ≥ bc if sc = 1;

• B ⊆ R|V| × R|V| is the sequence of variable bounds: for allv ∈ V let B(v) =
[Lv, Uv] with Lv, Uv ∈ R;

• T ⊆ {0, 1, 2}|V| is the sequence of variable types: for allv ∈ V, v is called a
continuous variable ifT (v) = 0, an integer variable ifT (v) = 1 and a binary
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variable ifT (v) = 2.

We writeT (z) and respectivelyB(z) to mean the sequences of types and respec-
tively bound intervals of the sequence of variables inz ⊆ V. We sometimes refer to
a formulation by calling it anoptimization problemor simply aproblem. Consider
a functionx : V → R|V| (calledpoint) which assigns values to the variables. A
point x is type feasibleif: x(v) ∈ R whenT (v) = 0, x(v) ∈ Z whenT (v) = 1,
x(v) ∈ {Lv, Uv} whenT (v) = 2, for all v ∈ V; x is bound feasibleif x(v) ∈ B(v)
for all v ∈ V; x is constraint feasibleif for all c ∈ C we have:ec(x) ≤ bc if
sc = −1, ec(x) = bc if sc = 0, andec(x) ≥ bc if sc = 1. A point x is feasible inP
if it is type, bound and constraint feasible. Denote byF(P ) the feasible points of
P . A feasible pointx is alocal optimumof P with respect to the objectiveo ∈ O if
there is a non-empty neighbourhoodN of x such that for all feasible pointsy 6= x
in N we havedofo(x) ≥ dofo(y). A feasible pointx is aglobal optimumof P with
respect to the objectiveo ∈ O if dofo(x) ≥ dofo(y) for all feasible pointsy 6= x.
Denote the set of local optima ofP by L(P ) and the set of global optima ofP by
G(P ). If O(P ) = ∅, we defineL(P ) = G(P ) = F(P ).

3. Reformulations

The generic term we employ for a problemQ related to a given problemP by
some form of transformation carried out on the formulation of P as defined in
Defn. 1 isauxiliary problem. Among the several possible auxiliary problem types,
four are specially interesting and used quite commonly: transformations preserving
all optimality properties (opt-reformulations); transformations preserving at least
one global optimum (narrowings); transformations based ondropping constraints,
variable bounds or types (relaxations); transformations that are one of the above
types “in the limit” (approximations).

Opt-reformulations are auxiliary problems that preserve all optimality informa-
tion. We define them by considering local and global optima. Alocal reformula-
tion transforms all optima of the original problem into optima of the reformulated
problem, although more than one reformulated optimum may correspond to the
same original optimum. A global reformulation transforms all global optima of the
original problem into global optima of the reformulated problem, although more
than one reformulated global optimum may correspond to the same original global
optimum.
Definition 2 Q is a local reformulation ofP if there is a functionϕ : F(Q) →
F(P ) such that (a)ϕ(y) ∈ L(P ) for all y ∈ L(Q), (b) ϕ restricted toL(Q) is
surjective. This relation is denoted byP ≺ϕ Q. Q is a global reformulation ofP if
there is a functionϕ : F(Q) → F(P ) such that (a)ϕ(y) ∈ G(P ) for all y ∈ G(Q),
(b) ϕ restricted toG(Q) is surjective. This relation is denoted byP ¢ϕ Q. We write
P ≺ Q (resp.P ¢ Q) if there is aϕ such thatP ≺ϕ Q (resp.P ¢ϕ Q). Q is an
opt-reformulation ofP (denoted byP < Q) if P ≺ Q andP ¢ Q.

Opt-reformulations can be chained (i.e. applied in sequence) to obtain other opt-
reformulations.
Lemma 1 The relations≺,¢, < are reflexive and transitive.
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Narrowings are auxiliary problems that preserve at least one global optimum. They
come in specially useful in presence of problems exhibitingmany symmetries: it
may then be the huge amount of global optima that is preventing a search from
being successful. An example of narrowing is given by the local cuts obtained from
the symmetry group of the problem [5]. All opt-reformulations are a special case of
narrowings; narrowings can be chained to obtain more complex narrowings. Chain-
ing an opt-reformulation and a narrowing results in a narrowing.
Definition 3 Q is a narrowing ofP if there is a functionϕ : F(Q) → F(P ) such
that (a)ϕ(y) ∈ G(P ) for all y ∈ G(Q).

Loosely speaking, a relaxation of a problemP is an auxiliary problem ofP with
fewer constraints. Relaxations are useful because they often yield problems which
are simpler to solve yet they provide a bound on the objectivefunction value at the
optimum. The “fundamental theorem” of relaxations states that relaxations provide
bounds to the objective function. Opt-reformulations and narrowings are special
types of relaxations. Relaxations can be chained to obtain other relaxations; chain-
ing of relaxations with opt-reformulations and narrowingsresults in other relax-
ations.
Definition 4 Q is a relaxation ofP if F(P ) ( F(Q).

Approximations are auxiliary problems dependent on a numerical parameter, which
approximate as closely as desired other auxiliary problemsfor some limiting value
of the parameter. Since approximations can be defined for alltypes of auxiliary
problems, we can have approximations to opt-reformulations, narrowings, relax-
ations and approximations themselves. In general, approximations have no guaran-
tee of optimality, i.e. solving an approximation may give results that are arbitrarily
far from the optimum. In practice, however, approximationsmanage to provide so-
lutions of good quality. Opt-reformulations, narrowings and relaxations are special
types of approximations. Chaining approximations and otherauxiliary problems
yields an approximation.
Definition 5 Q is an approximation ofP if there is a countable sequence of prob-
lemsQk (for k ∈ N), a positive integerk′ and an auxiliary problemQ∗ of P such
that: (a) Q = Qk′; (b) for all expression treesf ∗ ∈ O(Q∗) there is a sequence of
expression treesfk ∈ O(Qk) that represent functions converging uniformly to the
function represented byf ∗ (c) for all c∗ = (e∗, s∗, b∗) ∈ C(Q∗) there is a sequence
of constraintsck = (ek, sk, bk) ∈ C(Qk) such that: (i) the functions represented by
ek converge uniformly to the function represented bye∗; (ii) sk = s∗ for all k; (iii)
bk converges tob.
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1. Introduction

Nowadays, Operations Research tools are widely used to optimize real world prob-
lems. The underlying difficulty of real world applications is that most of them are
due to uncertainty. As shown in [8] and [15] and references therein, the uncertainty
should not be neglected when optimizing. There are three main approaches to cope
with uncertainty in operations research.
The first approach is a reactive method, usually calledonline or recoveryalgo-
rithm. In such methods, the uncertainty is neglected at optimization phase, but han-
dled thanks to the re-optimization process. Although thesemethods are efficient in
many applications, their main disadvantage is that no boundfor the final solution
is provided and that the re-optimization itself and the implementation of the new
solution are time-consuming, which is contrasting with theonline requirements of
immediate reactivity. See [1] for a general survey on onlinealgorithms.
The second general approach is stochastic optimization, where the solution with
lowestexpectedcost is wanted. The advantage is that when the solution is imple-
mented several times under identical conditions, we are provided with an approxi-
mation on the average cost. However, the method needs the characterization of an
uncertainty set and a probabilistic distribution on it. See[8], [10] and [15] for more
details on stochastic optimization.
Finally, the latest researches focus onrobust optimization, [3] and [4]. The ad-
vantage of this approach is to find, if it exists, a solution that is feasible for any
realization within an uncertainty set, and an upper cost bound is provided. How-
ever, this is a conservative worst case approach, which may produce solutions with
high costs in average to ensure feasibility on the whole uncertainty set.
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The motivations to derive the concept ofuncertainty featuresare that on one hand
it is difficult to explicitly characterize an uncertainty set and, on the other hand,
completely neglecting uncertainty and use purely reactiveapproaches might lead
to bad solutions.

The idea is that instead of explicitly describing the uncertainty, we focus on impos-
ing desired properties, or features, on the solution that are proven to lead to more
robust solutions in terms of feasibility or to ameliorate its recoverability, i.e. the
performance of a recovery algorithm. These features thus involve characteristics
of both proactive and reactive methods dealing with robustness and recoverability.
Uncertainty is consideredimplicitly through those features: no explicit uncertainty
description is required. Clearly, uncertainty features areboth problem and recovery
algorithm dependent.

To illustrate the concepts, consider the widely studied field of airline scheduling
(see [12] for a general survey). An usual technique for a solution to absorb delays
is to over-estimate travel times in order to have buffers to absorb possible perturba-
tions. So, a possible uncertainty feature would be to maximize the idle time between
successive flights, which allows delay absorption and thus increases the robustness
of the solution.
The stochastic model of [16] considers recourse to address the crew scheduling
problem. Interestingly, the final conclusion is that the solutions tend to reduce the
plane changes of crews. This gives an example of an uncertainty feature, namely
measuring how well the routes of the planes match union constraints for the crew.
Maximizing this uncertainty feature will, according to theconclusions of [16], in-
crease the recoverability of the schedule.
[11] builds robust schedules for planes that allow crew swappings in case of dis-
ruptions. A corresponding uncertainty feature is the number of plane crossings, i.e.
when two planes are on the ground at the same time and the same airport and other
features can be derived from ad-hoc recovery algorithms ([7]).
We notice that, in many works dealing with robustness or recovery (see e.g. [13],
[6], [14]), the solutions of the different approaches tend to a property that is sim-
ple, such as the number of plane crossings ([11], [5]), reducing the length of plane
rotations ([9]) or increasing idle time ([2]).

2. Framework for Uncertainty Features

We start, without loss of generality, from a general deterministic minimization
problem(P ) given as

z∗D = min f(x) (1)
a(x) ≤ b (2)
x ∈ X (3)
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Note that this problem is prone to noise in the data, but we do not formulate the
nature of this noise. We transform(P ) in a multi-objective optimization problem
by adding an uncertainty feature (that has to be maximized)µ(x). Objective (1)
becomes:

[zD, zM ] = [min f(x), max µ(x)].

Note that the feasibility of solutionx is not affected. Whenµ(x) is of the same
complexity thanf(x) anda(x), then the obtained problem is no more difficult than
the initial problem(P ).
There are three commonly used methods to solve multi-objective problems. One is
the exploration of the Pareto frontier, the set of non dominated solutions. Another
approach is to consider a weighted combination of the objectives. A third approach
is to optimize one of the objectives and enforce a bound on thesecond with an
additional constraint.

Note that uncertainty features are a simple and intuitive way to implicitly take into
account the uncertainty.
In this framework, it is straightforward to consider several uncertainty features
at once. In this case, eitherµ(x) is a combination of several uncertainty features
µ1(x), · · · , µm(x) or we address a multi-objective problem withm + 1 objectives
f(x), µ1(x), · · · , µm(x).

3. Illustrative Examples

The aim of uncertainty features is to avoid the explicit modeling of uncertainty. We
show here that it is possible to use that framework to formulate both a stochastic
optimization as well as a robust optimization problem.
LetU be the uncertainty set of a stochastic optimization problem, i.e. the set of pos-
sible values for the problem data, associate with a probability distribution. Clearly,
if we takeµ(x) = −EU{f(x)}, the expectation of the cost overU , then we obtain
a stochastic optimization problem. If we solve the multi-objective by optimizing
only the uncertainty feature and bounding the objectivef(x) by +∞, we get the
usual expected cost minimization of stochastic problems.

Robust optimization can also be formulated as a particular case of uncertainty fea-
tures.

Let us consider the approach of [4] for linear robust optimization with a unique
constraint:

z∗ROB = min cTx (4)
∑

j

ajxj + β(x, Γ) ≤ b (5)

x ∈ X (6)

whereβ(x, Γ) is the characterization of the worst scenario in an uncertainty set
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when at mostΓ coefficientsaj change. Note that the uncertainty setU contains
J ≥ Γ changing coefficients̃aj ∈ [aj − âj, aj + âj] for j ∈ J . The objective is to
find the solution of least cost that is feasible for all possible scenarios inU having
at mostΓ changing parameters. This must hold for the worst scenario,explaining
the formulation (4)-(6).
We now show how to derive the above formulation using uncertainty features. The
problem we start with is the feasibility problem

min
x∈X





∑

j

ajxj + β(x, J) − b



 (7)

The solution of this problem gives the worst violation of theconstraint when all
J parameters are changing. A negative solution of (7) means the solution is ro-
bust for all scenarios inU . Hence, the main concern is feasibility with respect to
all scenarios. The uncertainty feature of a solution is given byits cost, thus we
setµ(x) = −cTx (cost is to be minimized). In this case, we handle the multi-
optimization by maximizing only the uncertainty feature−cTx and constraining
the feasibility, imposing it not to exceed(1 + ρ)z∗ROB. Defining

ρ =





β(x,J−Γ)
z∗ROB

− 1 if z∗ROB 6= 0

0 otherwise.
whereβ(x, J − Γ) + β(x, Γ) = β(x, J).

We do not report here the details for brevity. The main resultis that, for the linear ro-
bust problem with a single constraint, the uncertainty feature problem is equivalent
to the robust formulation of [4]. Note that the extension to the case ofn constraints
is also possible and remarkably, the formulation with uncertainty features allows to
estimate the maximal value ofΓi, the number of varying coefficients in rowi, to
ensure that a robust solution exists.

In [7] we develop a recovery algorithm for airline scheduling. Uncertainty features
improving the algorithms efficiency are, as described in section 1, plane crossings
and idle time. Moreover, we intend to derive more specific features based directly
on the recovery algorithm’s networks structure and eventually consider uncertainty
features for crew scheduling and recovery.

We see that uncertainty features allow to fall back to standard methods with par-
ticular choices ofµ(x). Their advantage compared to standard methods is that they
allow to implicitly exploit the structure of a recovery algorithm without increasing
the complexity, as long as the uncertainty features have thesame complexity than
the deterministic objective and constraint functions.
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4. Conclusion

In this paper, we introduce the concept of uncertainty feature to implicitly cope
with uncertainty instead of modeling it explicitly with an uncertainty set. We show
that the uncertainty features are a generalization of the existing methods for opti-
mization under uncertainty, since, by choosing an uncertainty feature based on an
uncertainty set and choosing an appropriate functionµ(x), we retrieve the stochas-
tic or the robust formulations. The advantage on existing methods is the possibility
to consider reactive methods implicitly if the uncertaintyfeature increases recover-
ability.
The validation of the approach is clearly problem dependent, since different prob-
lems do not necessarily have similar structural properties. Furthermore, uncertainty
features for recoverability depend on the recovery algorithm. For a specific prob-
lem, one has to measure, by simulation, the correlation between a structural prop-
erty and the solution cost. A good feature is identifiable by asignificative negative
correlation, i.e. when an increase in one term leads to a significant decrease in the
other.
An experimental comparative investigation on knapsack problems is in process, and
an application to airline scheduling is planned.
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1. Introduction

We consider a dynamic planning problem for the maintenance and repairment ser-
vices of a housing corporation. Large maintenance activities are typically known
well-ahead, while emergency incidents are urgent and unforeseen. The same pool
of mechanics is used to serve both kinds of jobs. Furthermore, some jobs will need
to be outsourced to subcontractors since the number of own mechanics is not suf-
ficient to serve all jobs. In this service mechanic problem wefocus on a decision
to make today for the planning period of the next two weeks: which maintenance
activities to assign to subcontractors and which ones to ownmechanics, while tak-
ing into account the unknown emergency incidents which willarise (and need to be
served) during the planning period. The decision criterionof the service mechanic
problem is to minimize the expected costs of serving all jobs.

In the service mechanic problem five aspects are important.

• Probabilistic information on the emergency incidents is used when making deci-
sions on the maintenance activities.

• We decide whether or not to outsource jobs to subcontractors.
• For each incident, besides the assignment decision it is also decided during which

time slot(s) the incident is served. Every incident has its own due time, not later
than the end of the planning period.

• Not every mechanic is able to serve every job (depending on skill type).
• The routing of mechanics is not considered.

∗ Corresponding author.
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In the literature, very little attention has been paid to theservice mechanic prob-
lem described above. While we focus on the uncertainty with respect to emergency
incidents, by using probabilistic information, most related papers ignore future in-
cidents when making decisions. Furthermore, we explicitlydecide whether or not
to subcontract jobs, while most related papers do not even consider the possibil-
ity of outsourcing. Instead, they include routing of mechanics / vehicles while we
exclude travel times.

For example, Johns [5] and Madsen et al. [7] discuss the problem of scheduling re-
pair men in which future jobs are not considered when deciding on the known jobs.
Furthermore, outsourcing is not allowed, only one type of mechanic is considered,
and routing is performed. Also in the grocery delivery problem of Campbell and
Savelsbergh [3] future jobs are ignored when deciding on thestart time and rout-
ing of deliveries. The vehicle fleet is homogeneous and although deliveries can
be rejected, this is not a decision to be made. Rejected jobs can be regarded to
be outsourced to subcontractors afterwards. In the routingand selection problem of
Bolduc et al. [2] and Chu [4] outsourcing of jobs is modeled as decisions. However,
they study the deterministic variant of the problem with onetype of own vehicle
(skill type); routing of the own fleet is not considered.

2. Problem description

In the service mechanic problem we consider two kinds of jobsfor mechanics:
large maintenance activities which are known well before they start and urgent
emergency incidents which gradually become known during the planning period.
All jobs need to be served.

Each job requires a specific type of mechanic; either a handyman or an expert.
Experts are able to serve jobs requiring handymen, but the reverse is not possible.
The numbers of available handymen and experts are given and may vary during the
planning period of two weeks. In addition to the own mechanics (handymen and
experts) subcontractors can be used to outsource any kind ofjob. We assume that
sufficiently many subcontractors are available.

For (maintenance) activities a start and end time is given, as well as the required
type and number of mechanics. The data of (emergency) incidents consists of the
required type and number of mechanics, the arrival time, thedue time (time before
which the incident has to be served), and the duration. Locations of the jobs are not
necessary since we do not take travel times into account.

The objective of the service mechanic problem is to minimizethe expected costs of
serving all jobs. First of all, subcontracting today (before the start of the planning
period) is less expensive than during the planning period. Furthermore, since the la-
bor costs of the own mechanics have to be paid regardless of whether the mechanics
actually work, using own mechanics is free of charge. The costs of subcontracting
a job are proportional to the duration of the job and the required number of me-

79



chanics. Moreover, jobs requiring experts are more expensive to subcontract than
those requiring handymen. We assume that the contracts withsubcontractors have
already been made so that there are no fixed costs for outsourcing.

In addition to the non-preemptive version, we also considerthe preemptive service
mechanics problem in which interruption of maintenance activities is allowed in
order to serve incidents.

3. Two-stage recourse model

To model the service mechanic problem we have developed a two-stage recourse
model as known in stochastic programming [1], [6], [8]. The first stage models
today when the data of the maintenance activities are completely known and prob-
abilistic information on the emergency incidents is assumed. This is consistent with
most two-stage recourse models in which the second stage typically consists of a
(static) optimization problem like a mixed-integer linearprogramming problem.
However, our model is non-standard since the second stage isa dynamicproblem,
simulatingthe planning period of two weeks.

In the first stage all maintenance activities for the next twoweeks are assigned to
mechanics. The assignment of activities to subcontractorsis permanent. Thus, these
activities can not be reconsidered and therefore do not appear in the second-stage
problem. In contrast, the assignment of activities to own mechanics is preliminary
since during the planning period it can be reconsidered.

The objective of the service mechanic problem is to find the assignment with min-
imal (expected) costs. The costs of an assignment consists of two parts: the costs
of assigning maintenance activities to subcontractors today (the first-stage costs)
and the expected costs of (re-)assigning activities and incidents to subcontractors
during the planning period. In the previous section we have already explained that
only the costs of subcontracting are considered. To find an assignment with small
(expected) costs, we use a genetic algorithm.

In the second stage, for a given first-stage assignment and given realization of the
emergency incidents, an event simulation is applied. In this simulation, two online
decisions are made. First, after the arrival of an incident astart time has to be deter-
mined, in such a way that the due time is respected. Furthermore, all preliminarily
assigned activities and emergency incidents need to be assigned to mechanics, ei-
ther own mechanics or subcontractors, at minimal costs. Although it would proba-
bly be best to make both decisions simultaneously, due to restrictions on CPU time
the two decisions are made sequentially.

In this paper, we will investigate three different simulation strategies. The strategies
differ in the way they find suitable start times for the incidents and whether or
not preemption of activities is allowed. In the first strategy, Simple, preemption of
maintenance activities is not allowed. The start time of incidents is set equal to the

80



arrival time. We expect this strategy to be fast, but to give results of low quality,
compared to the other two strategies. In strategySearchpreemption of activities is
also not allowed. Now, the start time of incidents is set equal to the earliest possible
time when there are enough own mechanics available. If this results in exceeding
the due time, the start time is set equal to the arrival time and at least one incident
or activity is outsourced. To determine which one is assigned to a subcontractor
a greedy heuristic is applied. Preemption of maintenance activities is allowed in
simulation strategyPreemptive. Rules regarding e.g. the number of times an activity
can be interrupted and the length of the interruption are determined. Following
these rules the start time of incidents is set as early as possible.

4. Current research

A genetic algorithm is used to solve the entire two-stage recourse model. Prelimi-
nary results will be presented for all three simulation strategies, based on randomly
generated data sets.
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1. Introduction

In this talk we consider special cases of online scheduling jobs which require pro-
cessing on a number of machines simultaneously (parallel jobs). Jobs are charac-
terized by their processing timepj and the number of machinesmj simultaneously
required for processing, and are presented one by one to a decision maker. As soon
as a job becomes known, it has to be scheduled irrevocably (i.e. its start time has
to be set) without knowledge of successive jobs. Preemptionis not allowed and the
objective is to minimize the makespan. We study a number of special cases of this
online problem.

In contrast to an online algorithm, anoffline scheduling algorithm has complete
knowledge of the list of jobs to construct the optimal offlineschedule. This opti-
mal offline objective value is used to measure the quality of online algorithms. An
online algorithm isρ-competitive if for any list of jobs it produces a schedule with
makespan at mostρ times the makespan of the optimal offline schedule. An online
problem is called semi-online if there is some a priori knowledge of the list of jobs,
e.g., the jobs appear in non-increasing order of machine requirement. Because of
such knowledge smaller competitive ratios might be obtained.

Using the three-field scheduling problem notation, the considered problem is de-
noted byP |online − list,mj|Cmax see [7]. In the literature the concept of par-
allel jobs is known by many different names, such asparallel tasks, paralleliz-
able tasks, multiprocessor tasks, multiple-job-on-one-processor, and1-job-on-r-
processors. In some literature the machine requirementmj of a job is called the
width or the size of a job. And in stead ofmj the termsizej or simplysj is used to
denote the parallel machine requirement of jobj.

There is a great deal of similarity betweenP |online − list,mj|Cmax and the online
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orthogonal strip packing problem. The orthogonal strip packing problem is a two-
dimensional packing problem. Without rotation rectangleshave to be packed on
a strip with fixed width and unbounded height. The objective is to minimize the
height of the strip in which the rectangles are packed. In theonline setting one
rectangle is presented after the other and has to be assignedwithout knowledge
of successive rectangles. To see the similarity, let each machine correspond to one
unit of the width of the strip, and time to the height of the strip. The width of a
rectanglej corresponds to the machine requirement of jobj and its height to the
processing time. Minimizing the height of the strip used is equivalent to minimizing
the makespan of the machine scheduling problem. The difference lies in the choice
of machines. InP |online − list,mj|Cmax anymj machines suffice for jobj, where
rectangles can not be split up into several rectangles together having widthmj.
Therefore, algorithms for strip packing can be used for parallel job scheduling [5],
but in general not the other way around.

2. Overview of Results

We give an overview of the current state of the research on online parallel job
scheduling, and its various semi-online versions. The results are summarized in Ta-
ble 1. The first online algorithm for online parallel job scheduling with a constant
competitive ratio is presented in [7] and is12-competitive. In [12], an improvement
to a 7-competitive algorithm is given. Thisdynamic waiting algorithmschedules
jobs with a small machine requirement greedily and delays the jobs with a large
machine requirement. For the strip packing problem in [1] a6.99-competitive on-
line algorithm is given under the assumption that jobs have aprocessing time of at
most1. Thisshelf algorithmgroups rectangles of similar height together. The cur-
rently best known algorithm is designed by combining the ideas of separating jobs
with large and small machine requirement, and using a shelf structure. This results
in a6.6623-competitive algorithm which is independently obtained in[5] and [10],
and due to its structure it can be applied to online orthogonal strip packing as well.

For P |online − list,mj|Cmax the best known analytical lower bound on the com-
petitive ratio is a bound of2 resulting from the strip packing problem [2], which ap-
plies directly to the parallel job problem withm ≥ 3. In [6] a tight lower bound of2
is given for the two machines case. Furthermore, a computerized proof, based on an
ILP-formulation, resulting in a lower bound of2.43 for P |online − list,mj|Cmax

is given.

Until now, the best known algorithm for the case with3 machines is the3-competitive
greedy algorithm. In this talk we show an improved algorithm:
Theorem 1 For P3|online − list,mj|Cmax a 2.8-competitive algorithm exists.

In the literature a number of semi-online variants of onlineparallel job schedul-
ing are considered. In case the jobs appear in non-increasing order of machine
requirement the best known lower bound is1.88 from classical parallel machine
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P |online − list,mj|Cmax

Model Lower Bound Upper Bound

- 2.43, [6] 6.6623, [5, 10]
m = 2 2, [6] 2, (Greedy)
m = 3 2, [2] 2.8, (This talk)
3 ≤ m ≤ 6 2, [2] m, (Greedy)

Semi-onlineP |online − list,mj|Cmax

Model Lower Bound Upper Bound

-non-increasingmj 1.88, [9] 2.4815, (This talk)
m = 2 or 3 2 − 1

m
, [4] 2 − 1

m
(Greedy)

m = 4 or 5 - 2 (Greedy)
-non-increasingpj

5
3
, [2] 2, [11]

m = 2 9
7
, [3] 4

3
, [3]

-non-decreasingpj - -

m = 2 3
2
, [4] 3

2
, [3]

Table 1
Results on online scheduling ofP |online − list, mj |Cmax

scheduling, i.e. this bound uses only jobs withmj = 1 [9]. Furthermore, for this
case in [11] it is shown, that greedy scheduling the jobs is2.75-competitive and no
better than2.5-competitive. In this talk we show that slightly modifying the greedy
algorithm yields a better algorithm.
Theorem 2 For P |online − list,mj|Cmax with jobs appearing in non-increasing
order of machine requirement, a2.4815-competitive algorithm exists.

Furthermore, we show that for2 and3 machines and jobs appearing in non-increasing
order of machine requirement the greedy algorithm is(2 − 1

m
)-competitive. As

we know from classical parallel machine scheduling [4], this is the best possible;
these bounds are tight. Finally, we show that for4 and5 machines greedy is2-
competitive.

In case the jobs appear in non-increasing order of processing time a greedy algo-
rithm is2-competitive [11]. The best know lower bound on the competitive ratio is
5
3

from the strip packing problem [2]. For the two machine case with non-increasing
processing times a lower bound of9

7
and a 4

3
-competitive online algorithm are

known [3]. For the case where jobs appear in non-decreasing order of processing
times and two machines, an optimal (best possible ratio)3

2
-competitive algorithm is

given in [3]. Optimality follows from a lower bound from classical parallel machine
scheduling [4].

The results, summarized in Table 1, show that in only a few special cases the gap
between the lower and upper bound on the competitive ratio isclosed. In particular
the gap for the general problemP |online − list,mj|Cmax is large.
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1. Introduction

Traditionally percolation theory has been the study of the properties of a random
subgraph of an infinite graph, that is obtained by deleting each edge of the graph
with probability1 − p for somep ∈ (0, 1) independently of every other edge. The
question that has been mainly investigated is whether the subgraph that is spanned
by these edges has an infinite component or not. The classicaltype of graphs that
was studied in percolation theory is the latticeZd in various dimensionsd ≥ 2
(see [8]). Various other types of lattices have also been studied. In each of the
above cases the main problem is the calculation of a criticalpc so that ifp < pc

then the random subgraph obtained as above has no infinite components, whereas
if p > pc there is an infinite component with probability 1.

In the present work, we study percolation on finite graphs whose number of vertices
is large. This problem is old, in the sense that for example aGn,p random graph is
a random subgraph of the complete graph onn vertices, where each edge appears
with probability p independently of every other edge. In this context, a question
about the appearance of an infinite component is senseless. Asomehow analogous
question is whether there exists a component of the random subgraph containing a
certain proportion of the vertices or as we customarily say agiant component. More
specifically, if the original graph hasn vertices the question now is whether there
exists anε > 0 for which there is a component of the random subgraph that hasat
leastεn vertices with probability1 − o(1) (asn → ∞). Hence, we also ask (quite
informally) for the existence of a criticalpc for which wheneverp < (1− δ)pc then
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for everyε > 0 there is no component having at leastεn vertices with probability
1 − o(1) and wheneverp > pc(1 + δ) then there is a component with at leastεn
vertices for someε > 0 with probability1 − o(1). A classical example of this is
the Gn,p random subgraph ofKn, the complete graph onn vertices, where as it
was proved by Erd̋os and Rényi in [5] the critical probability is equal to1/n (see
also [2] or [9] for a detailed discussion).

More generally, Bollobás, Kohayakawa and Łuczak in [3] raised the following
question: given a sequence of graphs{Gn} whose order tends to infinity asn grows,
is there such a phase transition? Assume thatGn has|Gn| vertices anden edges.
For each suchn we have a probability space on the set of spanning subgraphs of
Gn and the probability of such a subgraph ofGn that hase edges ispe(1 − p)en−e,
whereen is the number of edges ofGn. LetGn(p) be a sample from this probability
space. Thus we are seeking apc such that: ifp < (1− δ)pc, then for everyε > 0 as
n → ∞ all the components ofGn(p) have at mostε|Gn| vertices with probability
1 − o(1), and ifp > pc(1 + δ), then there existsε = ε(p) > 0 for which the largest
component ofGn(p) has at leastε|Gn| vertices with probability1 − o(1). If the
sequence of graphs is{Kn}, this is simply the case of aGn,p random graph.

2. The main result

In the present paper, we determine a percolation threshold in the case where the
sequence{Gn}n∈Z+ is a sequence of sparse random graphs onn vertices. In par-
ticular, for every integern ≥ 1, Gn is a uniformly random graph on the setVn =
{1, . . . , n} having a given degree sequenced(n) = (d1, . . . , dn), i.e. fori = 1, . . . n
vertexi has degreedi. More formally, adegree sequenceon the setVn is a vector
d = (d1, . . . , dn) consisting of natural numbers, where

∑n
i=1 di is even. We let2M

denote this sum, andM = M(n) is the number of edges thatd spans. For a given
d = d(n), if d(n) = (d1, . . . , dn) for n ∈ Z+, we setDi = Di(n) = |{j ∈ Vn :
dj = i}|, for all i ∈ N, and∆ = ∆(n) = max1≤i≤n{di}. Finally, if G is a graph on
Vn, thenD(G) denotes its degree sequence.

An asymptotic degree sequenceis a sequence(d(n))n∈Z+ , where for eachn ∈ Z+

the vectord(n) is a degree sequence onVn. An asymptotic degree sequence is
sparse, if for every i ∈ N, we havelimn→∞ Di(n)/n = λi, for someλi ∈ [0, 1],
where

∑
i≥0 λi = 1, and moreover

lim
n→∞

1

n

∑

i≥1

i(i − 2)Di(n) =
∑

i≥1

i(i − 2)λi < ∞. (1)

The generating polynomialof a sparse asymptotic degree sequence is defined as
L(s) =

∑∞
i=0 λis

i. We assume that every asymptotic degree sequence(d(n))n∈Z+

we work with is such that for everyn the set of simple graphs that haved(n) as
their degree sequence is non-empty.

We consider two types of percolation. Firstly, for somep ∈ (0, 1), each edge of
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Gn is present with probabilityp independently of every other edge. This type of
percolation is usually calledbond percolation, in that we randomly delete the edges
(i.e. the bonds) ofGn. This is distinguished from another type of percolation which
is calledsite percolation. Here, we go through the vertices ofGn and we make each
of them isolated with probability1 − p, independently of every other vertex (or as
we say we delete this vertex). The random subgraph in this case is the spanning
subgraph ofGn that does not contain the edges that are attached to the vertices
that were deleted. The terms “bond” and “site” percolation have their origins in the
percolation theory of infinite graphs (see [8] for an extensive discussion on both
types as well as the references therein).

We shall now define the percolation threshold in each of the above cases. LetG′(n)
denote the random subgraph that is obtained in either case and letL1(G

′(n)) be the
lexicographically first component ofG′(n) (this is the component that has maxi-
mum order and the smallest vertex it contains is smaller thanthe smallest vertex of
every other component of maximum order - the comparison between the vertices
is by means of the total ordering onVn). Starting from the bond percolation we set
pbond

c = sup{p ∈ [0, 1] : |L1(G
′(n))|/n p→ 0 asn → ∞} (the symbol

p→ denotes
convergence in probability, i.e. we say thatXn

p→ 0 if for every ε > 0 we have
P[|Xn| > ε] → 0 asn → 0). The convergence in probability is meant with re-
spect to the sequence of probability spaces indexed by the set Z+, where for each
n ∈ Z+ the probability of a certain spanning subgraph is the probability that this is
the subgraph which is spanned by the edges that survive the random deletion of the
edges of the random graphGn. Similarly, in the case of site percolation we define
psite

c = sup{p ∈ [0, 1] : |L1(G
′(n))|/n p→ 0 asn → ∞}, whereG′(n) is now the

spanning subgraph ofGn that is the outcome of the deletion of those edges that
attached to the chosen vertices, i.e. the vertices that we make isolated. Note that in
both cases there are two levels of randomness.

If Gn is a randomd-regular graph onVn, for any fixedd ≥ 3, the bond percolation
threshold has been calculated by Goerdt in [6] and is equal to1/(d − 1). Before
this, bond percolation in random regular graphs was studiedby Nikoletseas, Palem,
Spirakis and Yung in [11], where it was proved that the critical probability is at
most32/d, for d large enough. Also, Nikoletseas and Spirakis in [10] and Goerdt
and Molloy [7] study the edge expansion properties of the giant component that
remains after the edge deletion process. However, these papers did not provide any
analysis on the site percolation process. Our main theorem involves also the latter
and is stated as follows:
Theorem 1 If (d(n))n∈Z+ is a sparse asymptotic degree sequence of maximum
degree∆(n) ≤ n1/9 andL(s) is its generating polynomial which is twice differ-
entiable at 1 and moreoverL′′(1) > L′(1), thenpsite

c = pbond
c = L′(1)/L′′(1).

Moreover, wheneverp > pbond
c (p > psite

c , respectively) there exists anε > 0 such
that |L1(G

′(n))| > εn with probability1 − o(1).

The formula for both critical probabilities was obtained byDorogovtsev and Mendes
in [4] using qualitative (i.e. non-rigorous) arguments.

To make the statement of the above theorem slightly clearer,let us consider the
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case of bond percolation (the case of site percolation is similar). LetG(n) be the set
of graphs onVn whose degree sequence isd(n). Each graphG ∈ G(n) gives rise
to a probability space which consists of all its spanning subgraphs. In particular,
if G hase edges andG′ is a spanning subgraph ofG that hase′ ≤ e edges then
its probability ispe′(1 − p)e−e′ ; let PG

p [·] denote this measure. In other words, this
space accommodates the outcomes of the bond percolation process applied toG
and we call it thepercolation spaceof G. For anyε ∈ (0, 1) we let gε(G) be
the set of all spanning subgraphs ofG whose largest component has at leastεn
vertices. This event has probabilityPG

p [gε(G)] in the percolation space ofG. Now,
assume thatp < pbond

c . Theorem 1 implies that for any givenρ ∈ (0, 1), the event
{G ∈ G(n) : PG

p (gε(G)) < ρ} occurs with probability1 − o(1) in the uniform
spaceG(n). That is, asymptotically for almost every graph inG(n) the random
deletion of the edges leaves a component of order at leastεn with probability no
more thanρ. If p > pbond

c , then the second part of the theorem implies that there
existsε > 0 such that the event{G ∈ G(n) : PG

p (gε(G)) > 1 − ρ} occurs with
probability1 − o(1) in G(n). Hence, asn → ∞ almost all graphs inG(n) are such
that if we apply the bond percolation process to them with retainment probabilityp,
then there is a component having at leastεn vertices with probability at least1− ρ
(in the percolation space).

3. Sketch of the proof of Theorem 1

The fact that the critical probabilities coincide reflects abehaviour that is similar to
that of percolation on an infinite regular tree. Of course in that context the critical
probabilities are defined with respect to the appearance of an infinite component
that contains the (vertex that has been selected as the) root. Using the fundamental
theorem of Galton-Watson processes (see for example [1]), it can be shown that
the bond and the site critical probabilities coincide and they are equal to1/(d− 1),
whered is the degree of each vertex of the tree. Observe that for the case of a
randomd-regular graph Theorem 1 implies thatpsite

c = pbond
c = 1/(d − 1). This is

not a coincidence as it is well-known that a randomd-regular graph locally (e.g. at
distance no more thani from a given vertex for some fixedi) looks like ad-regular
tree.

More generally, the typical local structure of the class of random graphs we are
investigating is also tree-like. Note that the ratioL′′(1)/L′(1) equals

∞∑

i=2

(i − 1)
iλi∑∞

j=1 jλj

. (2)

Consider a vertexv ∈ Vn which has positive degree and let us examine more closely
the behaviour of one of its neighbours. It can be shown that the probability that this
has degreei is proportional toiDi(n). In particular, it is almost equal toiDi(n)∑

i
iDi(n)

and this tends to iλi∑
∞

j=1
jλj

asn grows. Moreover, one can show that with probability

1 − o(1) there are no edges between the neighbours ofv. Therefore (2) is the limit
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of the expected number of children a neighbour ofv has. This scenario is repeated
for every vertex in thed-th neighbourhood ofv, whered is fixed. More precisely,
the vertices which are at distance no more thand induce a tree rooted atv which
contains at mostln ln n vertices, with probability1 − o(1). Suppose that there are
ti vertices of degreei in this tree. Thus for a vertex that is at distanced from v, the
probability that it has degreei is proportional toi(Di(n) − ti) = iλin(1 − o(1)).
More precisely, it is

i(Di(n) − ti)∑
j j(Dj(n) − tj)

.

Since∆ ≤ n1/9 and ti ≤ ln ln n, it follows that
∑

i iti ≤ ln ln n
∑

i≤n1/9 i =
O(n1/3). Hence, the limit of the above probability asn → ∞ is again iλi∑

∞

j=1
jλj

and (2) gives the limiting expected number of children of such a vertex. In other
words, the graph that is induced by the vertices which are at distance no more than
d from v behaves like the tree of a branching process that started atv, with the
ratio L′′(1)/L′(1) being the expected progeny of each vertex. Observe here that
the conditionL′′(1) > L′(1) implies that in fact this is a supercritical branching
process which yields an infinite tree with probability 1.

Therefore, at least locally either bond or site percolationis essentially percolation
on such a random rooted tree. In both types of percolation, ifp < L′(1)/L′′(1), then
the expected number of children of a vertex that survive ispL′′(1)/L′(1) < 1. Thus
the random tree that is developing aroundv after the random failures of the edges
or the vertices will be distributed as the tree of a subcritical branching process. In
particular, the tree that surrounds most of the vertices will be cut off from the rest of
the graph at a relatively small depth. On the other hand, ifp > L′(1)/L′′(1) a large
proportion from each of these local trees is preserved and moreover they are big
enough to guarantee that there are enough edges going out of them. So eventually
there is a fair chance that some of them are joined together and form a component
of linear order.
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On co-distance hereditary graphs
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Abstract

We present a linear time recognition algorithm as well as a 4-expression forcalculating the
clique-width for the co-distance hereditary graphs which is the complementary class of the
well known family of distance hereditary graphs.

Key words: Distance and co-distance hereditary graphs, split decomposition,
clique-width, linear recognition algorithm

1 On distance hereditary graphs

For terms not defined here the reader is referred to [1]. Givena graphG = (V,E),
V will denote its vertex set,E its edge set andN(x) the neighborhood ofx ∈ V .
A vertex having exactly one neighbor is called apendantvertex. Two verticesx
andy aretwins iff N(x) = N(y), they aretrue twins iff (xy) ∈ E andfalsetwins
iff (xy) /∈ E. The distancebetween two verticesx andy, denoted bydG(x, y),
is the length of a shortest path betweenx and y. The class of Distance Heredi-
tary (DH for shortly) graphs have been widely studied and many results have been
obtained for these graphs (see [1]). Among them we recall that DH graphs are to-
tally decomposable usingsplit decomposition. We recall also that DH graphs are
also known as HHDG-free graphs since they can be characterized by four forbid-
den configurations: the House (i.e. the complementary graphof a chordless chain
of 5 vertices orP5 ), the Hole (i.e. a chordles cycle of at least five vertices), the
Domino (i.e. a cycle of 6 verticesabcdef having exactly one chordcf ) and the
Gem (i.e. the graph formed by aP4 = abcd and a universal vertex w.r.t. this
P4). Finally, a graphG is distance hereditary iff for any connected subgraphH
of G dG(x, y) = dH(x, y) holds for every pair of vertices ofH. A pruning se-
quence(S, σ) of G is a total orderingσ[x1, . . . , xn] of its vertex set and a sequence
S[s1, . . . , sn] of triples, such that for1 ≤ i ≤ n − 1 and i < j, in the induced
subgraphGi of G[V \ {x1, . . . , xi−1}], si is one the following words :(xi, P, xj), if
N(xi) = {xj} (xj is a pendant vertex) or(xi, F, xj) (xi andxj are false twins) or
(xi, T, xj) (xi andxj are true twins). The pruning sequence is used for the recog-
nition of a DH graphG: starting from a vertex ofG we construct successively
subgraphs ofG by adding true twins, false twins or pendant vertices. In [5]was
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CTW08 - Università degli Studi di Milano, Gargnano (Italy), May 13-152008



proposed a linear time recognition algorithm for DH graphs by constructing the
corresponding pruning sequence. But this algorithm recognizes also the domino
and the house as DH graphs, problem that was resolved in [3]. The recognition
algorithm of DH graphs presented in [3] will be for us the framework for the recog-
nition of a co-distance hereditary graphG. We shall show in the next section that
for testing ifG is distance hereditary we do not need to computeG but we can work
on G and make the necessary transformations to this algorithm inorder to remain
in linear time on the size ofG. We give below the recognition algorithm in [3] and
we enumerate the 6 steps needed these transformations.

Algorithm 1 ([3]). The pruning sequence of a connected DH graph
Build the distance levelsLv= L1, . . . , Lk from a vertexv of G (1); j ← 1;
For i = k downto1 do
For every connected componentC of G[Li] (2) Do
z ← Prune-cograph(C, j) (3) ; j ← j+ | C | −1; End_For

Sort the vertices ofLi by increasinginner degree(4)
For every vertexx of Li having exactly one neighbory (5) do

σ(j) ← y andsj ← (xPy); j ← j + 1; End_For
For every vertexx ∈ Li taken in increasing inner degree orderDo;
y ← Prune-cograph(G[Ni−1(x)], j) (6); j ← j+ | Ni−1(x) | −1; σ(j) ← x
andsj ← (xPy); j ← j + 1; End_For

End_For

Let us explain some terms used in the above algorithm. LetG be a connected graph
andv be a vertex ofG. A distance levelLv in G is the setL1, . . . , Lk of vertices of
G such thatx ∈ Li if dG(v, x) = i. For every vertexx of G and for every integer
i such that1 ≤ i ≤ k , we denote byNi(x) = N(x) ∩ Li. The inner degree of
x is the cardinality ofNi(x). The algorithmPrune-cograph(C, j) constructs the
pruning sequence(S, σ) of the cograph corresponding to the connected component
C and contractsC to the last vertexz of σ. We must point out thatPrune-cograph
(C, j) works on the cotreeT (C) corresponding to the cographC and by [2] a cotree
can been obtained in linear time on the size of the consideredcograph.

2 Linear recognition of co-distance hereditary graphs

We shall show now how the recognition algorithm of DH graphs presented in pre-
vious section can be transformed in order to recognize a co-distance hereditary
(co-DH for shortly) graphG in linear time on the size ofG. We assume thatG
is a connected graph as well asG. If G is not connected we shall work in each
connected component ofG. Let us explain now how we can process the6 steps in
algorithm 1 inG using the edges of the graphG.

Step 1.Algorithm 2 : constructing all distance levels Lv of a connected compo-
nent of G
Input : A graphG with n vertices, a listL = {1, ..., n} of all vertices ofG and an
arrayindex[1..n] such that index[i] = 0 for all i.
Output : The setLv = {L1, ..., Lk} of distance levels from a vertexv of a con-
nected component ofG.
i := 0; Pick an arbitrary vertexx of L, Li := x and delete it fromL.
While L is non emptyDo
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[For every vertexy ∈Li, and for every vertexz ∈ N(y) ∩ L increase by1
index[z]. If index[z]=| Li | movez from L to Li+2 and put index[z] = 0];
If L = ∅ thenexit; {L0 ∪ .. ∪ Li is a connected component ofG}
Li+1 := L; i := i + 1; L := Li+1

End_While

Complexity of Step 1.When constructing L we construct also an arrayA[1..n]
such thatA[i] contains a direct access in the list containingi during the execution
of the above algorithm. Hence, we can find in constant time theneighbors of every
vertexy ∈Li. It is easy to see that the complexity of the above algorithm is linear
on the size ofG.
Steps 2,3.SinceG[Li] must be a cograph we check this by obtaining in linear
time the corresponding cotreeT by using the algorithm in [2]. Then we obtain the
corresponding cotree as well as the connected components ofG[Li] by changing
the0-nodes ofT into 1-nodes and its1-nodes into0-nodes.
Steps 4,5.We shall sort the vertices ofLi by decreasing inner degree,y will be the
vertex whose inner degree will be| Li−1 | −1.
Steps 6.Once the vertices ofLi have been sorted by decreasing inner degree, using
the arrayA we find first the non-neighborhood inLi−1 of each vertexx of Li within
O(degree(x)) complexity and then proceed in an analogous manner described on
Steps 2 and 3 above.

It is clear now that we can apply the Algorithm 1 inG within linear time complexity
on the size ofG. It remains a last verification presented in [3] that consists to check
if the obtained pruning sequence(S, σ) corresponds to an HD graph. Due to the
space limitations of this extended abstract, we leave to thereader to verify that this
can be done in linear time on the size ofG.

2 Clique width of co-distance hereditary graphs

The well known notion ofclique-widthof a graphG denotedcwd(G), is the min-
imum number of labels needed for constructingG using four graph operations:
labeling byi a new vertexv(denotedi(v)), disjoint union ofH andH ′ denoted
H ⊕H ′, ηi,j(G), i 6= j, is the graph obtained by connecting all the vertices labeled
i to all the vertices labeledj in G andρi,j(G) the graph obtained by renamingi
into j in G. An expression obtained from the above four operations using k labels
is called ak-expression. We denote byG(t) a graph defined by the expressiont.
In [4], it is proved that every distance hereditary graph, has clique-width at most
3 and a3−expression defining it can be obtained in linear time. This expression
is constructed as follows: from the pruning sequence(S, σ) associated with a DH
graphG we construct a special treeT (G), thepruning tree, whose vertices are the
vertices ofG and whose edges{x, y} are labeledl, F or T if there existssi in σ
such thatsi is (xlf),(xFy) or (xTy) respectively. Letα be a node ofT (G), Tα is
the set of vertices ofG of the sub-tree rooted ata andG(Tα) the subgraph ofG
induced by the vertices ofTα. Let u andv be two vertices ofTα, thenu is a twin
descendant ofv if all the edges connectedu to v are labeled with true or false. Let
α1, ..., αl be the sons ofa ordered from left to right. In [4] it is proved that for every
αi the set of edges relying the vertices ofG(Tαi

) andG(a ∪ Tαi+1
∪ ... ∪ Tαl

) is
empty wheneverαi is a false twin son ofa and it is formed by all{u, v} where
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u is a twin descendant ofαi in Tαi
andv is eitherα or a twin descendant ofα

in Tαi+1
∪ ... ∪ Tαl

. This result allowed to obtain a3 − expression for a distance
hereditary graph by labeling the twin descendants of any node β in Tβ with 2 and
by 1 all the other vertices ofTβ. Using this labeling for the vertices ofG and using
the pruning tree ofG we can obtain a4 − expression for G in linear time. For
this we shall calculate the expressionei associated withG(Tαi

∪ Tαi+1
∪ ... ∪ Tαl

)
by assuming that we know the3 − expression tαi

associated withG(Tαi
) and the

3 − expression ei+1 associated withG(Tαi+1
∪ ... ∪ Tαl

). We then have:
1. If ai is a leaf son ofα then
ei = ρ4→1(ρ3→1(η1,4(η1,3(η2,3(ei+1⊕ (ρ2→4(ρ1→3(tαi

))))))))
2. If ai is a true twin son ofα thenei = ρ4→2(ρ3→1(η1,4(η1,3(η2,3(ei+1⊕(ρ2→4(ρ1→3(tαi

))))))))
3. If ai is a false twin son ofα then ei = ρ4→2(ρ3→1(η1,4(η1,3(η2,4(η2,3(ei+1 ⊕
(ρ2→4(ρ1→3(tαi

))))))))).

It is now to see how we can obtain a4−expression for G in linear time on the size
of G. It follows that many optimization problems have linear solution for co-DH
graphs (see [4]).
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1. Introduction

We show NP-completeness of several graph problems and exhibit some of their
combinatorial properties. More specifically, we relate theconcepts of alliances
in graphs and of domination. We discuss a natural parameter that expresses the
strength of an alliance.

General notions. Γ = (V,E) denotes a simple graph of ordern = |V | and size
m = |E|. The degree of a vertexv ∈ V will be denoted byδ(v). For a non-empty
subsetS ⊂ V and a vertexv ∈ V , we denote byNS(v) the set of neighborsv has
in S. We denote the degree ofv in S by δS(v) = |NS(v)|. ∆ denotes the maximum
degree of a graph. The boundary of a setS ⊆ V is defined as∂S := ∪v∈SNS̄(v).

Total domination. A setS ⊂ V is adominating setif δS(v) ≥ 1, ∀v ∈ S̄ = V \S.
Thedomination numberγ(Γ) is the minimum cardinality of a dominating set. The
concept of total domination was introduced by Cockayne, Dawes and Hedetniemi
in [2]: a setS ⊂ V is a total dominating setif δS(v) ≥ 1, ∀v ∈ V . The total
domination numberγt(Γ) is the minimum cardinality of a total dominating set.
The concept of total domination can be extended to multiple domination. That is,
a setS ⊂ V is a total k-dominating setif δS(v) ≥ k, ∀v ∈ V . So, thetotal
k-domination numberγ

kt
(Γ) is the minimum cardinality of a totalk-dominating

set. Notice that the concept of total2-domination is different from the concept of
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doubledomination introduced by Harary and Haynes in [6]. A setS ⊂ V is a
double dominatingset if δS(v) ≥ 2, ∀v ∈ S̄ andδS(v) ≥ 1, ∀v ∈ S. A fortiori
every double dominating set is a total1-dominating set.

Alliances. Alliances in graphs were introduced as a graph-theoretic model of friend-
ship and hostility relationships that might apply to military or similar scenarios.
Depending on the character of such an alliance, defensive and offensive groupings
were studied (and combinations thereof). We further generalize these notions by
considering thestrengthof alliances [9].

A nonempty set of verticesS ⊆ V is called adefensiver-alliance in Γ if for every
v ∈ S, δS(v) ≥ δS̄(v) + r, wherer is the strengthof the defensiver-alliance,
−∆ < r ≤ ∆. A defensive (-1)-alliance is a “defensive alliance", and a defensive
0-alliance is a “strong defensive alliance" (as defined in [8]). A particular case,
called “global defensive alliance", was studied in [7]. A defensiver-allianceS
is calledglobal if S is a dominating set. Theglobal defensiver-alliance number
γd

r (Γ) is the minimum cardinality of any global defensiver-alliance inΓ.

A non-empty set of verticesS ⊆ V is called anoffensiver-alliance in Γ if and
only if for every v ∈ ∂S, δS(v) ≥ δS̄(v) + r, where−∆ + 2 < r ≤ ∆ denotes
the strengthof the alliance. In particular, an offensive 1-alliance is an “offensive
alliance", and an offensive 2-alliance is a “strong offensive alliance" (as defined
in [8]). An offensiver-allianceS is calledglobal if S is a dominating set. The
global offensiver-alliance number, denoted byγo

r (Γ), is defined as the minimum
cardinality of a global offensiver-alliance inΓ.

An alliance is calleddual (sometimes also calledpowerful) if it is both defensive
and offensive [8]. Hence, aglobal dual allianceis a global dual(−1)-alliance, i.e., a
dominating set that is both a(−1)-defensive alliance and a1-offensive alliance, and
aglobal strong dual allianceis a global dual0-alliance, i.e., a(0)-defensive global
alliance and a2-offensive alliance. In general, a setS ⊂ V is a dualr-alliance in
Γ if S is both a global defensiver-alliance and an(r + 2)-offensive alliance inΓ.
So, for dualr-alliances,−∆ < r ≤ ∆ − 2. Theglobal dualr-alliance number,
denoted byγ∗

r (Γ), is defined as the minimum cardinality of a global dualr-alliance
in Γ.

2. Global r-alliances

Cami et al. [1] showed NP-completeness forr = −1. We were able to modify their
construction to show NP-completeness for any fixedr.
Theorem 1 For all fixedr, the following problem is is NP-complete: Given a graph
Γ and a boundℓ; determine ifγd

r (Γ) ≤ ℓ.

Theorem 2 For any graphΓ,

√
4n + k2 + k

2
≤ γd

k(Γ) ≤ n −
⌈
δn − k

2

⌉
.

Theorem 3 For any graphΓ, γd
k(Γ) ≥




n⌊
δ1−k

2

⌋
+ 1




.
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Corollary 1 For any graphΓ of sizem and maximum degreesδ1 ≥ δ2, γd
k(L(Γ)) ≥⌈

m

⌊ δ1+δ2−2−k

2 ⌋+1

⌉
, whereL(Γ) denotes the line graph ofΓ.

Theorem 4 For all fixedr, the following problem is NP-complete: Given a graph
Γ and a boundℓ; determine ifγo

r (Γ) ≤ ℓ.

A setS ⊂ V is ak-dominating set if for everyv ∈ S̄, δS(v) ≥ k. The k-domination
numberof Γ, γ

k
(Γ), is the minimum cardinality of ak-dominating set inΓ.

Theorem 5 For any simple graphΓ of ordern, minimum degreeδ, and Laplacian

spectral radiusµ∗,
⌈

n
µ∗

⌈
δ+r
2

⌉⌉
≤ γo

r (Γ) ≤
⌊
γr(Γ) + n

2

⌋
.

Theorem 6 For all fixedr, the following problem is is NP-complete: Given a graph
Γ and a boundℓ; determine ifγ∗

r (Γ) ≤ ℓ.

Theorem 7 For any graphΓ of ordern, sizem and minimum degreeδ,
⌈√

8m+4n(r+2)+(r+1)2+r+1

4

⌉
≤

γ∗
r (Γ) ≤ n −

⌈
δ−r
2

⌉
.

3. Total k-domination

We consider the following decidability problem totalk-domination (k-TD) for each
fixed integerk ≥ 1: GivenΓ = (V,E) and an integer parameterℓ, is there a vertex
setD with |D| ≤ ℓ such thatδD(v) ≥ k for all v ∈ V ? The smallestℓ such thatΓ
together withℓ forms a YES-instance ofk-TD is denotedγ

kt
(Γ).

Theorem 8 ∀k ≥ 1: k-TD is NP-complete.
Theorem 9 Every totalk-dominating set is a global defensive (offensive)r-alliance,
where−∆ < r ≤ 2k−∆. Moreover, every global dualr-alliance,r ≥ 1, is a total
r-dominating set.
Corollary 2 Each totalk-dominating set is a global dualr-alliance, where−∆ <
r ≤ 2(k − 1) − ∆.
Corollary 3

• For −∆ < r ≤ 2k − ∆, γ
kt

(Γ) ≥ γd
r (Γ) andγ

kt
(Γ) ≥ γo

r (Γ).
• For −∆ < r ≤ 2(k − 1) − ∆, γ

kt
(Γ) ≥ γ∗

r (Γ).
• For k ≥ 1, γ∗

k(Γ) ≥ γ
kt

(Γ).

By Corollary 3 we have that lower bounds forγd
r (Γ), γo

r (Γ) and γ∗
r (Γ) lead to

lower bounds forγ
kt

(Γ). Moreover, upper bounds forγ
kt

(Γ) lead to upper bounds
for γd

r (Γ), γo
r (Γ) andγ∗

r (Γ).

Concluding Remarks. Let us finally mention that most complexity results pre-
sented in this paper for various types of global alliances can be shown in the non-
global case, as well. This generalizes earlier results from[4, 5]. Interestingly, we
could show (as in [5]) fixed parameter tractability for all mentioned problems, while
(as noted above) the obviously related total domination problem is W[2]-hard. (For
notions concerning parameterized complexity, we refer to [3].)
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Introduction. A vertex separatorin an undirected graph is a subset of the vertices,
whose removal disconnects the graph. The Vertex Separator Problem (VSP) was
recently studied in [1–3] and can be stated as follows: givena connected undirected
graphG = (V,E), with |V | = n, an integer1 ≤ b ≤ n and a costci associated
with each vertexi ∈ V , find a partition ofV into disjoint setsA,B,C, with A
andB nonempty, such that(i) E contains no edge(i, j) with i ∈ A, j ∈ B, (ii)
max{|A|, |B|} ≤ b, (iii)

∑
j∈C cj is minimized.

The VSP isNP-hard and has widespread applicability in network connectivity[1,
3]. It was studied by Balas and de Souza in [1] where a polyhedral investigation is
performed. Also, extensive computational results obtained with a branch-and-cut
developed by the same authors are reported in [2].

In this work we investigate the usage of Lagrangian techniques in the develop-
ment of more efficient methods to solve VSP instances to optimality. Recent pa-
pers [4–9] report successful applications of the so-calledrelax-and-cut (R&C) al-
gorithms for discrete optimization problems. These algorithms offer an alternative
to strengthen the dual bounds provided by classical Lagrangian relaxations. This
is done through the separation and later dualization of valid inequalities within the
Lagrangian framework, similar to what happens to cutting planes in Integer Pro-
gramming (IP). Thus, we decided to focus on the development of R&C algorithms
for the VSP.

Results obtained with a very preliminary version of our R&C framework were pre-
sented in [3]. Here we discuss algorithmic and implementation issues that allowed

∗ Corresponding author.
1 First author supported by a scholarship from CAPES (Brazilian Ministry of Education).
Second and corresponding author supported by grants 301732/2007-8, 478470/2006-1,
472504/2007-0 and 473726/2007-6 fromConselho Nacional de Desenvolvimento Cientí-
fico e Tecnológicoand grant 03/09925-5 fromFundação de Amparo à Pesquisa do Estado
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us to improve on these early results. Below we briefly describethe basic steps and
implementation aspects that are relevant to the design of relax-and-cut algorithms.

Relax-and-cut algorithm basics.Suppose we have an IP formulation for certain
discrete optimization problem. Assume that we have two setsof constraints, one of
which, makes the problem hard, i.e., if we get rid of them, theresulting problem
can be solved efficiently. In the classical Lagrangian relaxation scheme, we dualize
the set of hard constraints, by penalizing them in the objective function. Given
the vector of penalties, we define the Lagrangian Subproblem(LS) with respect to
these values, whose optimum is a dual bound for the optimal value of the original
problem. The Lagrangian Dual problem seeks the vector whichleads to the best
dual bound and can be solved, for example, by the subgradientmethod (SM). Now,
at each iteration of the SM, one has to compute an optimal solution of LS, sayx∗.
It turns out that this solution may not satisfy some of the dualized constraints and
this provokes the recalculation of the associated penalties. However, if we know a
family F of strong valid inequalities for the convex hull of the feasible points of the
original IP model, we may dualize further inequalities. Suppose that a separation
routine forF is at hand. Then, we can solve the separation problem forF and
x∗ and, if a violated inequality is found, we dualize it. This isthe chief idea of
a R&C algorithm, likewise polyhedral cutting-plane generation is applied in IP.
Nevertheless, it is worth noting that separation problems arising in R&C algorithms
may be easier than their polyhedral cutting-plane algorithm counterparts, since LS
normally has integral valued solutions (cf. [9]).

Implementation strategies.Two strategies to implement R&C algorithms are dis-
cussed in the literature. They differ, basically, on the moment at which the new
inequalities are dualized. In a Delayed Relax-and-Cut (DR&C), several executions
of SM are made and the cuts found during one such execution areadded only at the
beginning of the next one. In a Non Delayed Relax-and-Cut (NDR&C), typically a
single SM run is done and cuts are dualized along the iterations as they are found.
See [4, 5, 7–9] for details. Comparison carried out in [8] suggested that NDR&C
performed better than DR&C.

An IP formulation for the VSP. We now describe the IP formulation for the VSP
presented in [1], on which our Lagrangian relaxation is based. For every vertex
i ∈ V , two binary variables are defined:ui1 = 1 if and only if i ∈ A andui2 = 1
if and only if i ∈ B . ForS ⊆ V andk ∈ {1, 2}, let uk(S) denote

∑
(uik : i ∈ S),

u(S) = u1(S) + u2(S). In the IP model for the VSP shown below condition (1)
forces every vertex to belong to at most one shore. Inequalities (2) prohibits the
extremities of an edge to be on distinct shores. Inequalities (3) limit the size of the
shores and, at the same time. As observed in [2], if theui1 variables are integer for
all i ∈ V , the integrality of theu2 variables can be dropped from the formulation.
Though this observation is not taken into account by our Lagrangian relaxation, it
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is relevant for IP solvers.

max
∑

i∈V

ci(ui1 + ui2)

ui1 + ui2 ≤ 1, ∀ i ∈ V (1)

ui1 + uj2 ≤ 1, uj1 + ui2 ≤ 1, ∀ (i, j) ∈ E (2)

1 ≤ uk(V ) ≤ b, k = 1, 2 (3)

ui2 ≥ 0, ui1 ∈ {0, 1}, ∀ i ∈ V. (4)

Different Lagrangian relaxations can be devised from the IPformulation above. In
this work we evaluate some of them and choose a simple one in which the constraint
sets (1) and (2) are dualized. As seen before, R&C algorithms are based on families
of valid inequalities whose elements are dynamically dualized. In the VSP case, we
use two families of cuts described in [1]. The first class of cutting planes is related
to minimal connected dominators (CD inequalities). The other class is associated
with minimal dominators and a lifting procedure (LD inequalities).

The relax-and-cut framework. The algorithm we implemented is structured in
three modules. The first one is the R&C algorithm. The output ofthis module is
the set ofCD and/orLD inequalities separated during the execution of the algorithm
and the best primal and dual bounds computed. The second one executes a classical
Lagrangian procedure based on the model (1)-(4) appended with the cuts returned
from the first module. Finally, the third module correspondsto the B&C algorithm
in [2] modified to improve the IP model according to the boundscomputed by R&C
and to separate the cuts returned by the latter in a table lookup fashion. If one is
willing to use R&C as a stand alone approach for VSP, the overall algorithm is
aborted after the execution of the second module. On condition that a hybrid exact
algorithm combining R&C and B&C is to be ran, the second module is disabled,
and the output of first module is directly used by the third one.

Computational results.Computational tests were conducted on instances of public
domain. The main conclusions of these experiments can be summarized as follows:
(A) there is no clear dominance between delayed and non delayedversions of R&C;
(B) for dense instances the R&C algorithms compute optimal solutions much faster
than the B&C algorithms from [2], outperforming the latter byfar in almost all the
cases; (C) for sparse graphs our framework is competitive with the B&C algorithms
from Balas and de Souza, but we still find few instances where the standard branch-
and-bound outperforms both algorithms, confirming the reports in [2]; (D) R&C
algorithms alone can rarely solve instances of VSP to optimality. On the other hand,
hybrid approaches that use R&C algorithms as a preprocessingphase for a B&C
algorithm are well suited to compute optimal VSP solutions;(E) Finally, on the
primal side, the R&C algorithm proved to be a very effective heuristic, producing
very high quality solutions, often optimal ones, in minute computation times;
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Conclusions.The combination of Lagrangian and cutting plane algorithmsas pro-
posed by relax-and-cut and its hybridization with a branch-and-cut algorithm for
VSP is a promising approach to tackle the problem. The results obtained with our
computational experiments turn the framework proposed, toour knowledge, the
best exact algorithm available for the VSP to date. Moreover, we believe this tech-
nique can also be successfully applied to other combinatorial optimization prob-
lems for which a polyhedral study has been conducted. However, from our experi-
ence, this might require intensive experimentation and some cleverness on how to
combine R&C and B&C algorithms.
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Inverse Tension Problems
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For optimization problems with estimated problem parameters one often knows a
priori an optimal solution based on observations or experiments, but is interested
in finding a set of parameters, such that the known solution isoptimum (a) and the
deviation from the initial estimates is minimized (b). The problem of recalculating
the parameters satisfying (a) and (b) is known asinverse optimization problem.

Among several inverse optimization problems the inverse network flows have been
intensely investigated [2, 3, 7, 15, 16]. Ahuja and Orlin [2]derive LP formulations
for several inverse network flow problems. In another paper [3] they analyze the
combinatorial aspects of inverse minimum cost flow problem under unit weightL1

andL∞ norms. Yang et al. [16] study inverse maximum flow and minimumcut
problems. A thorough survey study on this topic has been doneby Heuberger [10]
analyzing different types of inverse and reverse problems that have been considered
in the literature. As opposed to network flows, their dualstension problems[1]
and the corresponding inverse versions have vastly been neglected. Our aim in this
study is to fill this blank of the literature and show that the duality relation between
tensions and flows is valid for their respective inverse problems, as well. Moreover,
this study enlightens the connnection between tension problems and cut problems.

Let G = (N,A) be connected digraph with node setN containingn nodes and arc
setA containingm arcs, andaij represent an arc with tail nodei and head nodej. A
tensionis a function fromA to R which satisfies Kirchhoff’s law for voltages [13].
In other words, a vectorθ ∈ RA is a tensionon graphG with potentialπ ∈ RN

such that∀(i, j) ∈ A θij = πj − πi.

Minimum cost tension problem (MCT)is finding a tensionθ satisfying lower (tij ∈
R∪{−∞}) and upper (Tij ∈ R∪{+∞}) bounds on each arc such that

∑
aij∈A cijθij

is minimum. Inmaximum tension problem (MaxT), the graphG contains 2 special
nodes,s andt, and an arcast ∈ A between these two nodes with bounds(tst, Tst) =
(−∞,∞). The maximum tension problem is finding the maximum tension on arc
ast ∈ A such that the tensions on all arcs satisfy the upper and lowerbounds.

∗ Corresponding author.
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Given a feasible tension̂θ to an instance of a MCT (MaxT), theinverse minimum
cost tension problem(IMCT) (inverse maximum tension problem(IMaxT)) is
perturbing the cost vector fromc to ĉ (bound vectors fromT to T̂ and/or from
t to t̂) in a way thatθ̂ will become the optimum tension with the perturbed cost
vector (bound vectors) while the perturbation‖c − ĉ‖ (‖T − T̂‖ + ‖t − t̂‖) is
minimized according to some norm. We consider rectilinear (L1) and Chebyshev
(L∞) norms for the inverse minimum cost tension problem, andL1 norm for the
inverse maximum tension problem.

Inverse Minimum Cost Tension Problem UnderL1-Norm

Supposewijs are the weights associated with the cost changes on arcs. Then, objec-
tive function underL1 norm is to minimize

∑
aij∈A wij|cij − ĉij|. The residual cuts

ω1 andω2 are calledarc-disjoint if ω+
1 ∩ ω+

2 = ∅ andω−
1 ∩ ω−

2 = ∅. Using the arc-
disjoint residual cuts, we can show that the inverse minimumcost tension problem
under rectilinear norm reduces to solving aminimum cost tension problem.
Theorem 1 LetCost(Ω∗) be the minimum cost of a collection of arc-disjoint resid-
ual cuts inG. Then,−Cost(Ω∗) is the optimal objective function value for the
inverse minimum cost tension problem under unit weight rectilinear norm.

If we define the sets of arcsK := {aij ∈ A : tij < θ̂ij < Tij}, L := {aij ∈ A :

θ̂ij = tij}, andU := {aij ∈ A : θ̂ij = Tij}, then LP corresponding to the inverse
minimum cost tension problem under unit weightL1 norm is:

Minimize
∑

aij∈A

cij(πj − πi) (1)

subject to
−1 ≤ πj − πi ≤ 1 for aij ∈ K

0 ≤ πj − πi ≤ 1 for aij ∈ L

−1 ≤ πj − πi ≤ 0 for aij ∈ U

For the nonunit weights case, the LP remains to be a minimum cost tension problem
but with the corresponding boundswij and−wij instead of1 and−1 for the tension.

Inverse Minimum Cost Tension Problem UnderL∞-Norm

Inverse minimum cost tension problem underL∞ norm has an objective of mini-
mizingmaxaij∈A wij|cij − ĉij|. The problem under unit weights reduces to solving
aminimum mean residual cut problem. In order to achieve this, we exploit the opti-
mality conditions [9] for the tensions and theǫ-optimality definition by Hadjiat and
Maurras [8].
Theorem 2 Letµ∗ denote the mean cost of a minimum mean residual cut inG w.r.t.
θ̂. Then, the optimal objective function value for the inverseminimum cost tension
problem underl∞ norm ismax(0,−µ∗).

109



Hadjias and Maurras [8] provide a Newton type algorithm to solve the minimum
mean residual cut problem. Using their algorithm we can find an optimum solution
for the inverse problem in strongly polynomial time. McCormick and Ervolina [12]
study max mean cuts and mention that a direct method of calculating max mean
cuts as Karp [11] does for minimum mean cycles has not yet beenfound. Here,
we present a direct method to identify the minimum mean cost cut and derive an
LP formulation. To the best of our knowledge, this is the firstnon-iterative method
presented in the literature.

Supposeω(i) denote a cut with(S, S̄) = ({i}, A\{i}) andCost(ω(i)) is its cor-
responding cost. We define a new graphG′ = (N,A′) with A′ = A ∪ Ā = {aji :
aij ∈ A} and supplies/demands of−Cost(ω(i)) on each nodei ∈ N . Our goal is
to find nonnegative flows on arcs,ϕij ≥ 0 for aij ∈ A′, such that the supplies and
demands are satisfied and the maximum ofϕij + ϕji for all aij ∈ A andaji ∈ Ā is
minimum. We call this problemequal network flow problem.
Theorem 3 If z∗ is the optimum objective fuction value of the equal network flow
problem onG′ = (N,A′), then the cost of the minimum mean cut is−z∗. Moreover,
the dual LP of the equal network flow problem is aminimum cost tension problem
on graphG = (N,A).
Corollary 1 The minimum meanresidual cut problem on graphG = (N,A) can
be formulated as a minimum cost tension problem on the same graph.

Inverse Maximum Tension Problem (IMaxT) under L1-Norm

Given a weight vectorw for changing the bounds of the arcs, the inverse maximum
tension problem underL1 norm is minimizing

∑
aij∈A wij(|T̂ij − Tij| + |t̂ij − tij|)

such that̂θst is the maximum tension for the maximum tension problem onG(t̂, T̂ ).

For the maximum tension it is known that there exists a minimum path, which has
a length equal to the maximum tension [14]. Using this fact and the properties of
minimum path, we can prove the following result.
Theorem 4 SupposeP ∗ is the minimum path corresponding to the maximum ten-
sion problem inG(t, T ). P ∗+ andP ∗− denote the forward and backward arcs of the
path, respectively. The optimum solution of the inverse maximum tension problem
w.r.t. unit weightL1-norm is

T ∗
ij =





θ̂ij if aij ∈ P ∗+

Tij otherwise
t∗ij =





θ̂ij if aij ∈ P ∗−

tij otherwise

Hence, solving the inverse problem is equivalent to solvinga maximum tension
problem onG(t, T ).

Conclusion and Future Work

For the inverse minimum cost and maximum value tension problems under rectilin-
ear and Chebyshev norms we show that the duality relationshipbetween network
flows and tensions is also valid. Hence, by a generalization of this approach from
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network flows and tensions to flows in regular matroids [4], wecan get some in-
sights into dealing with inverse linear programs with totally unimodular matrices.
Moreover, it seems that inverse tension problems may have potential for practical
applications, especially in scheduling problems. These are currently explored, as
well.
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1. Introduction

We consider several basic network optimization problems under a generalization of
the reload cost model introduced in [5]. The concept of reload cost, that is of a cost
incurred when two consecutive arcs along a path are of different types, naturally
arises in a variety of application contexts. For instance, in transportation it allows
to account for the relevant cost of unloading and loading of freight from one carrier
to another. Other interesting application areas include telecommunication networks
and energy distribution.

In this paper we consider a general model including reload costs as well as regular
arc costs. We are given a directed graphG = (V,A) with a non-negative cost
w(a) for each arca ∈ A. Moreover, as in [5], each arca is assigned a colorl(a)
out of a finite setL of colors and a non-negative integerreload cost matrixR =
{rl l′}l,l′∈L is given, where entryrl l′ is the cost of going from an arc of colorl to
an arc of colorl

′

(rll = 0 for all l in L). If P is any path inG consisting ofk
consecutive arcsa1, ..., ak, respectively of colorsl1, ..., lk, the reload costof P is
r(P ) =

∑k−1
j=1 rlj lj+1

, that is the sum of the reload costs at its internal nodes, and
thearc costof P is w(P ) =

∑k
j=1 w(aj). Then we define the overalltransportation

costasc(P ) = r(P )+w(P ). A similar model involving undirected graphs can also
be considered, as pointed out below.

In [5] and [1] complexity results are presented for the problem of finding a spanning
tree of minimum reload cost diameter (there are no arc costs). In [2] Gamvros et
al. consider the minimum reload cost spanning tree problem.Despite the natural

∗ Corresponding author.
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applicability of the reload cost concept, these are the onlyreferences we are aware
of.

In this work we investigate optimum paths, tours, and flows under the above general
reload cost model. Indeed we believe that considering theseclassical problems un-
der this model has a clear practical relevance. We focus hereon the computational
complexity of the problems under consideration.

2. Paths

In this section we consider four problems.ProblemP1: find a minimum transporta-
tion cost path between two given nodess andt of G. ProblemP2: find a set of paths
from a given nodes to the other nodes ofG minimizing the sum of their transporta-
tion costs.ProblemP3: find a minimum transportation cost path-tree froms to the
other nodes ofG. ProblemP4: find a path-tree froms to the other nodes ofG
minimizing the maximum among the transportation costs of its paths.

Problem P1 is easily seen to be polynomially solvable. Applyto all nodes ofG
different froms andt the following splitting procedure: each nodev, say having
n incoming arcs andm outgoing arcs, is replaced with a complete bipartite graph,
oriented from the left to the right shore, havingn vertices on the left shore, so that
each arc incoming tov arrives to one and only one of thesen vertices, and having
m vertices on the right shore so that each arc outgoing fromv comes out of one and
only one of thesem vertices. While the original arcs ofG maintain their costs, each
arc of the complete bipartite graphs, say from nodex to nodey, is assigned an arc
cost equal to the reload cost due to the colors of the arc ofG entering inx and of the
arc of G outgoing fromy. Let H be the resulting graph. It is straightforward to see
that a minimum arc costs − t path inH corresponds to a minimum transportation
costs − t path inG (possibly visiting a node more than once).

Some additional observations are in order. IfG has no arc costs, then the above
procedure still works yielding a minimum reload costs − t path inG. WhenG
is an undirected graph, the splitting procedure has to be modified as follows. Each
nodev must be substituted by a clique containing a number of nodes equal to the
degree ofv in G, and each edge ofG that is incident tov is incident to exactly one
node of the clique. Each edge of the clique, say from nodex to nodey, receives a
arc cost equal to the reload cost of going from the color of theedge ofG incident
to x to that of the edge ofG incident toy. Notice that the results for problem P1
can also be obtained using the line-graph ofG, instead of resorting to the splitting
procedure.

Problem P2 is also polynomially solvable. Apply toG the same splitting procedure
of Problem P1 and letH be the resulting graph. Compute a minimum arc cost
path-treeT in H with origin s using, say, Dijkstra’s algorithm. We show now how
the paths inT from s to all vertices ofH allow to identify a set of paths froms to
all vertices ofG, such that the sum of their transportation costs is minimum.For
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each nodev of G, say havingn incoming arcs andm outgoing arcs, we select in
the left shore of the bipartite graph replacingv in H, the node closest tos in H;
then we use the path inT from s to this node to identify, as done in problem P1, a
path inG from s to v. Obviously the resulting set of paths froms to all nodes ofG,
being a set of minimum transportation cost paths froms to the nodes ofG, solves
P2. However these paths do not usually form a tree ofG. In fact we can show that
Problem P3 is NP-hard, via a reduction from MIN SET COVER.

Problem P4 is also NP-hard, even if restricted to graphs having maximum degree
4. Indeed in [1] a polynomial-time reduction from problem 3-SAT-3 to a prob-
lem called MIN-DIAM is described. The same reduction, with edges appropriately
directed, can be seen as a reduction from 3-SAT-3 to P4, that yields the desired
result. Note that the min-max case of problem P2 remains instead solvable in poly-
nomial time, using the same procedure that solves P2.

3. Tours

In this section we summarize some results concerning optimum tour problems. The
problem of traversing all edges of an undirected graphG with a tour of minimum
arc cost so that each edge is used at least once is the famous Chinese Postman
Problem (CPP), which is solvable in polynomial time. If we look for a similar tour
of minimum transportation cost, this problem becomes NP-hard. Consider indeed
the subproblem in whichG is already Eulerian, the arc costs are all zero, and we
look for an Eulerian tour of minimum total reload cost. We canshow that this
problem is NP-hard for directed and undirected graphs. Alsothe problem of finding
a Hamiltonian tour of minimum reload cost in an Hamiltonian graph (or directed
graph)G is NP-hard. This can be shown by adapting the original reduction in [3]
from the minimum vertex cover problem to the Hamiltonian tour problem.

4. Flows

Given any directed graph with arc capacities, unitary costson arcs, and unitary
reload costs, and an origins and destinationt, an s − t flow of minimum trans-
portation cost can be found in polynomial time. Indeed, by applying the splitting
procedure of Section 2 to all nodes except the origin and the destination, the prob-
lem reduces to that of finding a minimum (arc) costs − t flow in the new network
H. Note that in this case the line-graph does not help.

Let us now consider the network flow problem variants with multiple origin-destination
pairs{(si, ti)}1≤i≤q, the so-called multicommodity versions. If the flow is unsplit-
table (must be routed along a single path for each origin-destination pair) and there
are capacities constraints on the arcs, the resulting capacitated minimum multicom-
modity transportation cost flow problem can be shown to be NP-hard even without
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arc costs. The reduction is from the shortest arc-disjointq paths problem, which is
shown NP-hard in [4]. If the flow is unsplittable but there areno arc capacities,
the problem is solvable in polynomial time because of the previous results about
minimum reload cost paths. Given any uncapacitated networkG with both arc costs
and reload costs, an optimum solution is obtained by just superimposing the set of
paths derived by independently applying the splitting procedure of Section 2 for
each origin-destination pair.

If the flow is splittable (can be routed along different pathsfor each origin-destination
pair) and there are arc capacities, the minimum multicommodity transportation cost
flow problem is polynomially solvable because it can be reduced to that of finding a
splittable multicommodity flow of minimum (arc) cost. This is achieved by apply-
ing the splitting procedure to all the nodes and by adding to each complete bipartite
graph corresponding to an origin (destination) ofG a new left shore nodeSi (right
shore nodeTi) connected with arcs fromSi to all nodes of the right shore (from
all nodes of the left shore toTi). All these additional arcs have zero cost and un-
bounded capacity. Depending on whether the node in the original graphG is an
origin si or a destinationti, the corresponding nodeSi or Ti is considered as the
origin or destination in the new network.

5. Concluding remarks

We have presented a first set of complexity results for several network optimiza-
tion problems under a natural reload cost model. We are currently investigating
more efficient algorithms for the problems that are solvablein polynomial time,
and polynomial-time algorithms with worst-case approximation guarantee for those
that are NP-hard. Since in some applications it may not be appropriate to mix arc
costs and reload costs, it would be interesting to investigate bi-criteria problem ver-
sions, where one type of cost is minimized while keeping the other one below a
given threshold.
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Abstract

The total chromatic numberχT (G) is the least number of colors needed for coloring the
elements (vertices and edges) of a graphG in such a way no incident or adjacent elements
receive the same color. Deciding whether a graphG is Type 1, that is,χT (G) = ∆(G)+1,
is NP-complete [6], even when restricted to cubic bipartite inputs. We developa decom-
position technique for searching for a 4-total-coloring of graphs with maximum degree 3.
We use this decomposition tool for extending a result on the total chromatic number of
partial-grids, a subclass of bipartite graphs.

Key words: total chromatic number, graph decompositions, partial-grids.

1. Introduction

Let G be a simple graph with vertex-setV (G) and edge-setE(G). The set of the
elementsof G is S(G) = V (G) ∪ E(G). Two verticesu, v ∈ V (G) areadjacent
if uv ∈ E(G); two edgese1, e2 ∈ E(G) are adjacentif they share a common
endvertex; a vertexu and an edgee areincidentif u is an endvertex ofe. A cut of
a graphG is a set of vertices whose exclusion disconnectsG. A cut composed of
two adjacent vertices is said to be aK2-cut.

A total-coloringof G is a functionπ : S(G) → C such that, forno pair of adjacent
or incident elementsx, y ∈ S(G), it holdsπ(x) = π(y). If |C| = k, thenπ is a
k-total-coloring. The total chromatic numberof G, denotedχT (G), is the leastk
for which G has ak-total-coloring. Clearly,χT (G) ≥ ∆(G) + 1, where∆(G) is
the maximum degree ofG; if χT (G) = ∆(G) + 1, thenG is Type 1. The Total
Coloring Conjecture [1, 7], which states that every graphG has total chromatic
number∆(G) + 1 or ∆(G) + 2, is open since 1964.
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2. The decomposition technique

We present a decomposition technique for total-coloring graphs of maximum de-
gree 3. The technique decomposes a graph into subgraphs which do not have a
K2-cut. The following lemma, stated without proof, considersthe total-coloring of
the biconnected components of a graph.
Lemma 1 Let G be a graph such that all of its biconnected components have an
α-total-coloring, whereα ≥ ∆(G) + 1. ThenG itself has anα-total-coloring.

TheK2-cut-free components ofG are the subgraphs ofG which do not have aK2-
cut and are maximal with respect to this property. The following result, which we
state without proof, is important to our strategy for total-coloring.
Lemma 2 LetG be a biconnected graph of maximum degree 3 andG the collection
of itsK2-cut-free components. The intersection graph ofG is acyclic.

Given a biconnected graphG of maximum degree at most 3 and two adjacent ver-
ticesu andv of degree 2 inG, we say that the setC = {u, v} is afrontier candidate.
Let u′ 6∈ C andv′ 6∈ C be the vertices adjacent, respectively, tou andv. We re-
fer to u, v, u′u, uv andvv′ as theelements at the frontier-candidate{u, v}. Let
F(G) = {{u1, v1}, ..., {ur, vr}} be the collection of all frontier-candidates ofG.
We say that a 4-total-coloringπ of G is afrontier-coloring ofG if:

π(uiu
′
i) 6= π(viv

′
i), andπ({uiu

′
i, viv

′
i, ui, vi, uivi}) = {1, 2, 3, 4}

for each{ui, vi} ∈ F(G), whereu′
i 6∈ {ui, vi} andv′

i 6∈ {ui, vi} are the vertices
adjacent, respectively, toui andvi, for eachi = 1, ..., r. Observe that the elements
at a frontier-candidate{u, v} are colored in one of the following ways (except for
a permutation of colors):

In the first case, we say thatu is thereference vertex of(π, {u, v}); in the second
case,v is the reference vertex of(π, {u, v}). Now, we state a result that shows how
to color a biconnected graph from frontier-colorings of itsK2-cut-free components.
Theorem 1 Let G be a biconnected graph of maximum degree at most 3. Suppose
everyK2-cut-free componentGℓ of G has two frontier-coloringsπℓ,a andπℓ,b such
that, for each frontier-candidate{u, v} of Gℓ, vertexu is the reference vertex of
(πℓ,a, {u, v}) if and only if vertexv is the reference vertex of(πℓ,b, {u, v}). ThenG
is 4-total-colorable.

Proof (sketch): LetG = {G1, ..., Gℓ} be the family of theK2-cut-free components
of G and letI(G) be its intersection graph. Now consider a total orderGi1 , ..., Giℓ

onG given by a breadth first search on the treeI(G) starting at an arbitrary element
Gi1 ∈ G and letHj = G[V (Gi1) ∪ ... ∪ V (Gij)]. Observe thatHℓ = G. By
hypothesis,H1 = Gi1 has a frontier-coloringπ1, that is a 4-total-coloring which
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satisfies the frontier condition for the set of all of its frontier-candidates. We prove
the lemma by induction onj. ¤

3. Partial-grids

A graphGm×n with vertex setV (Gm×n) = {1, ...,m} × {1, ..., n} and edge set
E(Gm×n) = {(i, j)(k, l) : |i − k| + |j − l| = 1, (i, j), (k, l) ∈ V (Gm×n)}, or a
graph isomorphic toGm×n, is agrid. A partial-grid is an arbitrary subgraph of a
grid. Partial-grids are harder to work than grids; for instance, recognition of grids
is polynomial [3], but the problem is open for partial-grids[2].

The total chromatic number of grids has been determined [4].The total chromatic
number of partial-grids were determined [4] for all cases where the maximum de-
gree is not 3; if the maximum degree is 3, some cases could be classified: partial
grids with at most three maximum degree vertices or with maximum induced cy-
cle of size at most 4 are Type 1. The last step towards a complete classification of
partial grids is the case of maximum degree 3.

A graph isc-chordal [5] if it does not have an induced cycle larger thanc. In this
section, we show that the decomposition technique developed in Section 2 provides
a nice method for total-coloring partial-grids with bounded size maximum induced
cycle. The applicability of this tool comes from the fact that, for each fixedc, there
exists only a finite number ofc-chordalK2-cut-free subgraphs of partial-grids. So,
the task of determining the total chromatic number ofc-chordal partial-grids of
maximum degree 3 may be reduced to that of exhibiting colorings for a finite num-
ber of graphs. We use Theorem 1 for classifying as Type 1 all 8-chordal partial
grids of maximum degree 3.
Theorem 2 All partial-grids of maximum degree at most 3 and maximum induced
cycle of length at most 8 are 4-total-colorable.

Proof (sketch): The biconnected components of a partial-grid are itself partial-
grids. So, by Lemma 1, we just need to prove the Theorem for biconnected partial-
grids. Besides, everyK2-cut-free component of ac-chordal partial-grid is itself a
c-chordal partial-grid. So, all we need to do is to exhibit, for each 8-chordalK2-cut-
free partial-grid of maximum degree at most 3, colorings satisfying the conditions
of Theorem 1 (see Appendix 4).¤

4. Final Remarks

Total-coloring is notably a challenging problem. The total-coloring conjecture is
open since 1964, and determining whether a graph is Type 1 is NP-Complete even
for very restricted graph classes, such as cubic bipartite graphs. So, it is of great
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value developing techniques for total-coloring graphs of maximum degree 3. The
proposed decomposition is an original technique, which we apply for total-coloring
partial-grids, extending a known result [4] for these graphs.

Future work. Our main goal is to prove the conjecture [4] that all partial-grids of
maximum degree 3 are Type 1. We are also investigating new classes for which our
approach could be applied. One of those classes are the maximum degree 3 partial
d-dimensional grids, which are subgraphs ofd-dimensional grids. We observe that
thed-dimensional grids can be total-colored using the results of [8]; the particular
case ofd-cubes was solved independently [4]. Another line of investigation is trying
to extend our decomposition tool by using cuts larger thanK2. Those cuts could,
hopefully, be applied for total-coloring graphs with maximum degree larger than 3.
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Appendix. Colorings of all 8-chordal K2-cut-free partial-grids of maximum
degree at most 3

Fig. 1. Total-colorings satisfying the conditions of Theorem 1. (With the aim of indicating
the reference vertex at a possible frontier{u, v}, the edgeuv will be represented by an
arrow pointing to the reference vertex. We emphasize, nevertheless, that we arenot dealing
with directed graphs.) Observe that there exist six 8-chordalK2-cut-free partial-grids of
maximum degree at most 3 and that, for each of these graphs, we indicate two4-total-col-
orings. Each coloring is a frontier-coloring (that is, it satisfies the frontier condition for all
frontier-candidates). Observe that, for each indecomposable graphGℓ, ℓ = 1, . . . , 6, there
are two coloringsπℓ,a andπℓ,b such that, for each frontier candidate{ui, uj} of Gℓ, vertex
ui is a reference vertex of(πℓ,a, {ui, uj}) if and only if vertexuj is a reference vertex of
(πℓ,b, {ui, uj}). So, the conditions of Theorem 1 are satisfied.
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1. Introduction

In this note,G denotes a simple, undirected, finite, and connected graph with vertex
setV (G) and edge setE(G). For anyv in V (G), thedegreeof v, denoteddG(v),
is the number of vertices adjacent tov in G. A clique is a set of pairwise adjacent
vertices ofG. A maximal cliqueis a clique that is not properly contained in any
other clique. The size of a maximum clique ofG is denoted byω(G). A stable setis
a set of pairwise non adjacent vertices ofG. An edge-coloringof G is an assignment
of one color to each edge ofG such that no adjacent edges have the same color.
The chromatic index, χ′, is the minimum number of colors for whichG has an
edge-coloring. A known theorem by Vizing [11] states that, for a simple graph, the
chromatic index is at most∆(G) + 1, where∆(G) is the maximum vertex degree.
Graphs whose chromatic index equals∆(G) areClass1; graphs whose chromatic
index equals∆(G) + 1 areClass2. Despite the restriction imposed by Vizing, it
is NP-complete to determine, in general, if a graph is Class 1 [6]. There are not
many graph classes for which the problem is known to be polynomial; see [5, 7, 9]
for examples. The complexity of the problem is open for very structured classes of
graphs such as cographs, proper interval graphs and split graphs.

A graphG satisfying the inequality|E(G)| > ∆(G)
⌊
|V (G)|

2

⌋
, is said to be anover-

full graph. A graphG is subgraph-overfullwhen it has an overfull subgraphH
with ∆(H) = ∆(G) [4]. When the overfull subgraphH can be chosen to be a
neighbourhood, we say thatG is neighbourhood-overfull[3]. Overfull, subgraph-
overfull, and neighbourhood-overfull graphs are in Class2.

∗ Corresponding author.
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A split graphis a graph whose vertex set admits a partition into a stable set and a
clique. Split graphs is a well-studied class of graphs for which most combinatorial
problems are solved [2, 8, 10]. It has been shown that every odd maximum degree
split graph is Class1 [1] and that every subgraph-overfull split graph is in fact
neighbourhood-overfull [3]. It has been conjectured that every Class2 split graph
is neighbourhood-overfull [3]. The validity of this conjecture implies that the edge-
coloring problem for split graphs is in P. The goal of this paper is to investigate
this conjecture by giving another positive evidence for itsvalidity. We describe a
new subset of split graphs with even maximum degree that is Class 1. Using latin
squares, we construct a polynomial edge-coloring for thesegraphs.

2. A split graph subset that is not neighbourhood-overfull

A color diagramC = (C1, . . . , Ck) is a sequence of color arrays, where each color
arrayCi = [ci,1, . . . , ci,di

], 1 ≤ i ≤ k, consists of distinct colors. A color diagram
C is monotonicif the colorci,j occurs at mostdi − j times inC1, . . . , Ci−1 for all
1 ≤ i ≤ k and1 ≤ j ≤ di.

A monotonic color diagram can be used to provide an edge-coloring for a bipartite
graph. LetB be a bipartite graph with bipartition{U, V }. If C = (Cu1 , . . . , Cuk

)
is a monotonic color diagram where, for each vertexui ∈ U , Cui

is a set ofdB(ui)
distinct colors, thenB has an edge-coloring that uses the colors ofCui

to color the
edges incident toui, ui ∈ U [1]. We use this result in our study of edge-coloring of
split graphs.

A k × k-matrix with entries from{0, . . . , k − 1} is calledlatin square of orderk if
every element of{0, . . . , k − 1} appears in each row and column exactly once. A
latin square of orderk, M = [mi,j], is commutativeif mi,j = mj,i, for 0 ≤ i ≤ j ≤
k − 1 and it is idempotent ifmi,i = i, for 0 ≤ i ≤ k − 1.

From now on,G is a split graph with a partition{Q,S}, whereQ is a maximal
clique andS is a stable set. Note thatQ is also a maximum clique. To every split
graphG we shall associate the bipartite graphB obtained fromG by removing all
edges of the subgraph ofG induced byQ. Let d(Q) be the maximum degree of
vertices ofQ in the bipartite graphB, i.e.,d(Q) = maxv∈Q dB(v). Then∆(G) =
ω(G) − 1 + d(Q).

In [1], Chen, Fu and Ko, use an odd order idempotent commutative latin square to
show that an odd maximum degree split graph is Class 1. It is known that there is
an idempotent commutative latin square of ordern if, only if, n is odd. Hence, the
technique presented in [1] could not be directly applied on split graphs with even
maximum degree.

In order to provide an edge-coloring with∆(G) colors for some split graphs when
∆(G) is even, we consider a matrix,M = [mi,j], 0 ≤ i, j ≤ ∆(G) − 2, where
mi,j = (i + j) (mod (∆(G)− 1)). From now on, the entries of a matrix are called
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colors. The matrixM is a commutative latin square of order∆(G)− 1, so we need
a new color. We replace some entries ofM with the new color, as described in
Algorithm ColorDiagrams. Then, we consider a vertexv in S with degree at least
ω(G)

2
and we label the vertices ofQ asu1, u2, . . . , uω(G) such thatui is adjacent to

v, 0 ≤ i ≤ dG(v). Then, we use the colorai,i of the submatrixA = [ai,j] formed
by the firstω(G) rows and columns ofM to color the edge(v, ui), 0 ≤ i ≤ dG(v).
After, we use the colorai,j to color the edge(ui, uj) of the subgraph ofG induced
by Q, 0 ≤ i, j ≤ ω(G). Now, it remains to colord(Q) − 1 edges ofB and we use
the monotonic color diagramC produced by our algorithm to color these edges.
The constraints of Theorem 1 are given by this strategy. The algorithm used in our
approach follows.

Algorithm ColorDiagrams (∆(G), ω(G), dG(v))
Construct a(∆(G) − 1) × (∆(G) − 1)-matrix M where
mi,j = (i + j) (mod ∆(G) − 1).
Construct a sequenceC = (C0, . . . , Cω(G)−1), where
Ci = [mi,ω(G), . . . ,mi,∆(G)−2], 0 ≤ i < ω(G).
Add mi,i as the first element ofCi, dG(v) ≤ i < ω(G).
Add ∆(G) − 1 as the first element ofCi, 0 ≤ i < ω(G).
Construct a matrixAω(G),ω(G), whereai,j ← mi,j, 0 ≤ i, j < ω(G);
l ← 0; l′ ← ω(G) − 1; x ← −1; c ← ω(G) + x;
If c is odd, thencount ← ⌊∆(G)−ω(G)−x−1

2
⌋, elsecount ← ⌊∆(G)−ω(G)−x−2

2
⌋;

While (l < l′) and (c < ∆(G) − 2) do
Replace the colorc from al,l′ andal′,l of A with ∆(G) − 1;
Replace the color∆(G) − 1 of Cl andCl′ with c;
l ← l + 1; l′ ← l′ − 1; count ← count − 1;
if count = 0, then

x ← x + 1; c ← ω(G) + x; l ← l + 1;
if c is odd, thencount ← ⌊∆(G)−ω(G)−x−1

2
⌋;

if c is even, thencount ← ⌊∆(G)−ω(G)−x−2
2

⌋;
Return(A, C).

The following results are used in the proof of Theorem 1.
Lemma 1 The matrixA returned by Algorithm ColorDiagrams is commutative, its
elements are from{0, ..., ∆(G) − 1}, and it has pairwise distinct elements in each
line and column. Moreover, if∆(G) is even, the elements of the main diagonal of
A are pairwise distinct.
Lemma 2 Let G be a split graph with even∆(G). If G has a vertexv in S with
dG(v) ≥ ω(G)

2
and (d(Q))2 ≥ 2ω(G) + 1, then the sequenceC returned by the

Algorithm ColorDiagrams is a monotonic color diagram.
Theorem 1 Let G be a split graph with even∆(G). If G has a vertexv in S with
degree at leastω(G)

2
and(d(Q))2 ≥ 2ω(G) + 1, thenG is Class 1.

A split graph satisfying the conditions of Theorem 1 is not neighbourhood-overfull.
So, our result gives a positive evidence to the conjecture that for any split graph
neighbourhood-overfullness is equivalent to being Class 2.
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1. Introduction

All the graphs in this paper are considered to be undirected,finite and contain no
loops or multiple edges. Thedirect productG × H of graphsG andH is a graph
with V (G × H) = V (G) × V (H) andE(G × H) = {{(a, x), (b, y)}|{a, b} ∈
E(G)and{x, y} ∈ E(H)}. This product is also known as Kronecker product, ten-
sor product, categorical product and graph conjunction.
A vertex coloringis an assignment of labels or colors to each vertex of a graphG
such that no edge connects two identically colored vertices. The minimum number
of colors required to color the graphG is called thechromatic number, denoted
by χ(G). An edge coloringof a graphG is a coloring of the edges ofG such that
adjacent edges receive different colors. The minimium number of colors required
for such a coloring is callededge chromatic numberand denoted byχ′(G).
For S ⊂ V (G)

⋃
E(G), a partial total coloring of G, is a mappingϕ : S → C

such that, for each adjacent or incident elementsx, y ∈ S, we haveϕ(x) 6= ϕ(y).
If S = V (G)

⋃
E(G), thenϕ is a total coloring. The least integer k, for which

|C| = k andϕ is total coloring, is called thetotal chromatic numberof G and is de-
noted byχ′′(G) or sometimes also byχT (G).Clearly,χ′′(G) ≥ ∆(G) + 1. TheTo-
tal Coloring Conjecture (TCC), posed independently by Behzad[11] and Vizing[2],
states that every simple graphG hasχ′′(G) ≤ ∆(G) + 2. If χ′′(G) = ∆(G) + 1,
then G is a type 1 graph; ifχ′′(G) = ∆(G) + 2, then G is a type 2 graph.
TheTCC has been confirmed for cartesian product of graphsG andH, if theTCC
holds for the graphsG andH by Zmazek, Zerovnik [7] and for the powers of cy-
clesCk

k by Campos, Mello [5].Here we confirm theTCC for direct product of a
path,Pn, and a graphG, whereG is type 1 graph. We further investigate the total
chromatic number of direct product of a path and an arbitrarycycle.

∗ Corresponding author.
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2. Total coloring of Pn × Pm

We start by investigating a product of two paths,Pn andPm, n,m ∈ N.
Theorem 1 χ′′(Pn × Pm) = 5.

PROOF. Clearly, χ′(Pn) = 2. Now color the edges ofPn with colors1 and2,
and color the vertexes ofPm with colors{1, 2, ...,m} in natural order. Define the
functionϕ as following:

ϕ : S → C ′′

ϕ((g, h)) = 2 · C(h) + 3(mod5)

ϕ((g, h), (g′, h′)) = C ′(g, g′) + 2 · C(h)(mod5);h < h′

whereS = V (G)
⋃

E(G), C ′′ = {0, 1, 2, 3, 4} andC andC ′ correspond to coloring
of vertexes and edges respectively as described above.
Take an arbitrary vertex, say(g, h). The neighbours of this vertex are(g − 1, h −
1), (g + 1, h − 1), (g − 1, h + 1), (g + 1, h + 1). As the vertex color depends only
on the second coordinate of the vertex, showing that color assigned to two vertexes
with consecutive second coordinates is different is sufficient. Take(g, h) and(g +
1, h + 1):

ϕ(g, h) − ϕ(g + 1, h + 1) = 2 · C(h) − 2 − 2 · C(h + 1) + 2(mod5)

= 2 · C(h) − 2(·C(h) + 1) = −2(mod5) 6= 0.

Now observe the edges surrounding the vertex(g, h). The colors of these edges are:

• ϕ((g, h)(g − 1, h − 1)) = C ′(g, g − 1) + 2 · C(h − 1)
• ϕ((g, h)(g − 1, h + 1)) = C ′(g, g − 1) + 2 · C(h)
• ϕ((g, h)(g + 1, h − 1)) = C ′(g, g + 1) + 2 · C(h − 1)
• ϕ((g, h)(g + 1, h + 1)) = C ′(g, g + 1) + 2 · C(h)

SinceC ′(g, g + 1) − 1 = C ′(g, g − 1) = 1 (without loss of generality) andC(h −
1) + 1 = C(h) = x, the values are2x, 2x + 1, 2x + 4, 2x + 2 respectively. Observe
that all the edges have different color. Sinceϕ(g, h) = 2x + 3(mod5) it is also
proven that the color of the vertex differs from the colors ofadjacent edges.¤

The proof also provides an algorithm for total coloring of such a graph. It can be
understood in simpler way. If the coloring of edges as described above is used, all
the vertexes in sameG-fibre have edges of same colors adjacent. As the maximum
degree of a vertex in aG-fibre is4, there is one color fromC ′′ set not used and can
be used for color of the vertexes in the fibre.
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3. Total coloring of G × Pn

The idea of coloring ofPn × Pm, where one of the paths had no impact on the
coloring of the vertexes and edges in the direct product, canbe further developed
to coloring of a direct product of path and arbitrary graphG.
Theorem 2 χ′′(G × Pn) = ∆(G × Pn) + 1, if χ′(G) = ∆(G).

PROOF. Proof of this theorem is done is similar way as in proof of theorem 1, by
introducing functionϕ as:

ϕ : S → C ′′

ϕ((g, h)) = χ′(G) · (C(h) + 1)(modΘ)

ϕ((g, h), (g′, h′)) = C ′(g, g′) + χ′(G) · C(h)(modΘ);h < h′

whereΘ = (∆(G) · 2 + 1) andC ′′ = {0, 1, 2, ..., Θ − 1}.
Again, the colors of adjacent vertexes, edges adjacent to arbitrary vertex and the
end vertexes of such edges much be verified to have different colors assigned.
The details of this proof will be given in full paper.¤

Again, each of the possible∆(G)∆(Pn) edges inG-fibre gets different color from
setC ′′ assigned and the remaining one can be used to color the vertex.
Remark 1 The function used in the proof will also produce total coloring of a
graphG×Pn, if the division is done byΘ = ∆(G) · 2 + 3 andχ′(G) = ∆(G) + 1.
However, such coloring will use∆(G × Pn) + 3 colors which does not match the
conjecture. Better colorings exist in this case .

4. Total coloring of Cm × Pn

Coloring of C2k × Pn is an immediate corollary of Theorem 2, however we will
prove that the theorem holds for all the cycles.
Theorem 3 χ′(Cm × Pn) = 5

PROOF. The theorem only needs to be proven for case wherem = 2k+1. We will
prove this by observing that the direct productC2k+1 × P2 produces an even cycle
C2k+2. There exists total coloring of such an even cycle with 4 colors [10]: since the
sum of vertexes and edges in such a cycle is4(k+1), we can color it by sequentially
exchanging the colors{1, 2, 3, 4}. Such an cycle is also bipartite, so the vertexes in
each of partitions will be colored in one color. These partitions correspond to two
G-fibres if the cycle is observed as product ofC2k+1×P2. Without loss of generality,
let the colors of vertexes in the colored(2k + 1)-cycle be{2, 4} and the edges of
colors{1, 3}.
The graphCm × Pn is constructed ofn copies of such a construction. If the first
copy is colored as described above, the colors of edges, i.e.1 and3 cannot be used
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for edge colors in next copy. One partition of next copy’s graph will be the partition
of first copy, so one color for the vertexes will already be defined. Now use of of
the colors{1, 3} for the other partition vertexes and use the colors5 and the color
of the other partition from first copy as colors for edges in this next copy.
Same procedure of assigning colors can be applied to all the next copies until we
color all the copies ofCm × P2. ¤
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1. Introduction

We consider the TIME-DEPENDENTSHORTESTPATH PROBLEM (TDSPP): given
a directed graphG = (V,A), a source nodes ∈ V , a destination nodet ∈ V ,
an interval of time instantsT , a departure timeτ0 ∈ T and a time-dependent arc
weight functionc : A × T → R+, find a pathp = (s = v1, . . . , vk = t) in G such
that itstime-dependent costγτ0(p), defined recursively as follows:

γτ0(v1, v2) = c(v1, v2, τ0) (1)
γτ0(v1, . . . , vi) = γτ0(v1, . . . , vi−1) + c(vi−1, vi, τ0 + γτ0(v1, . . . , vi−1)) (2)

for all 2 ≤ i ≤ k, is minimum. We also consider a functionλ : A → R+

such that∀(u, v) ∈ A, τ ∈ T (λ(u, v) ≤ c(u, v, τ)). In other words,λ(u, v)
is a lower bound on the travelling time of arc(u, v) for all time instants inT . In
practice, this can easily be computed, given an arc length and the maximum al-
lowed speed on that arc. We naturally extendλ to be defined on paths, i.e.λ(p) =∑

(vi,vj)∈p λ(vi, vj). In this paper, we propose a novel algorithm for the TDSPP
based on a bidirectionalA∗ algorithm. Since the arrival time is not known in ad-
vance (soc cannot be evaluated on the arcs adjacent to the destination node), our
backward search occurs on the graph weighted by the lower bounding functionλ.
This is used for bounding the set of nodes that will be explored by the forward
search. We assume that the graph has the FIFO property.

∗ Corresponding author.
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– 6th FP), under contract no. FP6-02123502 (project ARRIVAL), and by DFG grant SA
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2. A∗ with Landmarks

A∗ is an algorithm for goal-directed search, similar to Dijkstra’s algorithm, but
which adds a potential functionπ to the priority key of each node in the queue.
One way to compute the potential function, instead of using Euclidean distances,
is to use the concept oflandmarks. Landmarks have first been proposed in [2];
they are a preprocessing technique which is based on the triangular inequality. The
basic principle is as follows: suppose we have selected a setL ⊂ V of landmarks,
and we have precomputed distancesd(v, ℓ), d(ℓ, v)∀v ∈ V, ℓ ∈ L; the following
triangle inequalities hold:d(u, t) + d(t, ℓ) ≥ d(u, ℓ) andd(ℓ, u) + d(u, t) ≥ d(ℓ, t).
Thereforeπt(u) = maxℓ∈L{d(u, ℓ) − d(t, ℓ), d(ℓ, t) − d(ℓ, u)} is a lower bound
for the distanced(u, t), and it can be used as a potential function which preserves
optimal paths. On a static graph (i.e. non time-dependent),bidirectional search can
be implemented, using some care in modifying the potential function so that it is
consistent for the forward and backward search (see [3]). BidirectionalA∗ with
the potential function described above is called ALT. It is straightforward to note
that, if arc costs can only increase with respect to their original value, the potential
function associated with landmarks is still a valid lower bound, even on a time-
dependent graph. Unidirectional ALT in a time-dependent scenario has been tested
in [1].

3. Bidirectional Search on Time-Dependent Graphs

Our algorithm is based on restricting the scope of a time-dependentA∗ search from
the source using a set of nodes defined by a time-independentA∗ search from the
destination, i.e. the backward search is a reverse search inGλ, which corresponds
to the graphG weighted by the lower bounding functionλ.

Given a graphG = (V,A) and source and destination verticess, t ∈ V , the algo-
rithm for computing the shortest time-dependent cost pathp∗ works in three phases.

(1) A bidirectionalA∗ search occurs onG, where the forward search is run on
the graph weighted byc with the path cost defined by (1)-(2), and the back-
ward search is run on the graph weighted by the lower boundingfunctionλ.
All nodes settled by the backward search are included in a setM . Phase 1
terminates as soon as the two search scopes meet.

(2) Suppose thatv ∈ V is the first vertex in the intersection of the heaps of the
forward and backward search; then the time dependent costµ = γτ0(pv) of the
pathpv going froms to t passing throughv is an upper bound toγτ0(p

∗). In the
second phase, both search scopes are allowed to proceed until the backward
search queue only contains nodes whose associated key exceedsµ, with the
additional constraint that the backward search cannot explore nodes already
settled by the forward search. In other words: letβ be the key of the minimum
element of the backward search queue; phase 2 terminates as soon asβ > µ.
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Again, all nodes settled by the backward search are includedin M .
(3) Only the forward search continues, with the additional constraint that only

nodes inM can be explored. The forward search terminates whent is settled.

We have the following theorems.
Theorem 1 The algorithm in Sect. 3 computes the shortest time-dependent path
from s to t for a given departure timeτ0.
Theorem 2 Let p∗ be the shortest path froms to t. If the condition to switch to
phase 3 isµ < Kβ for a fixed parameterK, then the algorithm in Sect. 3 computes
a pathp from s to t such thatγτ0(p) ≤ Kγτ0(p

∗) for a given departure timeτ0.

4. Experiments

of our time-dependent ALT algorithm. Our implementation iswritten in C++ using
solely the STL. As priority queue we use a binary heap. Our tests were executed
on one core of an AMD Opteron 2218 running SUSE Linux10.1. The machine
is clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache. The pro-
gram was compiled with GCC4.1, using optimization level 3. We use 16 maxcover
landmarks [2], computed on the input graph using the lower bounding functionλ
to weight edges. When performing randoms-t queries, the sources, targett, and
the starting timeτ0 are picked uniformly at random and results are based on 10 000
queries. We tested our algorithm on the road network of Western Europe provided
by PTV AG for scientific use, which has approximately 18 million vertices and
42.6 million arcs. A travelling time in uncongested traffic situation was assigned
to each arc using that arc’s category (13 categories) to determine the travel speed.
We generated time-dependent costs using a random generatorbased on statistical
real-world data.

Table 4 reports the results of our bidirectional ALT varianton time-dependent net-
works for different approximation valuesK using the European road network as
input. For comparison, we also report the results on the sameroad network for
the time-dependent versions of Dijkstra and unidirectional ALT. As the performed
ALT-queries compute approximated results instead of optimal solutions, we record
three different statistics to characterize the solution quality: error rate, average rel-
ative error, maximum relative error. Byerror rate we denote the percentage of
computed suboptimal paths over the total number of queries.By relative error on
a particular query we denote the relative percentage increase of the approximated
solution over the optimum, computed asω/ω∗ − 1, whereω is the cost of the ap-
proximated solution computed by our algorithm andω∗ is the cost of the optimum
computed by Dijkstra’s algorithm. We reportaverageandmaximumvalues of this
quantity over the set of all queries. We also report the number of nodes settled at the
endof each phase of our algorithm, denoting them with the labelsphase 1, phase 2
and phase 3.

As expected, we observe a clear trade-off between the quality of the computed so-
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ERROR QUERY

relative # settled nodes time

input method K rate avg max phase 1 phase 2 phase 3 [ms]

EUR

Dijkstra - 0.0% 0.000% 0.00% - - 8 908 300 6 325.8

uni-ALT - 0.0% 0.000% 0.00% - - 2 192 010 1 775.8

ALT 1.00 0.0% 0.000% 0.00% 125 068 2 784 540 3 117 160 3 399.3

1.05 4.0% 0.029% 4.93% 125 068 1 333 220 1 671 630 1 703.6

1.10 18.7% 0.203% 8.10% 125 068 549 916 719 769 665.1

1.13 30.5% 0.366% 12.63% 125 068 340 787 447 681 385.5

1.15 36.4% 0.467% 13.00% 125 068 265 328 348 325 287.3

1.20 44.7% 0.652% 18.19% 125 068 183 899 241 241 185.3

1.50 48.8% 0.844% 25.70% 125 068 130 144 172 157 121.9

2.00 48.9% 0.886% 48.86% 125 068 125 071 165 650 115.7

lution and query performance. If we are willing to accept an approximation factor
of K = 2.0, queries are on average 55 times faster than Dijkstra’s algorithm, but
almost50% of the computed paths will be suboptimal and, although the average
relative error is still small, in the worst case the approximated solution has a cost
which is 50% larger than the optimal value. The reason for this poor solution quality
is that, for such high approximation values, phase 2 is very short. As a consequence,
nodes in the middle of the shortest path are not explored by our approach, and the
meeting point of the two search scopes is far from being the optimal one. However,
by decreasing the value of the approximation constantK we are able to obtain
solutions that are very close to the optimum, and performance is significantly bet-
ter than for unidirectional ALT or Dijkstra. In our experiments, it seems as if the
best trade-off between quality and performance is achievedwith an approximation
value ofK = 1.15, which yields average query times smaller than 300 ms with a
maximum recorded relative error of13%. By decreasingK to values< 1.05 it does
not pay off to use the bidirectional variant any more, as the unidirectional variant
of ALT is faster and is always correct.
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1. Abstract

We study the Generalized Traveling Salesman Problem (GTSP), which is a variant
of the well-known Traveling Salesman Problem (TSP). We are given a graphG =
(V,E), whereV is the set of nodes, andE the set of edges, each with an associated
cost. The set of nodesV is partitioned intom clustersV1, . . . , Vm with V1 ∪ . . . ∪
Vm = V andVi ∩ Vj = ∅ if i 6= j. GTSPis to find an elementary cycle visiting at
least one node for each cluster, and minimizing the sum of thecosts of the traveled
edges. We focus on the so-calledEquality GTSP(E-GTSP), in which the cycle has
to visit exactly one node for each cluster.

TheGTSPis a generalization of theTSP: we obtain the traditionalTSPin the par-
ticular case where all the clusters are composed by just one node. Thus theGTSP
is NP-Hard.

Most of the literature focuses on heuristic approaches for solving the problem, due
to its high complexity. However, in [1] Fischetti et al. present a Branch and Cut
algorithm to solve the problem to optimality. The best state-of-art heuristic algo-
rithms for theGTSPare the following:

1. the Generalized Initialization, Insertion and Improvement algorithm by Renaud
and Boctor ([4]);

2. the Nearest Neighbor approach by Noon ([2]);
3. the Reinforcing Ant Colony System by Pintea et al. ([3]);
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4. the heuristic algorithms by Fischetti et al. ([1]), whichare computed at the root
node of the branch-decision tree.

We propose a multi-start heuristic algorithm, which iteratively starts with a ran-
domly chosen set of nodes and applies a decomposition approach to the problem
combined with improvement procedures. In a decomposition algorithm, the prob-
lem is subdivided into two subproblems. According to the classification introduced
by Renaud and Boctor ([4]), there are two ways of decomposing the problem. One
possibility is to select the nodes to be visited, and then construct a cycle that vis-
its the selected nodes; another possibility is to determinethe order in which the
clusters are visited, and then construct the optimal cycle.

Our method combines these two approaches, alternating the two ways of decom-
posing the problem and introducing also some randomness in order to explore a
greater solution space.

In particular, our approach considers a first phase to determine the visiting order
of the clusters and a second phase to find the minimum cost cycle. The visiting
order of the clusters is obtained as follows: we randomly choose, with uniform
probability, one node in each cluster and then compute a TSP feasible solution by
using the Farthest Insertion approach, followed by a2-opt improvement procedure.
Once the order of the clusters is fixed, the second phase starts: the Bellman-Ford
algorithm is applied. It computes, in polynomial time, the shortest cycle which
visits exactly one node in each cluster. This phase gives a new set of nodes, which
can be different from the one obtained at the end of the first phase. Thus, we apply a
2-opt improvement procedure to the new sequence, allowing a change in the order
of the clusters. If the order of the clusters is changed, we apply again the Bellman-
Ford algorithm in an iterative way. Otherwise the current solution cannot be further
improved, so we start again with a set of nodes, randomly chosen with uniform
probability, one from each cluster. However, we also apply aprobabilistic step: with
probabilityp each node in the chosen set is substituted by the node corresponding
to the same cluster in the best solution found so far. Our approach iteratively repeats
these steps until a stop condition is reached (e.g., time limit).

The algorithm was tested on a set of benchmark instances obtained by a clustering
procedure introduced by Fischetti et al. ([1]) applied to instances from the TSPLIB
library. These instances are generally used to test the efficiency of the algorithms
for theGTSP.

The results obtained by our approach are compared with the optimal solutions ob-
tained by a Branch-and-Cut algorithm presented in [1]. Moreover, we compare our
results with those obtained by the best state-of-art heuristic algorithms. The results
show that our approach is competitive with the other heuristic algorithms, finding
the optimal solution for the83.8% of the instances in less then10 seconds, and for
the100% of the instances in short computing times.
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1. The Swapping Problem

The Swapping Problem (SP) was first introduced by Anily and Hassin (1992) on
general graphs. In the problem that they defined, each vertexof a given graph may
initially contain an object of a known type, and it may be associated with a de-
sired object of a different type. The initial and final arrangements are assumed to
be balanced, namely that the total number of objects of each type is equal in both
arrangements. A single vehicle of unit capacity is available for shipping objects
among the vertices. The SP is to compute a shortest route suchthat the vehicle can
accomplish the rearrangement of the objects while following this route.

The original SP has many variations. For example, we can define the problem on
different graph structures, such as a line, a circle, a tree,and a general graph; and
also consider various capacities of the vehicle: one unit, some finite capacityk, or
infinite capacity, i.e., theuncapacitated SP.

In this research we focus on the uncapacitated SP on a line andon a circle, and we
present polynomial-time exact algorithms for each. For thelinear track we present
anO(nlogn)-time exact algorithm, and for the circular track, anO(n2logn)-time
exact algorithm, wheren is the number of vertices on the graph.

Tables 1-3 summarize the known complexity results for the SP, for the unit capacity,
finite capacity, and infinite capacity cases. The tables alsopresent the results for the
knownStacker Crane Problemand theDial-a-Ride Problem. These two problems
can be seen as special cases of the SP, where there is only one unit of each object
type, thus each product has a specific destination. With respect to the unpacacitated
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Table 1
Results for the Unit Capacity Case (k = 1). [from Anily et.al. (2006)]

Swapping Problem Stacker Crane Problem

Graph Structure Preemptive Non-Preemptive Mixed Preemptive Non-Preemptive Mixed

Line Polynomial[3] Polynomial[3] Polynomial[3] Polynomial Polynomial Polynomial

Circle -[16] Polynomial[6] Polynomial[6] Polynomial[16]

Tree NP-hard[4] NP-hard[9,10] NP-hard Polynomial NP-hard NP-hard

General NP-hard[2] NP-hard[2] NP-hard[2] NP-hard NP-hard[11] NP-hard

Table 2
Results for the Finite Capacity Case (k > 1)

Swapping Problem Dial-a-Ride Problem

Graph Structure Preemptive Non-Preemptive Mixed Preemptive Non-Preemptive Mixed

Line NP-hard NP-hard NP-hard[16] NP-hard

Circle NP-hard NP-hard NP-hard NP-hard

Tree NP-hard NP-hard NP-hard NP-hard[8] NP-hard[8] NP-hard

General NP-hard NP-hard NP-hard NP-hard4 NP-hard[8] NP-hard

Table 3
Results for the Uncapacitated SP

Graph Structure Swapping Problem Dial-a-Ride Problem

Line Polynomial[15] Polynomial

Circle Polynomial∗ Polynomial

Tree

General NP-hard NP-hard[14,17]

∗ This work.

case (Table 3) it can be seen that the SP on a general graph is NP-hard, as it gen-
eralizes the Traveling Salesman Problem. The complexity ofthe uncapacitated SP
on a tree is still an open problem.

1.1 The linear track

For the linear track case we develop an algorithm, which allows to specify general
initial and terminal positions for the vehicle. Next we listthe three key elements of
the algorithm:

• We use theminimally balanced partitiondefined by Anily et.al. (1999) to deter-
mine the line-segments which the vehicle traverses loaded.

• We prove that every optimal tour must contain one of two specific basic routes.
• We find the minimal total length to be added to the basic route in order to make

it a feasible solution.

We also present a simplified algorithm, of complexityO(n), for the case that the
initial and terminal positions of the vehicle are at the endpoints.
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1.2 The circular track

In the circular track case we first prove that in the optimal solution the vehicle
either covers all the circumference, or it leaves one interval uncovered. For the
second case, for each interval the problem reduces to the SP on a line. For the first
case, we perform a transformation of the given circle to a setof linear tracks (with
more thann stations each). On these linear tracks we can solve the problem using
the SP on a line.
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1. Introduction

In the design of large interconnection networks several factors have to be taken
into account. A usual constraint is that each processor can be connected to a lim-
ited number of other processors and the delays in communication must not be too
long. Extensively studied network topologies in this context include graph products
and bundles. For example the meshes, tori, hypercubes and some of their general-
izations are Cartesian products. It is less known that some well-known topologies
are Cartesian graph bundles, i.e. some twisted hypercubes [6, 9] and multiplicative
circulant graphs [15]. Other graph products, sometimes under different names, have
been studied as interesting communication network topologies [5, 13, 15].

Furthermore, an interconnection network should be fault-tolerant. Since nodes or
links of a network do not always work, if some nodes or links are faulty, some
information may not be transmitted by some of these nodes, links. Therefore the
(edge) fault-diameter has been determined for many important networks recently
[7, 8, 12, 16]. The concept of fault-diameter of Cartesian product graphs was first
described in [11], but the upper bound was wrong, as shown by Xu, Xu and Hou
who corrected the mistake [16]. An upper bound for the fault-diameter of Cartesian
graph products and bundles was given in [2, 3]. Also an upper bound for the edge
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fault-diameter of Cartesian graph products was given in [4].Graph bundles were
first studied in [14].

We generalize the result of [4] for two factors to Cartesian graph bundles. As ak-
edge connected graph remains connected if up tok−1 edges are missing, we study
the diameter of a graph with any permitted number of edges deleted. We show that
the edge-connectivity of Cartesian graph bundleG with fibreF over the base graph
B, is at leastkF + kB, and we give an upper bound for the edge fault-diameter of
Cartesian graph bundles in terms of edge fault-diameters of the fibre and the base
graph. We also show that the bounds are tight. For details, see [1].

2. Preliminaries

Definition 1 Let B andF be graphs. A graphG is a Cartesian graph bundle with
fibreF over the base graphB if there is agraph mapp : G → B such that for each
vertexv ∈ V (B), p−1({v}) is isomorphic toF , and for each edgee = uv ∈ E(B),
p−1({e}) is isomorphic toF2K2.

More precisely, the mappingp : G → B maps graph elements ofG to graph
elements ofB, i.e. p : V (G) ∪ E(G) → V (B) ∪ E(B). In particular, here we
also assume that the vertices ofG are mapped to vertices ofB and the edges of
G are mapped either to vertices or to edges ofB. We say an edgee ∈ E(G) is
degenerateif p(e) is a vertex. Otherwise we call itnondegenerate. The mappingp
will also be called theprojection(of the bundleG to its baseB). Note that each edge
e = uv ∈ E(B) naturally induces an isomorphismϕe : p−1({u}) → p−1({v})
between two fibres. It may be interesting to note that while itis well-known that a
graph can have only one representation as a product (up to isomorphism and up to
the order of factors) [10], there may be many different graphbundle representations
of the same graph [17]. Here we assume that the bundle representation is given.
Example 1 It is less known that graph bundles also appear as computer topolo-
gies. A well known example is the twisted torus on Figure 1. Cartesian graph bundle
with fibreC4 over baseC4 is the ILIAC IV architecture.

\[

\[
\[

\[

Fig. 1. Twisted torus: Cartesian graph bundle with fibreC4 over baseC4.
Definition 2 Theedge-connectivityof a graphG, λ(G), is the minimum cardinality
over all edge-separating sets inG. A graphG is said to bek-edge connected, if
λ(G) ≥ k.
Definition 3 Let G be ak-edge connected graph and0 ≤ a < k. Then we define
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thea-edge fault-diameterof G as

D̄a(G) = max {d(G \ X) | X ⊆ E(G), |X| = a}.

Note thatD̄a(G) is the largest diameter among subgraphs ofG with a edges deleted,
henceD̄0(G) is just the diameter ofG, (.G). Fora ≥ k, the edge fault-diameter of
k-edge connected graph does not exist. In other words,D̄a(G) = ∞ as some of the
graphs are not edge-connected.

3. Edge Fault-diameter of Cartesian graph bundles

Theorem 1 Let F and B be kF -edge connected andkB-edge connected graphs
respectively, andG a Cartesian graph bundle with fibreF over the base graphB.
Letλ(G) be the edge-connectivity ofG. Thenλ(G) ≥ kF + kB.
Theorem 2 Let F and B be kF -edge connected andkB-edge connected graphs
respectively,0 ≤ a < kF , 0 ≤ b < kB, andG a Cartesian bundle with fibreF over
the base graphB. Then

D̄a+b+1(G) ≤ D̄a(F ) + D̄b(B) + 1.

Next example shows that the bound in Theorem 2 is tight.
Example 2 LetG = P22P2. G is a graph bundle with fiberF = P2 over the base
graphB = P2. Then fora = b = 0 we have

D̄a+b+1(G) = 3,

D̄b(B) + D̄a(F ) + 1 = 1 + 1 + 1 = 3.
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1. Introduction

We call partition of the integern a sequenceλ = (λ1, λ2, . . . , λp) such thatλ1 ≥
λ2 ≥ . . . ≥ λp and

∑p
i=1 λi = n. The spectrum ofλ is defined bysp(λ) =

{λ1, λ2, . . . , λp}. Consider an-vertex graphG = (V,E) and letλ = (λ1, . . . , λp)
be a partition ofn. A decomposition ofG for λ, called aλ-decomposition, is a
partition{V1, . . . , Vp} of V such that for all1 ≤ i ≤ p, we have|Vi| = λi, and the
subgraph ofG induced by any subsetVi is connected. Such a partitionV1, . . . , Vp

of V is called a(G, λ)-partition. The graphG is said decomposable if and only if
for all partitionλ of n the graphG is decomposable forλ.

Respectively in 1976 and 1977, Györi [1] and Lovász [2] have shown that anyn-
vertexk-connected graphG is decomposable for all partitionsλ = (λ1, . . . , λk) of
n which containk integers. However their proofs do not yield any polynomial-time
algorithm. Differents results have been done for particulars cases. For a state of the
art see [3]. In [4] it has been shown a polynomial algorithm for deciding if a tripode
(three chains linked to one vertex of degree 3) is decomposable.

In this paper we focus on trees with a large diameter. We noteD(T ) the diameter
of the treeT . We show that for all partitionλ = (λ1, . . . , λp) of n with |sp(λ)| ≥
α, any n-vertex treeT with diameterD(T ) = n − α is λ-decomposable. This
structural result provides an algorithm to decide if an-vertex treeT with diameter
D(T ) = n − α is decomposable with time complexitynO(α).

2. Structural results

Proposition 1 below is based on Lemma 1 whose proof is not given in this abstract.
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Lemma 1 Let I be a set of natural integers such thatI ⊆ {1, . . . , n − 1} and
|I| = α − 1. For all partition λ = (λ1, λ2, . . . , λp) of n such that|sp(λ)| ≥ α,
there exists a permutationπ1, . . . , πp of λ such that for all1 ≤ i ≤ p we have∑i

j=1 πj 6∈ I.
Proposition 1 Consider an-vertex treeT = (V,E) with diameterD(T ) = n −
α. The treeT is decomposable for all partitionsλ = (λ1, λ2, . . . , λp) of n with
|sp(λ)| ≥ α.

Proof. We first compute a chain ofn− α + 1 vertices〈x0, x1, . . . , xn−α〉 with time
complexitynO(1). The graphF = (VF , EF ) such thatVF = V andEF = E −
{[x0, x1], [x1, x2], . . . , [xn−α−1, xn−α]} is a forest composed ofn−α+1 trees each
one containing one vertex of the chain〈x0, x1, . . . , xn−α〉. For all 0 ≤ i ≤ n − α
, we noteAi the set of vertices of the tree containing the vertexxi. We intend
to show that for all partitionλ = (λ1, λ2, . . . , λp) of n with |sp(λ)| ≥ α, there
exists a (T ,λ)-partition V1, V2, . . . , Vp of V (G) with the following property : for
all 0 ≤ i ≤ n − α, there existsj ∈ {1, . . . , p} such thatAi ⊆ Vj. Then, for all
0 ≤ i ≤ n− α the vertices of the tree induced byAi are included in one of the sets
of the (T ,λ)-partitionV1, V2, . . . , Vp. Such a (T ,λ)-partition is called a (T ,λ)-clean
partition (see Figure 1).

V1 V3 V2

Ai

xi xi+1x0 x1 x2 xn−α

A0 A1 A2 Ai+1 An−α

Fig. 1. A treeT with diameterD(T ) = n − α and a (T ,p)-clean partitionV1, V2, V3

Consider the set of natural integersP =
⋃n−α

i=0 {∑i
j=0 |Aj|} and the set of natural

integersI = {1, . . . , n} \ P . We callP the set ofpossible integersandI the set
of forbidden integers. By definition,P andI give a partition of{1, . . . , n}, with
n ∈ P , |P | = n − α + 1 and|I| = α − 1. By Lemma 1, there exists a permutation
π1, . . . , πp of λ such that for all1 ≤ i ≤ p we have

∑i
j=1 πj ∈ P . This permutation

yields a (T ,λ)-clean partition ofV .2

Notice that the Proposition 1 is tight. Indeed, consider an integerα. Let n =∑α−1
i=1 2i. Consider the partitionλ = (2, 4, 6, . . . , 2α − 2) of n. We have|sp(λ)| =

α − 1. Then-vertex treeT = (V,E) with diameterD(T ) = n − α in Figure 2 is
not decomposable for the partitionλ, since for alli ∈ {1, . . . , α − 1}, if the vertex
x0 ∈ Vi, of size2i, then one of the vertices{f1, . . . , fi} will be isolated and there
is no part of size1 in λ.

3. Algorithmic results

By Proposition 1 any treeT = (V,E) with diameterD(T ) = n − α is decompos-
able for all partitionλ with |sp(λ)| ≥ α. To decide ifT is decomposable, one must
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f2f1 fα−1

x1 x2 xα+1x0 xα−1 xα xn−α

Fig. 2. A treeT with diametern − α

check wether it is decomposable by all other partitions. In this section, we present
an algorithm doing so in timenO(α). First we consider the case of a single partition.
Proposition 2 Consider an-vertex treeT = (V,E) with diameterD(T ) = n−α.
Letλ = (λ1, λ2, . . . , λp) be a partition ofn . Deciding if the treeT is decomposable
for the partitionλ can be done with a time complexitynO(α).

Proof. If |sp(λ)| ≥ α, then by Proposition 1, we know thatT is decomposable for
λ. Suppose now that|sp(λ)| ≤ α−1. We noteu1, u2, . . . , uα−1 theα−1 vertices of
T that do not belong to the chain〈x0, x1, . . . , xn−α〉. We intend to generate all the
(T ,λ)-partitions. We start with thep empty setsV1, . . . , Vp of the (T ,λ)-partition.
The first step of the process consists in generating all the possibles setsVi which
will contain at least one of the verticesu1, . . . , uα−1. First we construct a set con-
taining the vertexu1. We noteVi1 this set. The size of the setVi1 can be equal to at
mostα−1 values. For each value, we notec this size ofVi1 . We choose the other ver-
tices of{u2, . . . , uα−1} which will belong toVi1 . There exists2α−1 possible subsets
of {u2, . . . , uα−1}. For each subsetS of {u2, . . . , uα−1}, we add the vertices ofS in
Vi1 . ThenVi1 = {u1}∪S. Considerg = min{i ∈ {0, . . . , n−α} : Ai∩Vi1 6= ∅}. Let
d = max{i ∈ {0, . . . , n−α} : Ai ∩Vi1 6= ∅}. Adding the verticesxg, xg+1, . . . , xd

in the subsetVi1 is a necessary condition (but not sufficient) for the subgraph of T
induced byVi1 to be connected. A this step, we must verify if the sub-graph of T in-
duced byVi1 is connected. This can be done in timeO(n). If it is the case and if we
have|Vi1 | ≤ c then we add|Vi1 |− c vertices inVi1 from the chains〈x0, . . . , xg〉 and
〈xd, . . . , xn−α〉, by preserving the connexity. There are at mostO(n) possibilities.
The number of such possible sets containing the verticeu1 is thusO(α2α−1n).

Given such a set containing the verticeu1, we remove the vertices choosen (setVi1)
from the treeT . We obtain a forestF . From the forestF , we search all the possibles
setsVi containing at least one of the remaining verticesui. Thus the number of
possible setsVi containing at least one of the verticesu1, . . . , uα−1 is O(αα2α2

nα).

At this stage, We have to generate all the possible setsVi containing none of the
verticesu1, . . . , uα−1. Let p′ the remaining partition. The partitionp′ contains the
integers ofp which have not been used during the first step of the process. Let
S be the set of vertices which belong to the setsVi containing at least one of the
verticesu1, . . . , uα−1. LetR be the subgraph ofT induced byV −S. The subgraph
R is a forest with at mostα connected components, each one being a chain. Thus
deciding ifR is decomposable for the partitionp′ is equivalent to solving aα-subset
sum problem, withα ≤ n andn coded in unary. By dynamic programing we can
decide ifR is decomposable for the partitionp′ in time nO(α). Thus we can decide
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if T is decomposable for the partitionλ in timenO(α).2
Theorem 1 Consider an-vertex treeT = (V,E) with diameterD(T ) = n − α.
Deciding if the treeT is decomposable can be done with time complexitynO(α).

Proof. By Proposition 1, we know that the treeT is decomposable for all partitionλ
of n with |sp(λ)| ≥ α. Thus it remains to study the partitionsλ of n with |sp(λ)| ≤
α − 1. Consider an integern and an integerα. The number of partitionsλ of n
with |sp(λ)| ≤ α−1 is O(αn2α) and we can generate them with a time complexity
O(αn2α+1). By Proposition 2 deciding if the treeT is decomposable can be done
with time complexitynO(α). 2
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Abstract

Lately, a lot of research has been done onC -probe graphs. In this paper we focus on
chordal-bipartite probe graphs. We prove a structural result that ifB is a bipartite graph
with no chordless cycle of length strictly greater than 6, thenB is chordal-bipartite probe
if and only if a certain “enhanced” graphB∗ is a chordal-bipartite graph. This theorem is
analogous to a result on interval probe graphs in [13] and to one on chordal probe graphs
in [8].

Key words: Probe, bipartite, chordal.

1. Introduction

Let G = (V,E) be a finite, undirected, simple graph. We say that vertexu “sees”
vertexv if uv ∈ E. A setX ⊆ V is astableset inG if for all u, v ∈ X, (u, v) /∈ E,
i.e., no vertex inX sees another vertex inX. A graphG is abipartite graph if its
vertices can be partitioned into two disjoint stable setsV = X ∪ Y . We will refer
to this as the “black/white” bipartition of the vertices.

A sequence(v1, . . . , vn) of distinct vertices is apath in G if (vi, vi+1) ∈ E for
1 ≤ i ≤ n − 1. A closed path(v1, . . . , vn, v1) is called acycle if in addition
(vn, v1) ∈ E. A chord of a cycle(v1, . . . , vn, v1) is an edge between two vertices
of the cycle that is not an edge of the cycle. AchordlesscycleCn is a cycle which
contains no chords and hasn vertices andn edges.

A graphG is a chordal graphif it contains no induced chordless cycleCn, for
n ≥ 4. A graphG is achordal-bipartitegraph if it is a bipartite graph and it contains
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no induced chordless cycleCn, for n ≥ 6. (Note that just as a chordal graph may
contain triangles, a chordal-bipartite graph may contain chordless 4-cycles.)

Let C be a graph class. A graphG is called aC -probegraph if its vertex set can be
partitioned into two subsets,P (probes) andN (non-probes), whereN is a stable
set, and one can add toG a set of edges between pairs of non-probes such that the
resulting graph is inC . More formally,G is C -probe if there exists a completion
E ′ ⊆ {(u, v) | u, v ∈ N, u 6= v} such thatG′ = (V,E ∪ E ′) is in C . Recogniz-
ing whether or notG is a C -probegraph is known as thenon-partitionedprobe
problem.

In thepartitionedversion of the probe problem, the partition ofV into probes and
non-probes is given and fixed. ThepartitionedC -probe problem is a special case
of theC -sandwich problem [6].

Interval probe graphs were first introduced by Zhang [13] andstudied further in
[7, 10–12]. Chordal probe graphs were investigated in [8] anda characterization and
recognition algorithm was given in [2] for both the partitioned and non-partitioned
versions. Other probe classes are to be found in [3].

In this paper, we focus on the partitioned version of chordal-bipartite probe graphs.
In particular, we prove a structural result that ifB is a bipartite graph with no
chordless cycle of length strictly greater than 6, thenB is chordal-bipartite probe
if and only if a certain “enhanced” graphB∗ is a chordal-bipartite graph. This
theorem is analogous to a result on interval probe graphs in [13] and to one on
chordal probe graphs in [8]. We believe it may also shed lighton the more general
case. We conclude the paper with open questions.

2. Motivation: chordal probe graphs

Let G = (V,E) be a graph whose vertices have been partitioned into a setP of
probes and a stable setN of non-probes. The following was proved in [8]:
Lemma 1 If G is a chordal probe graph with respect to the partitionP ∪ N , then
probes and non-probes must alternate on every chordless cycle.

In the specific case of a chordless 4-cycle with edgesab, bc, cd, da, this means that
either{a, c} are probes and{b, d} are non-probes, or vice versa. Moreover, suppose
that{a, c} are probes, then any possible chordal probe completion ofG would be
forced to contain the addition of an edgebd, which Zhang [13] called anenhanced
edge. Theenhanced graphG∗ = (P ∪ N,E∗) is defined to be the graph obtained
from G by adding all enhanced edges from all chordless 4-cycles.
Theorem 1 LetG be a graph containing no induced chordless cyclesCk for k > 4.
If G has a probe/non-probe partition in which probes and non-probes alternate on
every chordless 4-cycle, then the enhanced graphG∗ is a chordal completion ofG.

Lemma 1 together with Theorem 1 prove the next corollary.
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Corollary 1 If G is aCk-free graphs fork > 4, thenG is chordal probe if and only
if G∗ is chordal.

This also gave an alternate proof of a result of Zhang [13].
Corollary 2 If G is an interval probe graph, thenG∗ is chordal.

3. Chordal-bipartite probe graphs

We now turn our attention to the probe problem for chordal-bipartite graphs. Our
goal will be to obtain a result in the same spirit as Cor. 1 in thecase of a bipartite
graph that has no chordless cycles of size strictly greater than 6.

LetB = (P,N,E) be a bipartite graph whose vertex set partitioned intoP (probes)
andN (non-probes), whereN is always assumed to be a stable set. Note that in
the case of a bipartite graphB, the “black/white” bipartition of the vertices and
the “probe/non-probe” bipartition of the vertices are generally different! Moreover,
if B is connected, then the completion edges between non-probeswill have one
endpoint white and the other black, in order to maintain the bipartite property.

We begin by stating some necessary properties due to Berry, etal. [1]. The reader
may wish to reconstruct a proof.
Lemma 2 If B is a chordal-bipartite probe graph with respect to the partition
P ∪ N , then on every chordless cycle of length≥ 6 in B the following must hold:
(1) every probe sees at most one other probe, (2) there is at least one edge of the
cycle whose endpoints are probes.

Lemma 2 implies, in particular, that (1) on a chordless cyclethere is no consecutive
triple of probes, and that (2) there must be at least two pairsof consecutive probes,
due to the parity of a bipartite graph. Moreover,
Remark 1 In the specific case of a chordless 6-cycleC6, there are exactly 2 non-
probes, one white and one black, opposite each other, and any possible chordal-
bipartite probe completion ofB must contain the added edge joining them.

We will call this forced edge abi-enhanced edge. Thus, with respect to a given
probe/non-probe partition, we define thebi-enhanced graphB∗ to be the graph
obtained fromB by adding all bi-enhanced edges from all chordless 6-cycles.

We are now ready to state our main result.
Theorem 2 Let B be a bipartite graph that contains no chordless cycleCk for
k > 6. If B has a probe/non-probe partition in which probes and non-probes satisfy
the property in Remark 1 on every chordless 6-cycle, thenB∗ is a chordal-bipartite
completion ofB.

Similar to the case of chordal probe graphs, Lemma 2 togetherwith Theorem 2
immediately prove the next corollary.
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Corollary 3 If B is aCk-free bipartite graph fork > 6, thenB is chordal-bipartite
probe if and only ifB∗ is chordal-bipartite.

An overview of the proof of the Theorem 2 can be found in the appendix.

4. Open questions

In Section 3, we prove that the properties of Lemma 2 characterize chordal-bipartite
probe graphs in the case where the given graph contains no chordless cycles of size
greater than 6. Do these properties characterize chordal-bipartite probe graphs in
the general case, or are there further conditions needed?

On the algorithmic side, given a probe/non-probe partitionof a bipartite graphB,
how do we most efficiently find the bi-enhanced edges, that is,build B∗? What is
the complexity of recognition of chordal-bipartite probe graphs, even in the case
where there are no chordless cycles of size greater than 6?
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In the capacitatedm-ring-star problem (CmRSP) a set of customers has to be vis-
ited bym vehicles initially located at a central depot. Each vehicleperforms a route
or ring that starts and ends at the depot and is characterized by an ordered set of
customers andconnection points. These connection points are selected among a set
of predefined sites called theSteinerpoints. Besides, there is also astar associated
to each vehicle. Thestar of vehiclet is a set of pairs of the form(u, v) whereu is a
customer andv is a customer orSteinerpoint belonging to thering of t. In the latter
situation, we say thatu is connectedto v. Customers in thering-star(i.e., ring or
star) of t are said to be covered byt and their quantity is limited by the capacity of
the vehicle which is assumed to be the same for the entire fleet. Now, a solution for
the CmRSP can be viewed as a set ofm ring-stars covering all customers. Routing
costs incur for every pair of consecutive sites in aring, while connection costs incur
for every connection defined by astar. The cost of a solution is then given by the
sum of all routing costs plus all the connection costs induced by itsm ring-stars.
The CmRSP asks for a solution with minimum cost and can be easily shown to be
NP-hard since it generalizes theTraveling Salesman Problem(TSP).

The CmRSP was introduced by Baldacci et al. [1] who describe an application
in the design of large fiber optics networks. The authors proposed abranch-and-
cut (BC) algorithm for the problem and reported experiments where instances of
moderate size were solved in reasonable time. To the best of our knowledge, this
is the only exact algorithm available for the CmRSP. On the heuristic side, Maut-
tone et al. [2] proposed an algorithm combining GRASP (Greedy Randomized
Adaptive Search Procedure) and Tabu Search which obtained good solutions for
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the same instances tested in [1]. The literature also contains results for theRing-
Star Problem(RSP) and its variations [3, 4]. The RSP can be viewed as restricted
case of the CmRSP where a single uncapacitated vehicle is available. On the other
hand, theVehicle Routing-Allocation Problem(VRAP) presented by Beasley and
Nascimento in [5] is a generalization of the CmRSP where customers may remain
unattended, though this situation is penalized in the objective function. Special at-
tention has been paid to instances of the VRAP where only one vehicle is at hand,
the so-calledSingle Vehicle Routing-Allocation Problem[6].

In this work we propose an integer programming formulation for the CmRSP
based on aset coveringmodel and develop abranch-and-price(BP) algorithm to
solve it exactly. We decided to investigate the adequacy of column generation to the
CmRSP, encouraged by the success of this approach for the classical Capacitated
Vehicle Problem (CVRP), that can be interpreted as a specialcase of the CmRSP. In
particular, the CmRSP is suited to cope with CVRP applications where customers
can be served indirectly by displacing themselves to a site covered by one of the
m routes. The best results reported in the literature concerning the exact solution
of the CVRP were obtained by a robustbranch-and-cut-price(BCP) algorithm
proposed in [7]. BCP algorithms embed cutting planes and column generation in a
standard branch-and-bound procedure for solving Integer Programming (IP) prob-
lems. One of the key ingredients of the BCP algorithm described in [7] refers to the
relaxation to the pricing (column generation) problem. Thepricing problem arising
in the set covering model for the CmRSP asks for a single capacitated ring-star
with minimum reduced cost. Through polynomial reductions involving a variant of
TSP with Profits [8], called Profitable Tour Problem [9], one can easily show that
this pricing problem isNP-hard. Thus, different ways to relax the pricing problem
to a more tractable one are investigated here.

Our approach to relax the pricing problem is similar to that of using q-routes for
the CVRP [7]. Basically, aq-route is a relaxation of a route that admits repetition
of vertices. In a similar fashion, we adopt a relaxed pricingproblem that searches
for a relaxed ring-star, i.e., aring-starwhere vertices are allowed to be repeated in
thering and/or in thestar. Unfortunately, the dual bound obtained by linear relax-
ation becomes weak with this relaxed pricing. It can be improved by avoiding the
occurrence ofk-cycles, cycles with length less or equal tok, inside therings. The
prohibition ofk-cyclesin paths and its use in the relaxation of discrete optimiza-
tion problems is not a novelty. Examples where this idea was applied can be found
in [10] for the TSP and in [11] for theResource Constrained Shortest Path Prob-
lem. The elimination ofk-cyclesin q-routes was used to solve theVehicle Routing
Problemin [12]. The success of this idea relies on the fact that, for small values of
k, the elimination ofk-cycles can be done without changing the complexity of the
algorithm that computes the paths orq-routes. To eliminatek-cycles fromrelaxed
ring-stars, we used thelabel setting algorithm(LSA) [13] following the idea of
Irnich and Villeneuve [11] to solve theNon-elementary Shortest Path Problem with
Resource Constraints andk-cycle Elimination[11, 14]. By prohibitingk-cycles we
avoid some vertex repetitions in thering, but not in thestar. To get rid of some
repetitions in thering-star we can represent all vertices of thering-star in a string
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in some predefined order, and forbid the occurrence ofk-cycles in the string. As
this structure is not actually ak-cycle, we call it ak-stream. We observed that the
prohibition ofk-streams was important not only to augment dual bounds, but also
to improve the overall performance of thebranch-and-pricealgorithm. When we
forbid 3-streams instead of3-cycles, the number of instances solved at optimality
raised of almost 100%. Moreover, the running time was reduced, on average, in
40%. This was made possible through a clever implementation of the label setting
algorithmto identifyuselesspaths.Uselesspaths arering-starsthat are dominated
with respect to cost and can be discarded during the execution of the LSA. Differ-
ently from the routine presented in [11], our implementation is based on a deter-
ministic finite automaton, which reduced in60% the time spent to solve the pricing
problem.

Conclusions.We proposed aset coveringIP model for CmRSP andbranch-and-
price algorithms to solve this model. The key point in developing such algorithms
is how to solve the pricing problem, which isNP-hard. To obtain a faster code,
we relaxed the pricing problem in different ways and, through experimentation, we
investigated which of these variants of the algorithm leadsto a better performance.
We end up with abranch-and-pricecode for the CmRSP, calledBP3sA, which
we proved to be competitive with abranch-and-cutalgorithm proposed earlier.
This was achieved through a careful implementation of the algorithm which solves
the relaxed pricing problem via a deterministic finite automaton. We also noticed
that theBP3sA and BC do not dominate each other and some instances are better
suited for one or the other algorithm. This suggests that thenext step in this research
should be the development of abranch-and-cut-and-pricealgorithm combining the
two techniques.
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1. Introduction

Clustering is a fundamental optimization problem and is extensively studied due
to the wide range of applications including data mining and mathematical biology.
Classical clustering methods [10] partition a given set of points in Rn into k clus-
ters so as to minimize some dissimilarity measure between the data points and the
"center" of the cluster they have been assigned to.

Since in a number of applications the main issue is to partition the points according
to their co-planarity rather than to their distribution w.r.t. their cluster centers, there
has recently been a growing interest for clustering w.r.t. subspaces [13]. In this
work we address the interesting case in which all the subspaces are hyperplanes.

There are two main variants of the Hyperplane Clustering Problem (HCP) depend-
ing on whether the numberk of hyperplanes is known a priori (k-HCP) or whether
it has to be minimized subject to some maximum error tolerance (MIN HCP).

Although there is some related work in computer science [7],control [8] and com-
putational geometry [2, 9, 12] onk-HCP, the only discrete optimization-based ap-
proach for the MIN HCP that we are aware of was proposed in [4] for piecewise
linear model fitting with applications to line segment detection in digital images
and time series modeling.

The MIN HCP is defined as follows: Givenm points{~a1,~a2, . . . ,~am} in Rn and a
maximum allowed toleranceǫ > 0, determine a minimum numberk of hyperplanes
Hj = {~a | ~a ∈ Rn,~a~xj = bj}, j = 1, . . . , k, such that each point lies within±ǫ
deviation from the hyperplane it is assigned to, where the hyperplane parameters
{(~xj,~bj)}j=1,...,k take real values.
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If we view each data point~ai, 1 ≤ i ≤ m, as thei-th row of a matrix~A ∈ Rm×n,
then the hyperplane parameters must simultaneously satisfy ~ai~x ≤ b + ǫ and~ai~x ≥
b − ǫ, for all 1 ≤ i ≤ m. When more than one hyperslab of widthǫ

‖~x‖
is needed to

cover all the points the resulting linear system containingm pairs of complementary
inequalities is clearly infeasible. From now on the subset of points that can be
assigned to a same hyperplane withinǫ is called anh-cluster if the (sub)system
composed by the above complementary inequalities with the sameǫ is feasible.

Note that MIN HCP is NP-hard since it is already NP-complete to decide whether
a set of points in the plane (n = 2, k = 2) can be covered exactly byk lines (ǫ = 0)
unless P=NP [11].

2. Column generation approach

In this work we make a first step towards an exact algorithm forsolving the MIN

HCP by developing a column generation approach. We propose aset covering for-
mulation for the master problem (MP). Given the setS of all possible h-clusters
(or feasible subsystems), for eachs ∈ S we consider a binary variableys such that
ys = 1 iff the corresponding h-clusters appears in the solution. Then (MP) in
which we minimize the number of hyperplanes can be formulated as follows:

min
∑

s∈S

ys

s.t.∑

s∈S

Disys ≥ 1 ∀i = 1, . . . , p (1)

ys ∈ {0, 1} ∀s ∈ S,

whereDis = 1 if subsystem (h-cluster)s contains row (point)i and Dis = 0
otherwise.

Since the number of feasible subsystems can be exponential w.r.t. the number of
rows for a given set of inequalities, we work with a representative small subset
S ′ ⊂ S. Generating an appropriateS ′ is a critical issue that will be discussed later.

By solving a linear relaxation ofMP (with just the nonnegativity constraints on
theys) for a givenS ′ we obtain a feasible solution to the relaxed problem and a dual
valuewi for each constraint inMP. The setS ′, is expanded only if the reduced
cost of a feasible subsystems′ given by:

cs′w = 1 −
p∑

i=1

Dis′wi (2)

that is to be added to it, is negative. Negative reduced cost columns are obtained by
solving the pricing subproblemPP:
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min (1 −
p∑

i=1

wiDi) = 1 − max
p∑

i=1

wiDi (3)

s.t.
−ǫ − M(1 − Di) ≤ A~x − b ∀i = 1, . . . , p (4)
A~x − b ≤ ǫ + M(1 − Di) ∀i = 1, . . . , p (5)

‖ ~x ‖2= 1 (6)
Di ∈ {0, 1} ∀i = 1, . . . , p,

where theM is a large enough constant so that whenDi = 0 constraints (4)-(5)
are inactive.Di = 1 forces the pointi to be assigned to hyperplane iff they lie
within ±ǫ deviation from it. Due to constraint (6), which is needed to avoid the
trivial solution~x = ~0, the pricing subproblem is mixed integer nonlinear program
(MINLP) with a nonconvex constraint.

Note that the objective function (3) with constraints (4)-(5) amounts to a weighted
version of the MAX FS [5], in which given an infeasible system we look for a
feasible subsystem with the largest total weight. Since MAX FS is NP-hard to solve
even approximately and we have the additional nonconvex constraint (6), thePP
is particularly challenging and we need a heuristic that canbe repeatedly applied to
produce feasible subsystems (columns) on the fly.

2.1 Solving the pricing subproblems

To generate an initial set of columnsS ′, we have extended the randomized thermal
relaxation (RTR) for MAX FS proposed in [3], so as to deal with weighted pairs
of complementary inequalities and the normalization (6). See the full paper for a
description.

Since the computational load of our extended RTR can be substantial for large-
sized systems, we propose and investigate alternative pricing subproblems where
trivial solutions are avoided in different ways (with different norms).

l∞-norm pricing subproblem:Given that‖ ~x ‖∞≤‖ ~x ‖2, substituting (6) with
‖ ~x ‖∞= 1 we obtain an upper bound for the optimal value ofPP. By using thel∞
norm we get a MINLP which can be linearized by reformulating‖ ~x ‖∞= 1 with
the help of binary variables~u ∈ {0, 1}n as~x ≥ ~1 − 2(~1 − ~u), ~uT~1 = 1, where~1 is
ann-dimensional vector of ones.

Relaxed Pricing Subproblem:Here we optimize over the region sandwiched by
putting the largest sized cuboid in a unit spheroid. The resulting formulation is a
MILP with the additional binary variables~u,~v ∈ {0, 1}n and the added constraints

~x ≥ (1 +
1√
m

)~u −~1, ~x ≤ (1 − 1√
m

)~v +~1, ~uT~1 + ~vT~1 ≥ 1.
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3. Computational results

We implemented the column generation approach within the SCIP [1] framework,
using the MINLP solver BONMIN [6] for solving the 2-norm pricing subproblem
and CPLEX for the other MILP pricing subproblems.

Our algorithms were tested on realistic random instances aswell as real world
data. The results provided by the column generation (CG) approach with the three
alternative methods for pricing were compared with those found in the literature
and those obtained by a greedy procedure (where feasible subsystems are extracted
iteratively till no rows are left).

For small-sized instances (up tom = 150), CG tends to provide better solutions
than the greedy in shorter or comparable CPU time. For larger-sized instances (m ≥
500), we obtain better solutions but at the cost of increased CPU time as a larger
number of feasible subsystems (columns) needs to be generated to achieve a small
duality gap. Detailed results will be provided in the complete article.

As far as alternative pricing methods are concerned, the 2-norm PP requires on
average a smaller computing time than the relaxed andl∞-norm ones. We are cur-
rently experimenting speedup strategies where we alternate between different pric-
ing subproblems. Future work includes devising branching rule to reach optimality
as well as developing a heuristic to refine the solution provided by the CG in which
points consistent with more than one h-cluster are possiblyreassigned.
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1. Introduction

In this paper, we consider the Tactical Berth Allocation Problem (TBAP) with Quay
Cranes Assignment as presented in [4].
The authors take into account two decision problems arisingin container terminals,
which are usually solved hierarchically by the terminal planners: the Quay Crane
Assignment Problem (QCAP), which assigns to incoming ships acertainQC pro-
file (number of quay cranes per working shift), and the Berth Allocation Problem
(BAP), which consists of assigning and scheduling incomingships to berthing po-
sitions. QCAP and BAP are strictly correlated, because assigned QC profiles affect
ship handling times, which impact on the berth allocation. These two problems are
integrated in TBAP and the resulting combined problem is solved at the tactical
level. For more details on container terminal operations, we refer the reader to [7],
[6] and [8].
In [4] a compact formulation of the problem is presented i.e.a formulation with a
polynomial number of variables and constraints. Givenn = |N | ships with time
windows on the arrival time at the terminal,m = |M | berths with time windows on
availability, a planning time horizon discretized in|H| time steps, a setPi of fea-
sible QC profiles defined for every shipi ∈ N , and the maximum number of quay
cranes available in the terminal, the aim is to find a feasibleassignment of ships to
berths, a feasible scheduling and a feasible QC profile assignment for every ship,
in order to maximize the total value of selected profiles.
In this work, we propose a Dantzig-Wolfe reformulation of the compact model
presented in [4], whose linear relaxation exhibits a poor lower bound. Our refor-
mulation results in a combination of feasible berth and QC assignments, called
berth sequences. The resulting model has an exponential number of variablesand
is solved via Column Generation (cf. [3]), which yields to better dual bounds but
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requires the optimal solution of the pricing problem.
We propose a network model to reduce the pricing subproblem to an Elementary
Shortest Path Problem with Resource Constrains (ESPPRC), inspired by [1]. The
main difficulty of this formulation is that the number of feasible QC profiles which
can be assigned to ships is huge, although polynomially bounded, and the solution
of the pricing problem on the resulting network might be impractical.
The set of feasible QC profiles is proposed by practitioners;the main intuition of
our approach is that only a restricted subset of QC profiles contributes to the op-
timal solution. Therefore, we propose a two stage column generation algorithm
which, at the first stage, builds berth sequences over a subset of QC profiles and, at
the second stage, adds improving QC profiles to the network model.
Reduced cost arguments adapted from [2] are used to identify promising and use-
less profiles. More specifically, we investigate reduced cost variable elimination, a
promising technique to reduce the number of variables in anyinteger linear pro-
gram (cf. [5]). In particular, a non-negative integer variable can be eliminated when
its reduced cost, with respect to a feasible dual solution, exceeds the duality gap.

2. Extensive Formulation

We use the concept of berth sequence, which represents a sequentially ordered
(sub)set of ships in a berth with an assigned QC profile.
Let Ωk be the set of all feasible sequencesr for berthk ∈ M , including the empty
sequence, which means that berthk is not used.
Let zk

r be the decision variable which is 1 if sequencer ∈ Ωk is used by berthk
and 0 otherwise. The extensive TBAP formulation is the following:

max
∑

k∈M

∑

r∈Ωk

vk
r z

k
r (1)

s.t.
∑

k∈M

∑

r∈Ωk

yk
irz

k
r = 1 ∀i ∈ N, (2)

∑

k∈M

∑

r∈Ωk

qhk
r zk

r ≤ Qh ∀h ∈ H, (3)

∑

r∈Ωk

zk
r = 1 ∀k ∈ M, (4)

zk
r ∈ {0, 1} ∀r ∈ Ωk,∀k ∈ M. (5)

where:vk
r is the value of sequencer ∈ Ωk; yk

ir is 1 if shipi in sequencer ∈ Ωk and
0 otherwise;qhk

r is the number of QCs used by sequencer ∈ Ωk at time steph; Qh

is the number of QCs available at time steph.
The valuevk

r of a sequencer ∈ Ωk is given by the sum of the values of the profiles
assigned to ships served by the sequence:

vk
r =

∑

i∈N

∑

p∈Pi

vp
i λ

pk
ir (6)
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wherevp
i is the value of profilep ∈ Pi andλpk

ir is a parameter which is 1 if profile
p ∈ Pi is in sequencer ∈ Ωk and 0 otherwise.
Equations (2) are ship-cover constraints, (3) are QCs capacity constraints and (4)
are convexity constraints. The objective function (1) maximizes the total value of
chosen sequences.

Identical restrictions on subsets.We now assume that feasible subsetsΩk have
identical requirements (i.e. berths have identical availability’s time windows): con-
sequently,Ωk = Ω ∀k.
Let zr be the decision variable which is 1 if sequencer ∈ Ω is chosen and 0 other-
wise. The extensive formulation is now defined as follows:

max
∑

r∈Ω

vrzr (7)

s.t.
∑

r∈Ω

yirzr = 1 ∀i ∈ N, (8)

∑

r∈Ω

qh
r zr ≤ Qh ∀h ∈ H, (9)

∑

r∈Ω

zr = m, (10)

zr ∈ {0, 1} ∀r ∈ Ω. (11)

Parameters and constraints are the same as in (1)-(5), except for the indexk which
has disappeared.
Note that the integer linear program defined by (7)-(11) chooses only sequences,
without assignment to berths. However, as berths are assumed to be identical, this
assignment can be done post-optimization, arbitrarily, without loss of generality.

3. Two-stage Column Generation

The linear relaxation of (7)-(11), called Master Problem (MP), has a huge number
of columns (variables), as it is defined on the space of all feasible sequencesΩ. We
define the Restricted Master Problem (RMP) on a subsetΩ′ ⊂ Ω of columns and
we solve it by column generation.
Let [π, µ, π0] be an optimal dual solution to an RMP, whereπ ∈ Rn is the dual
vector associated to ship-cover constraints (8),µ ≥ 0 is the dual vector associated to
capacity constraints (9) andπ0 ∈ R is the dual variable associated to the aggregated
convexity constraint (10).
The reduced cost of a sequencer is:

ṽr = vr −
∑

i∈N

πiyir −
∑

h∈H

µhq
h
r − π0 (12)

whereπi represents the dual price of serving shipi in sequencer andµh represents
the dual price of using an additional quay crane at time steph.
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Thepricing problem(or subproblem):

max
r∈Ω\Ω′

{ṽr} = max
r∈Ω\Ω′

{vr −
∑

i∈N

πiyir −
∑

h∈H

µhq
h
r } − π0 (13)

identifies a columnr∗ with maximum reduced cost. If̃vr∗ > 0, we have identified a
new column to enter the basis; ifṽr∗ ≤ 0, we have proven that the current solution
of RMP is also optimal for MP.

In the pricing problem, the decisions which have to be made are: (i) whether ship
i is in the sequence or not (represented by variableyir); (ii) whether profilep is
used by shipi or not (represented by variableλp

ir which is implicitly involved in
the pricing problem throughvr =

∑
i∈N

∑
p∈Pi

vp
i λ

p
ir); (iii) the order of ships in the

sequence (implicitly represented by variableqh
r ).

By defining a networkG(N̄ , A), which has one node for every shipi ∈ N , for
every profilep ∈ Pi and for every time steph ∈ H, and whose arcs have transit
time equals to the length of the profile, we can reduce the pricing problem to an
Elementary Shortest Path Problem with Resource Constraints (ESPPRC). The size
of this network grows polynomially with the number of ships,working shifts and
QC profiles; however, in the worst case (unbounded time windows) the network is
complete and has∼ |N̄ |2 arcs. Consequently, since ESPPRC is a NP-Hard combi-
natorial problem, its solution on such a big network is impractical.
We therefore propose to build the network by considering a smaller subsetP ′

i ⊂ Pi

of QC profiles for everyi ∈ N , and to solve the MP over this restricted subset. We
remark that this operation prevent us to find a valid dual bound at the end of the
column generation algorithm. In order to fix this, we add an artificial QC profile
for each shipi, which has the highest profile valuẽvp, the shortest duratioñtp and
the smallest QC utilization among all feasible QC profiles for shipi in Pi \P ′

i . The
solution of the pricing with this additional profile is now super-optimal and thus we
are able to compute a valid dual bound (UB) for the MP.
Thanks to this bound and to a feasible primal solution (LB), wecan compute a
duality gapg = UB − LB. We can now eliminate all variablesλp

ir with a reduced
cost strictly smaller than−g. Since not allλ variables have already been generated
(indeed none of theλ ∈ Pi \ P ′

i is), we adapt the method recently proposed by
[2] to compute a valid bound on their reduced cost. Remarkably, any QC profile
in Pi could be eliminated from the pricing subproblem with this approach. When
a profile inP ′

i is eliminated, all the corresponding profiles are eliminated from the
master as well. Among the remaining QC profiles, we select thesubset of profiles
with strictly positive reduced cost and we iterate the entire process. In this sense the
column generation process has two stages: firstly, berth sequences are built consid-
ering a subset of QC profiles and, subsequently, promising QCprofiles are added
to the model.
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1. Introduction

In this paper, we address the problem of developing simple and efficient algorithms
for problems on chordal graphs. Many applications deal withvery large graphs; in
this case an adequate representation affects not only the performance of the algo-
rithm but also makes the implementation easier.

We present a compact representation for chordal graphs. Besides saving computer
storage significantly, the representation provides additional information of the struc-
tural properties of the graph that leads to more efficient algorithms for solving prob-
lems for the family.

2. Representing Chordal Graphs

A graphG is said to bechordalwhen every cycle of length 4 or more has a chord
(an edge joining two non-consecutive vertices of the cycle). Basic concepts and
properties of chordal graphs can be found in Golumbic [3] andBlair and Peyton
[1]. All graphs are supposed to be connected.

In [1], Blair and Payton stated that a total ordering of the maximal cliques of the
graph, sayQ1, Q2, . . . , Qℓ, has therunning intersection property(RIP) if for each
cliqueQj, 2 ≤ j ≤ ℓ, there exists a cliqueQi, 1 ≤ i ≤ j − 1, such thatQj ∩ (Q1 ∪
Q2 ∪ . . . ∪ Qj−1) ⊂ Qi.

For anyRIPordering of the maximal cliques, a treeTrip can be constructed making
each cliqueQj adjacent to aparentcliqueQi identified by the expression above.
Observe that anyRIP ordering numbers each parent before any of its children.

∗ Corresponding author.
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Moreover, the set of treesTrip equals the set of clique-trees ofG. A clique-tree can
be a representation of a chordal graph.

These results allow us to propose a new representation for chordal graphs. LetG =
(V,E) be a chordal graph, andQ = {Q1, Q2, . . . , Qℓ} the set of maximal cliques of
G, with aRIPordering. Thecompact representationof G is the sequence of pairs

CR(G) = [(Pj, Sj)], ℓ ≥ j ≥ 1,

such thatS1 = ∅, Sj = Qj ∩ (Q1 ∪ Q2 ∪ . . . ∪ Qj−1) andPj = Qj − Sj.

The most important advantage of the compact representationwhen compared with
the clique-tree representation is that several structuralproperties of the graph can be
deduced from it. Given a chordal graphG represented byCR(G) = [(Pℓ, Sℓ), . . . , (P2, S2),
(P1, S1)], it can be proved that:

• Theℓ maximal cliques ofG areQ1 = P1 ∪ S1, . . . , Qℓ = Pℓ ∪ Sℓ.
• The sequence[Pℓ, Pℓ−1, . . . , P1] is a perfect elimination ordering (peo) of G.
• S2, S3, . . . , Sℓ are the minimal vertex separators ofG.
• The setV ′ = V − (S2 ∪ S3 ∪ . . . ∪ Sℓ) is the set of simplicial vertices ofG.
• There is an unique clique-treeT = (VT , ET ) of G such that the edges are the

pairs(Qj, Qi), for ℓ ≥ j ≥ 2, andi is obtained by

i = max{t | Sj ∩ Pt 6= ∅}.

It is interesting to observe that a chordal graph can have several compact represen-
tations. As an example, letG be a chordal graph withV = {a, b, c, d, e, f, g, h}
andE = {(a, b), (a, c), (a, d), (a, e), (a, f), (b, c), (b, d), (b, e), (b, f), (c, d), (e, f),
(f, g), (f, h), (g, h)}. Two correct compact representations ofG are

CR1(G) = [({g, h}, {f}), ({e, f}, {a, b}), ({a, b, c, d}, ∅)] and

CR2(G) = [({c, d}, {a, b}), ({a, b, e}, {f}), ({f, g, h}, ∅)].

Another important advantage is the easy implementation of queries. We can con-
sider, for instance, theadjacency query, that tests whether two verticesu andv are
adjacent. Ifu andv belong to the samePi then the vertices are adjacent. Otherwise,
let u ∈ Pi andv ∈ Pj, beingi > j. The vertices are adjacent if and only ifv ∈ Si.

3. Generating and Analyzing the Compact Representation

Based on the properties stated in Section 2, it is easy to develop a simple and effi-
cient algorithm to obtain the compact representation.

Blair and Peyton [1] show that a maximal cardinality search (MCS) detect the max-
imal cliques of the graph searching them one after the other;we can prove the
same to alex-BFS, with similar arguments. Based on this theoretical framework,
we present, in [5], a simple algorithm that determines the maximal cliques, the
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minimal vertex separators and the clique-tree. In order to determine the minimal
vertex separators of a chordal graph, it is sufficient to establish the intersection of
each pair of maximal cliques adjacent in the clique-tree. The determination of the
maximal cliques of the graph can be accomplished exploring thepeoof the graph.
The algorithm presented in [3] analyzes the vertices as theyappear in thepeo. How-
ever, the same result can be obtained performing an inductive construction of the
graph; in this way we are able to build, at the same time, the clique-tree and, conse-
quently, to determine the minimal vertex separators ofG. As this algorithm provide
every partial result needed to establish the representation, it is possible to modify it
to obtain, also in linear time,CR(G). Other algorithms that determine the minimal
vertex separators can be found in the literature [2, 4].

We can evaluate the storage needs of the representation. Being σ =
∑

i=2,ℓ |Si|,
the representation takesn + σ memory positions, againstn + 2m of the traditional
representation by adjacency sets. Notice that, since a minimal vertex separator is
always a monotone adjacency set,σ ≤ m. Even when the edges are not represented
twice, the compact representation is better.

Sinceσ is not directly related to the number of edges of the graph, itis interesting
to establish the actual benefit of the compact representation. It is not difficult to see
that good cases happen when there are few maximal cliques in the graph and, for
eachQi, |Si| < |Pi| – this corresponds to a smallerσ. The best case is the complete
graph, since its traditional representation withn + n(n − 1) positions is reduced
to n positions. Bad cases happen when the chordal graph has a largenumber of
maximal cliques, for instance ak-tree.

However, it is possible to establish a more precise evaluation. In order to do that, we
must study the spent and saved memory positions for each maximal clique, on each
representation. This study is presented in the extended paper, along with examples
of the behavior of the compact representation for some knownproblems of chordal
graphs.
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When a cancer is diagnosed, physicians can prescribe radiation therapy sessions
whose the aim is to destroy the tumor(s) by exposing it to radiations while pre-
serving the healthy organs and tissues located in the radiation field. Nowadays, to
deliver radiations, most hospitals use a multileaf collimator. The arm of the colli-
mator can fully circle around the patient and stop at certainangles. These angles
give several possible radiation angles in such a way that it is possible to place the
tumor at the epicenter of the radiations and the organs located in the radiation field
are different for each angle (so they receive a smaller dose than the tumor(s)).

To establish a radiation therapy plan three steps are needed:

(1) Determining the different radiation angles.
(2) Computing an intensity function for each angle.
(3) Modulating the radiation to obtain the required intensities for each angle.

Every function computed in step (2) is encoded as an integer matrix I of sizeM×N
whose entries correspond to elementary parts of the radiation beam (calledbixels);
the value of each entryimn of the matrix gives the required dose for the correspond-
ing bixel.

Here we assume that the two first steps are completed. So, we receive an integer
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matrixI for each angle, and we have to modulate the radiation since the component
of the multileaf collimator that sends radiation is a linearaccelerator which can only
send a uniform radiation. Actually we have to decompose the matrix I as a linear
combination of binary matrices where the ones mean that radiations do get through
and the zeroes that radiations do not get through. The zeroesin the binary matrices
used in the decomposition are generated by the metallic leaves of the collimator
which can block the radiations and are placed between the radiation source and the
patient. The machine has a left leaf and a right leaf for each row of the matrices we
consider. Thus each row of any binary matrix used in the decomposition consists of
a certain number of consecutive zeroes (corresponding to the bixels blocked by the
left leaf), then a certain number of consecutive ones and finally a certain number of
consecutive zeroes (corresponding to the bixels blocked bythe right leaf). Hence,
the matrices used in the decomposition ofI have to satisfy the consecutive ones
property.

Formally, the problem of modulating the radiation can be stated as follows: Given a
matrixI of sizeM ×N with non-negative integer entries, we seek a decomposition
of I as a weighted sum of binary matrices having the consecutive ones property.
Moreover, the coefficients of the decomposition are restricted to be non-negative
integers. This is due to the fact that the linear acceleratorcan not send a smaller dose
than 1 cGray, which corresponds to have a one in the decomposition. Our objective
is to minimize the total sum of the coefficients. This correponds to minimizing
the totalbeam-on time, which is highly desirable for medical reasons. We call this
problem theminimum beam-on timeproblem (BOT).

Efficient methods to solve this problem were found by many authors [1–3, 5]. We
now briefly describe one solution approach. We first define thedifference matrix
∆ = (δmn) of sizeM ×(N +1) by δmn := imn− im,n−1, whereim0 = im,N+1 := 0.
If δmn > 0 we know that, for at leastδmn time units, the radiation has to pass
through bixel(m,n) and not through bixel(m,n − 1). To achieve this the left leaf
in them-th row has to be placed in positionn for at leastδmn time units. So, the
positive entries of the matrix∆ give a lower bound on the time during which the
left leaves have to be in a certain position. Similarly, the negative entries of∆ give
a lower bound on the time during which the right leaves have tobe in a certain
position.

Let now∆+ = (δ+
mn) and∆− = (δ−mn) be the matrices of sizeM ×(N +1) defined

by δ+
mn := max{0, ∆mn} andδ−mn := max{0,−∆mn}. These matrices describe the

unavoidableleaf positions. The maximum row sum of∆+ (or ∆−) gives a lower
bound on the optimal beam-on-time. It turns out that a decomposition of I with
beam-on-time equal to this lower bound (and hence an optimaldecomposition)
can be found by matching the first left leaf position in∆+ with the first right leaf
position in∆−, the second with the second,. . . and so on. Each row is processed
independently from the others. This algorithm is called thestandard decomposition
algorithm. It has complexityO(MN + KM) whereK is the number of matrices
output by the algorithm4 .

4 Note thatK = O(MN) so the algorithm runs inO(MN + M2N).
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∆+ = ( )5 0 0 2 0 , ∆− = ( )0 4 0 0 3

We investigate variants of BOT with additional constraints on the matrices used in
the decomposition. Constraints appearing in the application include the interleaf
motion and interleaf distance constraint. The former constraint says that the end of
a left leaf cannot be located at the right of the end of a right leaf of an adjacent row
(in other words leaves in adjacent rows cannot “overlap”). The BOT under this con-
straint was previously studied by, e.g., Baatar, Hamacher, Ehrgott and Woeginger
[3].

Fig. 1. The interleaf motion constraint forbids such leaf configurations.

The interleaf distance constraint is new and says that the distance between the ends
of two left (or two right) leaves can not be bigger than a certain constantc.

ok bad

Fig. 2. The interleaf distance constraint for a constantc = 2.

The problems are formulated, after an idea of Baataret al. [3], by introducing a
M × (N + 1) non-negative integer matrixW describing theextra leaf positions.
The decomposition is implicitly described by the pair of matrices∆+ + W and
∆− + W (via the standard decomposition algorithm).

Baataret al.[3] propose a complicated algorithm to solve the resulting IP with com-
plexity O(M2N +KM) (they only consider the interleaf motion constraint). Here,
for both constraints, we prove that finding an optimal decomposition amounts to
finding a maximum value potential in an auxiliary network with integer arc lengths.
This leads to cleaner, more efficient algorithms. We give aO(MN + KM) algo-
rithm to solve the problem under the interleaf distance constraint. We also give
a O(Mlog (M)N + KM) algorithm for the problem under the interleaf motion
constraint and hence improve on theO(M2N + KM) algorithm of Baataret al.
Moreover we can show the problem can still be solved inO(Mlog (M)N + KM)
time when both constraints are considered simultaneously.We believe that our al-
gorithms are asymptotically optimal.
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Abstract

We discuss two formulations of the Pattern Minimization Problem: [Van] introduced by
Vanderbeck, and [GG] obtained adding setup variables to the cutting stock formulation
of Gilmore-Gomory. LetzLP

V (u) (zLP
GG(u)) be the bound given by the linear relaxation

of the former (the latter) under a given vectoru = (uk) of parameters. We show that
zLP
GG(u) ≥ zLP

V (u), and provide a case where the inequality holds strict.

Key words: Cutting Stock, Integer Decomposition, Linear Relaxations

1. The Problem

Let I be a set of one-dimensional part types to be produced by cutting identical
stock items of given lengthw. Let wi < w (let di) denote the length (the demand)
of part typei ∈ I. In the 1-dimensional Cutting Stock Problem (1-CSP) one wants
to producedi parts for eachi ∈ I minimizing the number of used stock items.
A solution to the 1-CSP gives a set of cutting patterns | each describing a distinct
way of packing part types ofI into a single stock item | and the number of times
each pattern is replicated (activation level). In the Pattern Minimization Problem
(1-PMP), see [5], a solution that uses a minimum number of cutting patterns is
searched among all those with a minimum numberz∗ of stock items, wherez∗ is
given by a preliminary solution of the relevant1-CSP.
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In general, the1-PMP is considerably hard [1]. A non-linear integer formulation
[Kan] can easily be derived from the 1-CSP compact assignment model [4]. Here,
xij is the number of items of part typei obtained from a stock item cut according
to patternj, zj is the number of times patternj is used, andyj is a 0-1 variable
indicating whether patternj is used at all, or not:

[Kan] min
z∗∑

j=1

yj (1)

z∗∑

j=1

zjxij = di i ∈ I (2)

∑

i∈I

wixij ≤wyj j = 1 . . . z∗ (3)

z∗∑

j=1

zj ≤ z∗ (4)

zj ≤ z∗yj j = 1 . . . z∗ (5)
zj ≥ 0 j = 1 . . . z∗ (6)

xij ≥ 0 i ∈ I, j = 1 . . . z∗ (7)
0 ≤ yj ≤ 1 j = 1 . . . z∗ (8)

xij, zj, yj integer i ∈ I, j = 1 . . . z∗ (9)

A lower bound to [Kan] is given by the optimal value of an associated bin-packing
problem, obtained by settingdi = 1,∀i, or by a lower bound to this value [3].
These bounds are however too weak for an effective use withina branch-and-bound
algorithm.

2. Reformulations and lower bounds by linear relaxation

Reformulating [Kan] by discretization, see [6], gives tighter bounds to the1-PMP.
Indeed, different master formulations can be drawn from [Kan], depending on the
set of dualized constraints. In [5], the author describes a 1-PMP master formulation
[Van] obtained by dualizing (1) and (3), or equivalently, from discretization of the
polyedron defined by (2) and (4)-(8).

An alternative master formulation [GG], very close to that of Gilmore and Gomory
for the 1-CSP [2] with the addition of fixed setup costs, derives from discretizing
the polyedron defined by (2), (6) and (7).

Both formulations [V an] and [GG] involve variables associated to cutting patterns.
Since the setK of all the feasible cutting patterns grows exponentially inthe num-
ber of part types, column generation procedures are required to solve the linear
relaxations [V anLP ] and [GGLP ] of respectively [V an] and [GG]. In fact, such
column generation algorithms are very similar to each othersince both formula-
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tions lead to the same pricing problem. Therefore the quality of the bounds pro-
vided by the linear relaxations [V anLP ] and [GGLP ] remains a crucial aspect of
the design of an effective exact algorithm.

In [5] the Author discards formulation [GG], and develops a branch-and-price al-
gorithm for [V an]: he argues in fact that [V anLP ] results from the dualization of
fewer constraints of [Kan] than [GGLP ], and therefore, by Lagrangian theory, the
former must be stronger than the latter.

We notice however that one gets [V an] and [GG] by mere dualization of [Kan]
only if the upper bounduk to the activation level of thek-th cutting pattern,k ∈ K,
is set to the trivial valuez∗. But both [V an] and [GG] use specific upper boundsuk

instead of the trivial valuez∗, and indeed their properties strongly depend on those
uk. The main purpose of this note is then to bring the attention on the crucial role of
theuk’s and to show that, in order to find a good and practical exact algorithm, for-
mulation [GG] should not in principle be discarded. In fact, letzLP

V (u) andzLP
GG(u)

denote the optimal value of programs [V anLP ] and [GGLP ], for u = (uk)k∈K .
Then
Proposition 1 zLP

V (u) ≤ zLP
GG(u), and the inequality holds strict for some vector

u ∈ R|K| of upper bounds to the activation level of cutting patterns.
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1. Extended Abstract

During the last two decades, there has been a growing interest in the developing of
location models on networks, with particular attention to the location of extensive
facilities, such as paths or trees. Almost in all cases, the criteria used are theminsum
criterion, according to which the sum of the distances from all the vertices of the
network to the facility is minimized, and theminimaxcriterion, that is, the distance
from the facility to the farthest vertex in the network is minimized. The present
paper investigates the problem of locating a path-shaped facility with the minsum
criterion without restrictions on the length of the path onouterplanargraphs. Ex-
amples of such a problem include the location of pipelines, evacuation routes, mass
transit routes or routing a highway through a road network, and public transit lines.
An optimal path for this problem is also referred to as amedian pathand we will
refer to the problem under study as the Median Path Problem (MPP).
In the literature, the median path problem was widely studied when there is a re-
striction on the length of the path. In fact, on general networks this problem is
NP-complete [3, 5, 11]. In particular, in [5] it is shown thatit is NP-Complete on
planar graphs with vertex degree less than or equal to 5, while [3] provides the same
result on rectangular grid graphs. In [11] it is shown that the median path problem
with length at most equal to a given constant, is NP-hard on outerplanar graphs,
but in [7] it is actually shown that the same problem is NP-hard even on the class
of cactus graphs. Nevertheless, [11] provides a pseudo-polynomial time algorithm
for the solution of MPP with restricted length on series-parallel graphs. Moreover,
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if the graph is unweighted, the above algorithm has an overall time complexity of
O(n7logn), wheren is the number of vertices of the graph.
For MPP with restricted length on general networks different directions were inves-
tigated: in [7] a metaheuristic approach was presented, while [2] suggests a branch-
and-cut algorithm. Finally, a number of papers have investigated the problem of
locating median paths with restricted length on trees and efficient polynomial time
algorithms were provided (see, e.g., [1, 4, 5, 8, 10]).
Since also MPP without length restrictions is NP-hard on general networks [5], this
problem was mainly studied on trees, as well [9, 10, 12]. To the best of our knowl-
edge, MPP without length restrictions has not been studied yet on networks with
cycles.
In this paper we study this problem on the class of outerplanar graphs. Notice that,
if we consider a biconnected outerplanar graphG, the solution is trivial, since a
median path without restrictions on the length is simply given by the path passing
through all the vertices on the outercycle ofG. On the other hand, this is not true
if we consider the case of finding a median path between two fixed end vertices
in a biconnected outerplanar graph. Actually, this will turn out to be a special case
of our more general problem for which we will provide an algorithm, linear in the
number of vertices of the graph. In this paper we consider themore general class
of connectedouterplanar graphs (or, simply, outerplanar graphs). In particular, we
focus our attention on the case in which equal weights are assigned to the edges of
G, while nonnegative weights are associated to the vertices of G.

Given an outerplanar graphG = (V,E), with |V | = n, it can be suitably decom-
posed into blocks and bridges [6] and it can be represented bya treeT = (VT , ET ),
whereVT is the set of blocks and bridges ofG. There is an edge between two ver-
tices ofT if they share a cut vertex inG. We callT the representation treeof G.
In our algorithm we rootT at any block or bridgeH, and we denote the resulting
rooted tree byTH . In order to provide an algorithm for the MPP inG, we need a
preprocessing phase for computing some quantities. We exploit the structure of the
representation tree ofG both in the preprocessing and in the algorithm.

In the preprocessing phase, we visit the treeTH bottom up, level-by-level, and
compute some quantities associated both to its edges and itsvertices. Unlike the
preprocessing usually implemented for median path location problems on trees,
here the particular structure of each vertex ofTH (i.e., a block ofG) requires a
more complex procedure to compute the necessary quantities.

After the preprocessing, the algorithm works by rooting thecorresponding repre-
sentation treeT at any block or bridgeH and visitsTH top down by a breadth-
first-search. For each vertexu ∈ V the algorithm computes the minimum sum of
the distances of a path from a vertex inH to vertexu. Among all the paths found
so far, the algorithm selects the one with the minimum sum of the distances,P (H).
This procedure is repeated by rootingT at every possible block or bridge. Among
all the pathsP (H), the optimal pathP ∗ for MPP corresponds to the one with the
minimum sum of the distances.

Let k be the number of blocks and bridges inG. We prove that, for a givenH,
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the preprocessing phase applied toTH runs inO(n) time, implying that the time
complexity of the preprocessing isO(kn).
We also prove that, for a givenH, P (H) can be found inO(n) time. Hence, the
overall time complexity for solving MPP isO(kn).

In addition, as a byproduct of our main algorithm, we providea linear time pro-
cedure to find a median path without restrictions on its length between two fixed
vertices in a biconnected outerplanar graph.
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1. Introduction

This paper could be named “The Return of Dynamic Programming for Optimiza-
tion of Capacitor Allocation in Power Distribution Networks". Indeed, it revisits
some forty years old ideas that seem to have been forgotten inthe area of capacitor
sizing and placement in power distribution networks.

As energy travels from generation plants to customers, electrical resistance in trans-
mission and distribution lines causes dissipation of energy. Thesetechnical losses
are large fees on electric power systems; typical figures forlosses in the literature
amount to around 7% of total energy production, 2% in transmission and 5% in
distribution [1]. Loss reduction can be seen as a hidden source of energy.

Capacitor allocation is a cost-effective way to decrease losses in power distribution
networks. They can provide local reactive power that reduces technical losses by
avoiding part of the reactive energy flows in power lines. Theoptimal capacitor
allocation problem searches to find out the best places and sizes for capacitors in
distribution networks. The objective function for the problem reflects a compromise
between cost of capacitors and energy savings along a specified payback period.

Techniques to unveil the best alternatives for capacitor allocation in distribution
networks have been developed for more than 50 years. During the sixties mathe-
matical programming techniques were blooming; among them,dynamic program-
ming. A lot of research effort was applied to model problems in such a way that
it could be addressed as a dynamic programming problem—for which an optimal
solution could be easily found. Capacitor allocation in power distribution networks
did not stay aside from the tide. With some simplifying assumptions, Duran [2]

∗ Corresponding author.
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proposed an approach based on dynamic programming to find optimal solutions to
the problem.

Most electric distribution networks operate with a radial configuration. Using a
graph terminology, a distributionfeederis a tree rooted at a distribution substation
that provides a unique path from the substation to each load point. The main sim-
plifying assumption adopted by Duran [2] was that these trees do not have lateral
branches. Under this assumption, he showed that the capacitor allocation problem
could be represented as a one-dimensional dynamic programming problem. When
the lateral branches are considered, his formulation seemsto require more dimen-
sions, one for each lateral branch, what precludes the application of the technique
for real scale distribution networks.

In the following decades after the contribution of Duran [2]many approaches based
on heuristics were proposed to solve the capacitor allocation problem in radial dis-
tribution networks. To name a few, Baran and Wu proposed a heuristic method
guided by the solution of a mixed integer programming problem [3, 4]; Gallego et
al. adopted tabu search [5]; Mendes et al. proposed a hybrid genetic algorithm [6].

This paper revisits the ideas of Duran [2]. It shows that withfurther examination
their simplifying assumptions are not necessary; dynamic programming can be ap-
plied to find optimal solutions for capacitor allocation in real scale distribution
networks. The chief concept is to project the multidimensional dynamic program-
ming formulation into an equivalent one-dimensional representation. Ideas and data
structures borrowed from network flows optimization algorithms allow implemen-
tation of the new approach.

2. Problem Discussion

Technical losses in a sectionk of a power distribution line can be computed as the
product of the square of electric currents flowing in the lineby the equivalent resis-
tance of the section. Currents can be decomposed intoin-phase components(iPk)
andquadrature components(iQk). The in-phase component is associated with the
active powerPk, also named “useful power", because it is the power used to pro-
duce work, light and heat; the quadrature component is associated with thereactive
powerQk, a consequence of the electric physics that flows back and forth in power
lines without being actually “consumed".

Figure 1 shows a simplified diagram of a distribution feeder.The in-phase compo-
nent can be computed asiPk = Pk

Vk
, whereVk is the voltage at the first upstream

node—for a graph representation of a distribution network please refer to [7]. The
quadrature component can be computed asiQk = Qk

Vk
. Losses in the sectionk are

computed aslk = rk
(Pk)2+(Qk)2

(Vk)2
, whererk is the resistance of sectionk.

Losses in power lines can be reduced by installing capacitors (Ci) of adequate size
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Fig. 1. Schematic Diagram of a Power Distribution Feeder.

at some nodes of the distribution network. These capacitorsprovide local reac-
tive powerQCi and, consequently, reactive currentsiCi, in opposite direction of
the quadrature components. Thus,lk = rk

(Pk)2+(Qk−QCi)
2

(Vk)2
when a capacitorCi is

installed at nodek, downstream from sectionk.

The objective of the capacitor allocation problem can be expressed as

Mins∈SC
[
∑

i∈SC

f(Ci) + αet

∑

t∈T

τt

∑

k∈N

∑

j∈Ak

rkj
(Pkj)

2 + (Qkj)
2

(Vk)2
] (1)

whereSC is the set of capacitors for possible allocation in the network, f(Ci) is the
cost of a capacitorCi, αet is the value of energy during intervalt, τt is the duration
of intervalt, T is the set of time intervals,N is the set of nodes in the distribution
network,Ak is the set of arcskj with origin at nodek, rkj is the resistance of arckj,
Pkj is the total active power flow in arckj andQkj is the total reactive power flow
in arckj. All solutions must satisfy power flow equations, electrical constraints and
specific operational goals [6].

The dynamic programming approach (DP) proposed by Duran [2]associatesstages
to the nodes of the distribution network,control variableat a nodek to the ca-
pacitive reactive power (QCi) injected at the node andstateto the total capacitive
power flowing in the arc immediately upstream from a nodek. If there is only one
arc downstream from each node, it leads to a one-dimensionalDP problem. If there
are more than one arc downstream from the nodes, this DP approach needs addi-
tional dimensions, one for each lateral branch; in these cases, computing a solution
for real feeders with many arcs downstream from their nodes is an impossible task
(thousands of lateral branches is a common instance). That is why DP has been
long forgotten as a technique to solve the capacitor allocation problem.

The paper proposes a concept that complements the original ideas of Duran [2].
Instead of increasing the dimension of state variables for each additional down-
stream branch, it proposes to design very simple secondary optimization problems
that give the optimal array of capacitors for the whole set ofbranches downstream
from a node. Adoption of this concept allows projecting the problem into a one-
dimensional DP problem. In doing so, it allows to rescue DP asa technique to
solve real capacitor allocation problems.

Remind that DP finds a global optimum to the problem, what givesit a special
appeal compared to heuristic approaches.
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1. Introduction

We investigate a problem from the area of competitive location where two compet-
ing providers, the leader and the follower, sequentially place facilities into a market
in order to maximize their revenue. It is assumed that all competitors provide the
same type of good or service. Hence the user preference can beexpressed solely in
terms of distances to the locations of the servers. In our scenario the distances are
induced by an underlying edge weighted graph.

The benefit of each competitor is measured by the size of his party, i.e., the total
demand (or weight) of the users connecting to the competitor. The providers act
in a non-cooperative way and only aim at maximizing their ownbenefit. Once the
leader has chosen his position, the follower is able to determine an optimal location.
Hence the follower’s reaction is predictable, which the leader can take into account
when he makes the initial decision.

2. Problem Definition

Consider an undirected graphG = (V,E) with positive edge lengthsd : E → N+.
An edge of the graph can be considered as an infinite set ofpoints. A point x on
edgee = (u, v) is specified by the distance from one of the endpoints ofe, and the
remaining distance is derived from the invariantd(u, x) + d(x, v) = d(e). Notice
that the set of points of a graph includes the set of nodes. Allpoints which are
not nodes are calledinner points. In the sequel we will useG (and e) both for
denoting the graph (the edge) and for denoting all of its points, as the meaning will
become clear from the context. In the sense of these considerations the edge length
functiond is extended to a distance functiond : G × G → N+

0 defined on all pairs
of points. Nonnegative node weightsw : V → N+

0 specify the demand of users who
are always placed at nodes of the graph.

Let X,Y ⊂ G be finite sets of nodes or points, specifying a server placement of the
leader or follower player, respectively. The distance of a useru to a point setM is
d(u,M) := minm∈M d(u,m). A useru prefers the follower ifd(u, Y ) < d(u,X).

∗ Corresponding author.
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By w(Y ≺ X) :=
∑{w(u) | d(u, Y ) < d(u,X) } the total weight of the follower

party is denoted.

Let r, p ∈ N. Leader and follower are allowed to placep or r facilities, respectively,
into the graph. LetXp ⊂ G be a set of|Xp| = p points. Let

wr(Xp) := max
Yr⊂G
|Yr|=r

w(Yr ≺ Xp)

be the maximum influence anyr-element follower placement can gain over a fixed
leader placementXp. An absolute(r,Xp)-medianoidof the graph is any setYr ⊂ G
of |Yr| = r points wherew(Yr ≺ Xp) = wr(Xp) is attained. Let

wr,p := min
Xp⊂G
|Xp|=p

wr(Xp) .

An absolute(r, p)-centroid of the graph is any setXp ⊂ G of |Xp| = p points
wherewr(Xp) = wr,p is attained. The notionsdiscrete(r,Xp)-medianoidanddis-
crete(r, p)-centroidare defined similarly, with the server sets restricted to nodes
Xp, Yr ⊆ V rather than points.

Previous Results

The (r, p)-centroid and(r,Xp)-medianoid problems have been introduced in [1].
The discrete(r, p)-centroid on a path is solvable in polynomial timeO(pn4) while
the absolute(r, p)-centroid on a path and the discrete(r, p)-centroid on a spider are
NP-hard [4].

3. Absolute(r, p)-centroid on a path

Let P = (v1, . . . , vn) the input path,w : V → N the node weights,d : E → N+ be
the edge lengths.

For arbitrary real numbersx, y ∈ R we denote byx .− y := max{x − y, 0}
the asymmetric difference. With each leader positioningXp we associate a vec-
tor (δ1(Xp), . . . , δ2p(Xp)) whereδi(Xp) := wi(Xp) − wi−1(Xp) is the incremental
gain of placing theith follower. Hencewr(Xp) =

∑r
i=1 δi(Xp). Sinceδ1(Xp) ≥

. . . ≥ δ2p(Xp), finding wr,p can be considered as anr-sum minimization problem
[2]. The authors reduce in a general frameworkr-sum optimization problems to
minisum problems. In our context we definez-reduced weights(for z ∈ N)

w(z)(Xp) :=
2p∑

i=1

(
(wi(Xp) − wi−1(Xp)) .− z

)

and establish the following result:
Lemma 1 (Reduction fromr-sum to minisum) There is a suitablez ∈ N such
that each optimum under minisum functionw(z) is also an optimum underr-sum
functionwr.
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In order to evaluate an optimum ofw(z) for a given parameterz ∈ N we use a
dynamic programming approach. Assume the path is populatedincrementally with
leader servers from left to right. LetR(π,W ) =: R denote the rightmost feasible
leader position of placingπ servers such thatw(z) restricted to the interval[0, R]
does not exceedW . Then, for anyπ = 1, . . . , p andW = 0, . . . , w(P ),

R(z)(π + 1,W ) = max

{
x

∃(W0, W̃ ) : W0 + W̃ = W and
w(z)

(
R(z)(π,W0), x

)
≤ W

}
.

We can assume w.l.o.g. that there is always placed a leader atthe rightmost nodevn.
(Otherwise, add a dummy node with suitable weight to the path, and incrementp by
one.) Taking this into respect, thew(z)-optimum weight can be derived from the
outcome vectorR(z)(p, ·) of the dynamic programming table by

min
Xp

w(z)(Xp) = min{W | R(z)(p,W ) ≥ d(v1, vn) } ;

a corresponding leader server placementXp can be derived from maintaining the
positions during the dynamic program.

In order to compute the desired result it suffices to compute all w(z)-optima for
z ∈ [0, w(P )] and output a placementXp wherewr(Xp) is minimal.
Lemma 2 (Solvingr-sum problem) The problem of determiningwr,p and a cor-
responding leader placementXp (i.e., wherewr(Xp) = wr,p is attained) can be
solved in pseudo-polynomial running timeO(p · w(P )2 · n2).

From this result we can derive a fully polynomial time approximation scheme (FP-
TAS) applying a standard scaling technique to the weights ofthe nodes [3].
Theorem 1 (Approximation) There is a FPTAS for absolute(r, p)-centroid on a
path.

References

[1] S. L. Hakimi · On locating new facilities in a competitive environment· European
Journal of Operations Research12 (1983), 29–35.

[2] A. P. Punnen and Y. P. Aneja· On k-sum optimization· Operations Research Letters
18 (1996), 233–236.

[3] C. H. Papadimitriou and K. Steiglitz· Combinatorial optimization· Prentice Hall,
1982.

[4] J. Spoerhase and H.-C. Wirth· (r, p)-centroid problems on paths and trees· Tech.
Report no. 441, University of Würzburg, Department of
Computer Science, 2008,http://www.informatik.uni-wuerzburg.de/
forschung/technical_reports/.

195



196



List of Corresponding Authors:

Name email page

Edoardo Amaldi amaldi@elet.polimi.it 112

Evangelos Bampas ebamp@cs.ntua.gr 35

Alberto Caprara acaprara@deis.unibo.it 16

Daniele Catanzaro dacatanz@ulb.ac.be 48

Roberto Cordone cordone@dti.unimi.it 52

Maria L.A.G. Cremers m.l.a.g.cremers@rug.nl 78

Paolo Detti detti@dii.unisi.it 39

Kanika Dhyani dhyani@elet.polimi.it 162

Ardeshir Dolati dolati@shahed.ac.ir 11

Niklaus Eggenberg niklaus.eggenberg@epfl.ch 72

Céline Engelbeen cengelbe@ulb.ac.be 177

Rija Erveš rija.erves@uni-mb.si 144

Nikolaos Fountoulakis nikolaos@maths.bham.ac.uk 88

Bernhard Fuchs fuchs@ibr.cs.tu-bs.de 26

Vassilis Giakoumakis Vassilis.Giakoumakis@u-picardie.fr 94

Stefano Gualandi gualandi@elet.polimi.it 32
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